Species-specific marker development for accurate identification of three red algae (Grateloupia asiatica, Pachymeniopsis lanceolata and Polyopes affinis) based on complete organelle genomes

Yong Jin Lee , Yeon Mi Kim , Cheol Min Kim , Sung-Je Choi , Cheol Seong Jang

Marine Life Science & Technology ›› : 1 -13.

PDF
Marine Life Science & Technology ›› :1 -13. DOI: 10.1007/s42995-025-00327-4
Research Paper
research-article

Species-specific marker development for accurate identification of three red algae (Grateloupia asiatica, Pachymeniopsis lanceolata and Polyopes affinis) based on complete organelle genomes

Author information +
History +
PDF

Abstract

Red alga species in the phylum Rhodophyta are ecologically and economically important, which are widely used as food and medicinal products because they are rich in bioactive compounds. Unfortunately, researchers often meet challenges in identifying red algal species and understanding the evolutionary relationship among them. Shooting away these limitations necessitates detailed genomic studies, including those of cellular organelles. In this study, we sequenced circular organelle genomes of three red macroalgal species, Grateloupia asiatica, Pachymeniopsis lanceolata and Polyopes affinis, yielding two complete chloroplast genomes of P. lanceolata and P. affinis and one mitochondrial genome of P. affinis. The average chloroplast and mitochondrial genome sizes were 192,724 bp and 29,699 bp, respectively, which encoded 202 and 25 proteins, respectively, on average. The short- and long-repeat sequences, gene rearrangements, the nucleotide diversity, and phylogenetic relationship among these three species were analyzed. Memo: revise conjunctions and prepositions to form a clearer list (A, B, C, and D). The 194 chloroplast and 23 mitochondrial protein-coding genes shared by the species belonging to Florideophyceae and Bangiophyceae were used to reconstruct a maximum-likelihood phylogenetic tree. In addition, we developed 15 species-specific PCR markers, five for each species, using single-nucleotide polymorphism information. Our results should aid in identifying these species and deciphering the evolutionary relationship among species in the phylum Rhodophyta.

Keywords

Halymeniaceae / Chloroplast genome / Mitochondrial genome

Cite this article

Download citation ▾
Yong Jin Lee, Yeon Mi Kim, Cheol Min Kim, Sung-Je Choi, Cheol Seong Jang. Species-specific marker development for accurate identification of three red algae (Grateloupia asiatica, Pachymeniopsis lanceolata and Polyopes affinis) based on complete organelle genomes. Marine Life Science & Technology 1-13 DOI:10.1007/s42995-025-00327-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bedoya AM, Ruhfel BR, Philbrick CT, Madriñán S, Bove CP, Mesterházy A, Olmstead RG. Plastid genomes of five species of riverweeds (Podostemaceae): structural organization and comparative analysis in Malpighiales. Front Plant Sci, 2019, 10: 1035

[2]

Beier S, Thiel T, Münch T, Scholz U, Mascher M. MISA-web: a web server for microsatellite prediction. Bioinformatics, 2017, 33: 2583-2585

[3]

Cai C, Gu K, Zhao H, Steinhagen S, He P, Wichard T. Screening and verification of extranuclear genetic markers in green tide algae from the Yellow Sea. PLoS ONE, 2021, 16 e0250968

[4]

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 2009, 25: 1972-1973

[5]

Chan PP, Lowe TM. tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol Biol, 2019, 1962: 1-14

[6]

Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34: i884-i890

[7]

Cui Y, Liu T, Wang X, Qu J, Jia X. The complete chloroplast genome of Sargassum horneri and its phylogenetic analysis. Mitochondr DNA B Resour, 2019, 4: 3312-3313

[8]

Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res, 2004, 14: 1394-1403

[9]

Dierckxsens N, Mardulyn P, Smits G. Novoplasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res, 2017, 45e18

[10]

Edgar RC. Muscle5: high-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nat Commun, 2022, 13: 6968

[11]

Frailey DC, Chaluvadi SR, Vaughn JN, Coatney CG, Bennetzen JL. Gene loss and genome rearrangement in the plastids of five hemiparasites in the family Orobanchaceae. BMC Plant Biol, 2018, 18: 30

[12]

Greiner S, Sobanski J, Bock R. Why are most organelle genomes transmitted maternally?. BioEssays, 2015, 37: 80-94

[13]

Greiner S, Lehwark P, Bock R. Organellargenomedraw (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res, 2019, 47: W59-W64

[14]

Guiry MD. How many species of algae are there? A reprise. Four kingdoms, 14 phyla, 63 classes and still growing. J Phycol, 2024, 60: 214-228

[15]

Ha Y, Lee W-H, Kim JK, Jeon H-K, Lee J, Kim Y-J. Polyopes affinis suppressed IFN-γ- and TNF-α-induced inflammation in human keratinocytes via down-regulation of the NF-κB and STAT1 pathways. Molecules, 2022, 27: 1836

[16]

Hardouin K, Bouyer R, Pliego-Cortés H, Le Men T, Cérantola S, Marty C, Douzenel P, Bedoux G, Bourgougnon N. Chemical characterization of the introduced red alga Polyopes lancifolius (Halymeniales, Rhodophyta) from the Gulf of Morbihan, France. Phycologia, 2022, 61: 616-627

[17]

Hwang EK, Park CS. Seaweed cultivation and utilization of Korea. Algae, 2020, 35: 107-121

[18]

Jin D-M, Jin J-J, Yi T-S. Plastome structural conservation and evolution in the clusioid clade of Malpighiales. Sci Rep, 2020, 10: 9091

[19]

Jin D-M, Wicke S, Gan L, Yang J-B, Jin J-J, Yi T-S. The loss of the inverted repeat in the putranjivoid clade of Malpighiales. Front Plant Sci, 2020, 11 942

[20]

Jin J-J, Yu WB, Yang J-B, Song Y, dePamphilis CW, Yi T-S, Li D-Z. Getorganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol, 2020, 21: 241

[21]

Kandale A, Meena AK, Rao MM, Panda P, Mangal AK, Reddy G, Babu R. Marine algae: an introduction, food value and medicinal uses. J Pharm Res, 2011, 4: 219-221

[22]

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol, 2013, 30: 772-780

[23]

Khan MNA, Choi JS, Lee MC, Kim E, Nam TJ, Fujii H, Hong YK. Anti-inflammatory activities of methanol extracts from various seaweed species. J Environ Biol, 2008, 29: 465-469

[24]

Kim SY, Boo SM, Yoon HS, Kim MS. Insight into the species identification and distribution of Grateloupiaceae (Halymeniales, Rhodophyta) having Grateloupia filicina-like morphology in the Northwest Pacific. Algae, 2023, 38: 23-38

[25]

Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. Reputer: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res, 2001, 29: 4633-4642

[26]

Lee J, Cho CH, Park SI, Choi JW, Song HS, West JA, Bhattacharya D, Yoon HS. Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants. BMC Biol, 2016, 14: 75

[27]

Lee YJ, Kim YD, Uh YR, Kim YM, Seo T-H, Choi S-J, Jang CS. Complete organellar genomes of six Sargassum species and development of species-specific markers. Sci Rep, 2022, 12: 20981

[28]

Lee YJ, Uh YR, Kim YM, Kim CM, Jang CS. Characterization and comparative analysis of the complete organelle genomes of three red macroalgae species (Neoporphyra dentata, Neoporphyra seriata, and Neopyropia yezoensis) and development of molecular makers for their identification. Genes Genomics, 2023, 46: 355-365

[29]

Li JR, Ma HX, Yang XQ, Chen SJ, Chen SW, Qi B, Li CS. Nutritional composition analysis and sensory evaluation of Grateloupia lanceolata at different growth stages. Food Ferment Indust, 2019, 45: 255-260

[30]

Li R, Jia X, Zhang J, Jia S, Liu T, Qu J, Wang X. The complete plastid genomes of seven Sargassaceae species and their phylogenetic analysis. Front Plant Sci, 2021, 12 747036

[31]

Liu L-X, Du Y-X, Folk RA, Wang S-Y, Soltis DE, Shang F-D, Li P. Plastome evolution in Saxifragaceae and multiple plastid capture events involving Heuchera and Tiarella. Front Plant Sci, 2020, 11: 361

[32]

Liu Y-J, Zhang T-Y, Wang Q-Q, Draisma SGA, Hu Z-M. Comparative structure and evolution of the organellar genomes of Padina usoehtunii (Dictyotales) with the brown algal crown radiation clade. BMC Genomics, 2024, 25: 747

[33]

Lu G, Wang W, Mao J, Li Q, Que Y. Complete mitogenome assembly of Selenicereus monacanthus revealed its molecular features, genome evolution, and phylogenetic implications. BMC Plant Biol, 2023, 23: 541

[34]

Maréchal A, Brisson N. Recombination and the maintenance of plant organelle genome stability. New Phytol, 2010, 186: 299-317

[35]

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol, 2020, 37: 1530-1534

[36]

Munyao JN, Dong X, Yang JX, Mbandi EM, Wanga VO, Oulo MA, Saina JK, Musili PM, Hu GW. Complete chloroplast genomes of Chlorophytum comosum and Chlorophytum gallabatense: genome structures, comparative and phylogenetic analysis. Plants, 2020, 9: 296

[37]

Ogihara Y, Terachi T, Sasakuma T. Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species. Proc Natl Acad Sci, 1988, 85: 8573-8577

[38]

Park SI, Cho CH, Ciniglia C, Huang T, Liu S, Bustamante DE, Calderon MS, Mansilla A, McDermott T, Andersen RA, Yoon HS. Revised classification of the Cyanidiophyceae based on plastid genome data with descriptions of the Cavernulicolales ord. nov. and Galdieriales ord. nov. (Rhodophyta). J Phycol, 2023, 59: 444-466

[39]

Plotkin JB, Kudla G. Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet, 2011, 12: 32-42

[40]

Rawal HC, Kumar PM, Bera B, Singh NK, Mondal TK. Decoding and analysis of organelle genomes of Indian tea (Camellia assamica) for phylogenetic confirmation. Genomics, 2020, 112: 659-668

[41]

Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Gracia A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol, 2017, 34: 3299-3302

[42]

Saunders GW. Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philos Trans R Soc Lond Ser B Biol Sci, 2005, 360: 1879-1888

[43]

Scobeyeva VA, Artyushin IV, Krinitsina AA, Nikitin PA, Antipin MI, Kuptsov SV, Belenikin MS, Omelchenko DO, Logacheva MD, Konorov EA, Samoilov AE, Speranskaya AS. Gene loss, pseudogenization in plastomes of genus Allium (Amaryllidaceae), and putative selection for adaptation to environmental conditions. Front Genet, 2021, 12 674783

[44]

Shabaka S, Moawad M. Ecology and biochemical composition of a newly reported non-indigenous red alga, Grateloupia gibbesii, in the Mediterranean Sea, with reference to edible red seaweeds. Reg Stud Mar Sci, 2021, 44101767

[45]

Sharp PM, Matassi G. Codon usage and genome evolution. Curr Opin Genet Dev, 1994, 4: 851-860

[46]

Smith DR, Keeling PJ. Mitochondrial and plastid genome architecture: reoccurring themes, but significant differences at the extremes. Proc Natl Acad Sci, 2015, 112: 10177-10184

[47]

Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res, 2006, 34: W609-W612

[48]

Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S. Geseq – versatile and accurate annotation of organelle genomes. Nucleic Acids Res, 2017, 45: W6-W11

[49]

Tremblay-Belzile S, Lepage É, Zampini É, Brisson N. Short-range inversions: rethinking organelle genome stability. BioEssays, 2015, 37: 1086-1094

[50]

Vaidya G, Lohman DJ, Meier R. Sequencematrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 2011, 27: 171-180

[51]

Verlaque M, Brannock PM, Komatsu T, Villalard-Bohnsack M, Marston M. The genus Grateloupia C. Agardh (Halymeniaceae, Rhodophyta) in the Thau Lagoon (France, Mediterranean): a case study of marine plurispecific introductions. Phycologia, 2005, 44: 477-496

[52]

Villanueva M-J, Morcillo M, Tenorio M-D, Mateos-Aparicio I, Andrés V, Redondo-Cuenca A. Health-promoting effects in the gut and influence on lipid metabolism of Himanthalia elongata and Gigartina pistillata in hypercholesterolaemic Wistar rats. Eur Food Res Technol, 2014, 238: 409-416

[53]

Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. Kaks_calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinformatics, 2010, 8: 77-80

[54]

Wang X, He L, Ma Y, Huan L, Wang Y, Xia B, Wang G. Economically important red algae resources along the Chinese coast: history, status, and prospects for their utilization. Algal Res, 2020, 46 101817

[55]

Wang L, Wang J, Zhu Y, Cui Z, Kong F, Tang X, Mao Y. Development of organelle single nucleotide polymorphism (SNP) markers and their application for the identification of cytoplasmic inheritance patterns in Pyropia yezoensis (Bangiales, Rhodophyta). J Ocean Limnol, 2021, 39: 1447-1457

[56]

Wu Z, Liao R, Yang T, Dong X, Lan D, Qin R, Liu H. Analysis of six chloroplast genomes provides insight into the evolution of Chrysosplenium (Saxifragaceae). BMC Genomics, 2020, 21: 621

[57]

Xu S, Teng K, Zhang H, Gao K, Wu J, Duan L, Yue Y, Fan X. Chloroplast genomes of four Carex species: long repetitive sequences trigger dramatic changes in chloroplast genome structure. Front Plant Sci, 2023, 14: 1100876

[58]

Yang MY, Kim MS. Taxonomy of Grateloupia (Halymeniales, Rhodophyta) by DNA barcode marker analysis and a description of Pachymeniopsis volvita sp. nov. J Appl Phycol, 2015, 27: 1373-1384

[59]

Yang EC, Kim KM, Kim SY, Lee JM, Boo GH, Lee JH, Nelson WA, Yi G, Schmidt WE, Fredericq S, Boo SM, Bhattacharya D, Yoon HS. Highly conserved mitochondrial genomes among multicellular red algae of the Florideophyceae. Genome Biol Evol, 2015, 7: 2394-2406

[60]

Yang M, Ma L, Yang X, Li L, Chen S, Qi B, Wang Y, Li C, Wei Y, Zhao Y. Photosynthetic protein-based edible quality formation in various Porphyra dentata harvests determined by label-free proteomics analysis. Cells, 2022, 11: 1136

[61]

Yang L, Deng S, Zhu Y, Da Q. Comparative chloroplast genomics of 34 species in subtribe Swertiinae (Gentianaceae) with implications for its phylogeny. BMC Plant Biol, 2023, 23: 164

[62]

Yao H, Li T, Ma Z, Wang X, Xu L, Zhang Y, Cai Y, Tang Z. Codon usage pattern of the ancestor of green plants revealed through Rhodophyta. BMC Genomics, 2023, 24: 538

[63]

Yu X, Zuo L, Lu D, Lu B, Yang M, Wang J. Comparative analysis of chloroplast genomes of five Robinia species: genome comparative and evolution analysis. Gene, 2019, 689: 141-151

[64]

Zampini É, Lepage É, Tremblay-Belzile S, Truche S, Brisson N. Organelle DNA rearrangement mapping reveals u-turn-like inversions as a major source of genomic instability in Arabidopsis and humans. Genome Res, 2015, 25: 645-654

[65]

Zhang T, Hu S, Zhang G, Pan L, Zhang X, Al-Mssallem IS, Yu J. The organelle genomes of Hassawi rice (Oryza sativa L.) and its hybrid in Saudi Arabia: genome variation, rearrangement, and origins. PLoS ONE, 2012, 7 e42041

[66]

Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li WX, Wang GT. Phylosuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour, 2020, 20: 348-355

[67]

Zhao X, Liu C, He L, Zeng Z, Zhang A, Li H, Hu Z, Lou S. Structure and phylogeny of chloroplast and mitochondrial genomes of a chlorophycean algae Pectinodesmus pectinatus (Scenedesmaceae, Sphaeropleales). Life, 2022, 12: 1912

[68]

Zhou Z, Dang Y, Zhou M, Li L, Yu C-H, Fu J, Chen S, Liu Y. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc Natl Acad Sci, 2016, 113: E6117-E6125

[69]

Zhou C, Wang P, Zeng Q, Zeng R, Hu W, Sun L, Liu S, Luan F, Zhu Q. Comparative chloroplast genome analysis of seven extant Citrullus species insight into genetic variation, phylogenetic relationships, and selective pressure. Sci Rep, 2023, 13: 6779

RIGHTS & PERMISSIONS

The Author(s)

PDF

13

Accesses

0

Citation

Detail

Sections
Recommended

/