The distribution of antibiotic resistance and virulence factor genes in the sediment of Inexpressible Island, East Antarctica

Ruyi Dong , Yongqin Liu , Ninglian Wang , Kellynn K. Y. Tan , Mukan Ji

Marine Life Science & Technology ›› : 1 -11.

PDF
Marine Life Science & Technology ›› :1 -11. DOI: 10.1007/s42995-025-00323-8
Research Paper
research-article

The distribution of antibiotic resistance and virulence factor genes in the sediment of Inexpressible Island, East Antarctica

Author information +
History +
PDF

Abstract

Inexpressible Island is a small rocky island in Terra Nova Bay, Victoria Land, Antarctica, which is an area with limited human activities. Understanding the distribution of antibiotic-resistance genes (ARGs) and virulence factor genes (VFGs) in this environment can provide key information on their potential risks to humans and their roles for microbial survival. In this study, we investigated the ARGs and VFGs in lake sediments from Inexpressible Island using metagenomic sequencing. We identified 11,502,071 open-reading frames (ORFs), with 1,749 classified as ARGs and 6,838 as VFGs. The dominant ARGs were associated with antibiotic target alteration and efflux pump mechanisms, while the VFGs were related to adherence and immune modulation functions. While associated within microbial genomes, these ARGs and VFGs were mobile genetic elements like viruses and insertion sequences, distinct from ecosystems with strong human influence. We identified 974 metagenome-assembled genomes (MAGs), with 465 being medium-to-high quality. Of these, 325 (69.9%) contained ARGs, primarily affiliated with Actinomycetota and Pseudomonadota. Additionally, 269 MAGs contained VFGs, with 174 MAGs carrying both ARGs and VFGs, highlighting significant microbial antibiotic resistance and pathogenic potential. Our findings highlight the need for ongoing monitoring of ARGs and VFGs in Antarctica, particularly in light of increasing human activity and climate change.

Keywords

Antibiotic-resistance genes / Virulence factor genes / Inexpressible Island Antarctic / Lake sediment / Metagenome

Cite this article

Download citation ▾
Ruyi Dong, Yongqin Liu, Ninglian Wang, Kellynn K. Y. Tan, Mukan Ji. The distribution of antibiotic resistance and virulence factor genes in the sediment of Inexpressible Island, East Antarctica. Marine Life Science & Technology 1-11 DOI:10.1007/s42995-025-00323-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Antelo V, Giménez M, Azziz G, Valdespino-Castillo P, Falcón LI, Ruberto LAM, Mac Cormack WP, Mazel D, Batista S. Metagenomic strategies identify diverse integron-integrase and antibiotic resistance genes in the Antarctic environment. Microbiol Open, 2021, 10 e1219

[2]

Barel M, Hovanessian AG, Meibom K, Briand JP, Dupuis M, Charbit A. A novel receptor – ligand pathway for entry of Francisella tularensis in monocyte-like THP-1 cells: interaction between surface nucleolin and bacterial elongation factor Tu. BMC Microbiol, 2008, 8: 145

[3]

Behera BK, Dehury B, Rout AK, Patra B, Mantri N, Chakraborty HJ, Sarkar DJ, Kaushik NK, Bansal V, Singh I, Das BK, Rao AR, Rai A (2021) Metagenomics study in aquatic resource management: Recent trends, applied methodologies and future needs. Gene Rep 25:101372

[4]

Camargo AP, Roux S, Schulz F, Babinski M, Xu Y, Hu B, Chain PSG, Nayfach S, Kyrpides NC. Identification of mobile genetic elements with geNomad. Nat Biotechnol, 2023, 42: 1303-1312

[5]

Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Ch, 2014, 58: 3895-3903

[6]

Centurion VB, Delforno TP, Lacerda-Júnior GV, Duarte AWF, Silva LJ, Bellini GB, Rosa LH, Oliveira VM. Unveiling resistome profiles in the sediments of an Antarctic volcanic island. Environ Pollut, 2019, 255 113240

[7]

Chaichana N, Yaikhan T, Yingkajorn M, Thepsimanon N, Suwannasin S, Singkhamanan K, Chusri S, Pomwised R, Wonglapsuwan M, Surachat K. First whole genome report of Mangrovibacter phragmitis PSU-3885–11 isolated from a patient in Thailand. Curr Res Microb Sci, 2025, 8100350

[8]

Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics, 2022, 38: 5315-5316

[9]

Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res, 2004, 33: D325-D328

[10]

Chen XM, Jiang Y, Li YT, Zhang HH, Li J, Chen X, Zhao Q, Zhao J, Si J, Lin ZW, Zhang H, Dyson P, An LZ. Regulation of expression of trehalose-6-phosphate synthase during cold shock in Arthrobacter strain A3. Extremophiles, 2011, 15: 499-508

[11]

Chen B, Yuan K, Chen X, Yang Y, Zhang T, Wang Y, Luan T, Zou S, Li X. Metagenomic analysis revealing antibiotic resistance genes (ARGs) and their genetic compartments in the Tibetan environment. Environ Sci Technol, 2016, 50: 6670-6679

[12]

Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34: i884-i890

[13]

Couvigny B, Lapaque N, Rigottier-Gois L, Guillot A, Chat S, Meylheuc T, Kulakauskas S, Rohde M, Mistou MY, Renault P, Doré J, Briandet R, Serror P, Guédon E. Three glycosylated serine-rich repeat proteins play a pivotal role in adhesion and colonization of the pioneer commensal bacterium, Streptococcus salivarius. Environ Microbiol, 2017, 19: 3579-3594

[14]

Cui L, Ma X, Sato K, Okuma K, Tenover FC, Mamizuka EM, Gemmell CG, Kim MN, Ploy MC, El-Solh N, Ferraz V, Hiramatsu K. Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J Clin Microbiol, 2003, 41: 5-14

[15]

D'Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD. Antibiotic resistance is ancient. Nature, 2011, 477: 457-461

[16]

De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev, 2020, 33 e00181–19

[17]

Flemming HC, van Hullebusch ED, Neu TR, Nielsen PH, Seviour T, Stoodley P, Wingender J, Wuertz S. The biofilm matrix: multitasking in a shared space. Nat Rev Microbiol, 2023, 21: 70-86

[18]

Gu Z, Gu L, Eils R, Schlesner M, Brors B (2014) circlize implements and enhances circular visualization in R. Bioinformatics 30:2811–2812

[19]

Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, Delmont TO, Pratama AA, Gazitúa MC, Vik D, Sullivan MB, Roux S. Virsorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome, 2021, 9: 37

[20]

Haan TJ, Drown DM. Unearthing antibiotic resistance associated with disturbance-induced permafrost thaw in interior Alaska. Microorganisms, 2021, 9: 116

[21]

Harvey KL, Jarocki VM, Charles IG, Djordjevic SP. The diverse functional roles of elongation factor Tu (EF-Tu) in microbial pathogenesis. Front Microbiol, 2019, 10: 2351

[22]

Hernández F, Calısto-Ulloa N, Gómez-Fuentes C, Gómez M, Ferrer J, González-Rocha G, Bello-Toledo H, Botero-Coy AM, Boıx C, Ibáñez M, Montory M. Occurrence of antibiotics and bacterial resistance in wastewater and sea water from the Antarctic. J Hazard Mater, 2019, 363: 447-456

[23]

Herrera CM, Voss BJ, Trent MS. Homeoviscous adaptation of the Acinetobacter baumannii outer membrane: alteration of Lipooligosaccharide structure during cold stress. Mbio, 2021, 12: e01295-e1321

[24]

Huszczynski SM, Lam JS, Khursigara CM. The role of Pseudomonas aeruginosa lipopolysaccharide in bacterial pathogenesis and physiology. Pathogens, 2019, 9: 6

[25]

Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf, 2010, 11: 119

[26]

Jankowski P, Gan J, Le T, McKennitt M, Garcia A, Yanaç K, Yuan Q, Uyaguari-Diaz M. Metagenomic community composition and resistome analysis in a full-scale cold climate wastewater treatment plant. Environ Microbiome, 2022, 17 3

[27]

Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ, 2019, 7 e7359

[28]

Kholodii GY, Mindlin SZ, Bass IA, Yurieva OV, Minakhina SV, Nikiforov VG. Four genes, two ends, and a res region are involved in transposition of Tn5053: a paradigm for a novel family of transposons carrying either a mer operon or an integron. Mol Microbiol, 1995, 17: 1189-1200

[29]

Kim H, Kim M, Kim S, Lee YM, Shin SC. Characterization of antimicrobial resistance genes and virulence factor genes in an Arctic permafrost region revealed by metagenomics. Environ Pollut, 2022, 294 118634

[30]

Kumar GS, Jagannadham MV, Ray MK. Low-temperature-induced changes in composition and fluidity of lipopolysaccharides in the Antarctic psychrotrophic bacterium Pseudomonas syringae. J Bacteriol, 2002, 184: 6746-6749

[31]

Letunic I, Bork P. Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res, 2024, 52: W78-W82

[32]

Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 2015, 31: 1674-1676

[33]

Li LG, Huang Q, Yin X, Zhang T (2020) Source tracking of antibiotic resistance genes in the environment - Challenges, progress, and prospects. Water Res 185:11612

[34]

Liu B, Zheng D, Zhou S, Chen L, Yang J (2022) VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res 50:D912–D917

[35]

Mao G, Ji M, Jiao N, Su J, Zhang Z, Liu K, Chen Y, Liu Y. Monsoon affects the distribution of antibiotic resistome in Tibetan glaciers. Environ Pollut, 2023, 15(317 120809

[36]

Marcoleta AE, Arros P, Varas MA, Costa J, Rojas-Salgado J, Berríos-Pastén C, Tapia-Fuentes S, Silva D, Fierro J, Canales N, Chávez FP, Gaete A, González M, Allende ML, Lagos R. The highly diverse Antarctic Peninsula soil microbiota as a source of novel resistance genes. Sci Total Environ, 2022, 810 152003

[37]

Martínez-Pérez C, Greening C, Bay SK, Lappan RJ, Zhao Z, De Corte D, Hulbe C, Ohneiser C, Stevens C, Thomson B, Stepanauskas R, González JM, Logares R, Herndl GJ, Morales SE, Baltar F. Phylogenetically and functionally diverse microorganisms reside under the Ross Ice Shelf. Nat Commun, 2022, 13: 117

[38]

Mashamaite L, Lebre PH, Varliero G, Maphosa S, Ortiz M, Hogg ID, Cowan DA. Microbial diversity in Antarctic Dry Valley soils across an altitudinal gradient. Front Microbiol, 2023, 14: 1203216

[39]

Mindlin SZ, Soina VS, Ptrova MA, Gorlenko ZhM. Isolation of antibiotic resistance bacterial strains from Eastern Siberia permafrost sediments. Russ J Genet, 2008, 44: 27-34

[40]

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol, 2020, 37: 1530-1534

[41]

Moreira LM, Meyer W, Chame M, Brandão ML, Vivoni AM, Portugal J, Wanke B, Trilles L. Molecular detection of histoplasma capsulatum in Antarctica. Emerg Infect Dis, 2022, 28: 2100-2104

[42]

Na G, Wang C, Gao H, Li R, Jin S, Zhang W, Zong H. The occurrence of sulfonamide and quinolone resistance genes at the Fildes Peninsula in Antarctica. Mar Pollut Bull, 2019, 149 110503

[43]

Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S, Kyrpides NC. Checkv assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol, 2021, 39: 578-585

[44]

Nies DH. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev, 2003, 27: 313-339

[45]

Olalla A, Moreno L, Valcárcel Y. Prioritisation of emerging contaminants in the northern Antarctic Peninsula based on their environmental risk. Sci Total Environ, 2020, 742 140417

[46]

Pan Y, Zeng J, Li L, Yang J, Tang Z, Xiong W, Li Y, Chen S, Zeng Z. Coexistence of antibiotic resistance genes and virulence factors deciphered by large-scale complete genome analysis. mSystems, 2020, 5 e00821–19

[47]

Parada C, Orruño M, Kaberdin V, Bravo Z, Barcina I, Arana I. Changes in the Vibrio harveyi cell envelope subproteome during permanence in cold seawater. Microb Ecol, 2016, 72: 549-558

[48]

Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. Checkm: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res, 2015, 25: 1043-1055

[49]

Penesyan A, Paulsen IT, Kjelleberg S, Gillings MR. Three faces of biofilms: a microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. NPJ Biofilms Microbiomes, 2021, 7 80

[50]

Power ML, Samuel A, Smith JJ, Stark JS, Gillings MR, Gordon DM. Escherichia coli out in the cold: dissemination of human-derived bacteria into the Antarctic microbiome. Environ Pollut, 2016, 215: 58-65

[51]

Rahube TO, Viana LS, Koraimann G, Yost CK. Characterization and comparative analysis of antibiotic resistance plasmids isolated from a wastewater treatment plant. Front Microbiol, 2014, 5 00558

[52]

Raymond-Bouchard I, Goordial J, Zolotarov Y, Ronholm J, Stromvik M, Bakermans C, Whyte LG. Conserved genomic and amino acid traits of cold adaptation in subzero-growing Arctic permafrost bacteria. FEMS Microbiol Ecol, 2018, 94 fiy023

[53]

Razavi M, Kristiansson E, Flach C-F, Larsson DGJ. The association between insertion sequences and antibiotic resistance genes. mSphere, 2020, 5 e00418–20

[54]

Ren Z, Gao H. Antibiotic resistance genes in integrated surface ice, cryoconite, and glacier-fed stream in a mountain glacier in Central Asia. Environ Int, 2024, 184 108482

[55]

Ricciardelli A, Casillo A, Vergara A, Balasco N, Corsaro MM, Tutino ML, Parrilli E. Environmental conditions shape the biofilm of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Microbiol Res, 2019, 218: 66-75

[56]

Roux S, Camargo AP, Coutinho FH, Dabdoub SM, Dutilh BE, Nayfach S, Tritt A. IPhop: an integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria. PLoS Biol, 2023, 21 e3002083

[57]

Santos A, Burgos F, Martinez-Urtaza J, Barrientos L. Metagenomic characterization of resistance genes in Deception Island and their association with mobile genetic elements. Microorganisms, 2022, 10: 1432

[58]

Shen YP, Jiang CC, Zhang BY, Gao HJ, Wang X, Guo P. Dominant microbiome iteration and antibiotic resistance genes propagation way dictate the antibiotic resistance genes contamination degree in soil-plant system. J Clean Prod, 2024, 464 142786

[59]

Shimada S, Nakai R, Aoki K, Shimoeda N, Ohno G, Kudoh S, Imura S, Watanabe K, Miyazaki Y, Ishii Y, Tateda K. Chasing waterborne pathogens in Antarctic human-made and natural environments, with special reference to Legionella spp. Appl Environ Microbiol, 2021, 87 e02247–20

[60]

Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res, 2006, 34: D32-D36

[61]

Søborg DA, Hendriksen NB, Kilian M, Kroer N. Widespread occurrence of bacterial human virulence determinants in soil and freshwater environments. Appl Environ Microbiol, 2013, 79: 5488-5497

[62]

Souque C, Escudero JA, MacLean RC. Off-target integron activity leads to rapid plasmid compensatory evolution in response to antibiotic selection pressure. Mbio, 2023, 14 e02537–22

[63]

Sun Y, Clarke B, Clarke J, Li X. Predicting antibiotic resistance gene abundance in activated sludge using shotgun metagenomics and machine learning. Water Res, 2021, 202 117384

[64]

Tejedo P, Benayas J, Cajiao D, Leung YF, De Filippo D, Liggett D. What are the real environmental impacts of Antarctic tourism? Unveiling their importance through a comprehensive meta-analysis. J Environ Manage, 2022, 308 114634

[65]

Van Goethem MW, Pierneef R, Bezuidt OKI, Van De Peer Y, Cowan DA, Makhalanyane TP. A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils. Microbiome, 2018, 6: 40

[66]

Wang F, Zhou H, Olademehin OP, Kim SJ, Tao P. Insights into key interactions between vancomycin and bacterial cell wall structures. ACS Omega, 2018, 3: 37-45

[67]

Weijland A, Parmeggiani A. Toward a model for the interaction between elongation factor Tu and the ribosome. Science, 1993, 259: 1311-1314

[68]

Wood DE, Lu J, Langmead B. Improved metagenomic analysis with kraken 2. Genome Biol, 2019, 20: 257

[69]

Xu S, Zhan L, Tang W, Wang Q, Dai Z, Zhou L, Feng T, Chen M, Wu T, Hu E, Yu G. MicrobiotaProcess: a comprehensive R package for deep mining microbiome. Innovation, 2023, 4100388

[70]

Yang Y, Li Z, Song W, Du L, Ye C, Zhao B, Liu W, Deng D, Pan Y, Lin H, Cao X. Metagenomic insights into the abundance and composition of resistance genes in aquatic environments: influence of stratification and geography. Environ Int, 2019, 127: 371-380

[71]

Yang QE, Ma X, Zeng L, Wang Q, Li M, Teng L, He M, Liu C, Zhao M, Wang M, Hui D, Madsen JS, Liao H, Walsh TR, Zhou S. Interphylum dissemination of NDM-5-positive plasmids in hospital wastewater from Fuzhou, China: a single-centre, culture-independent, plasmid transmission study. Lancet Microbe, 2024, 5: e13-e23

[72]

Yin X, Chen X, Jiang XT, Yang Y, Li B, Shum MH, Lam TTY, Leung GM, Rose J, Sanchez-Cid C, Vogel TM, Walsh F, Berendonk TU, Midega J, Uchea C, Frigon D, Wright GD, Bezuidenhout C, Tiedje JM, Topp E, Zhang T et al (2023) Toward a universal unit for quantification of antibiotic resistance genes in environmental samples. Environ Sci Technol 57:9713–9721

[73]

Yuan K, Yu K, Yang R, Zhang Q, Yang Y, Chen E, Lin L, Luan T, Chen W, Chen B. Metagenomic characterization of antibiotic resistance genes in Antarctic soils. Ecotoxicol Environ Saf, 2019, 176: 300-308

[74]

Zhang S, Oh JH, Alexander LM, Özçam M, van Pijkeren JP. D-alanyl-D-alanine ligase as a broad-host-range counterselection marker in vancomycin-resistant lactic acid bacteria. J Bacteriol, 2018, 200 e00607–17

[75]

Zhang AN, Gaston JM, Dai CL, Zhao S, Poyet M, Groussin M, Yin X, Li LG, van Loosdrecht MCM, Topp E, Gillings MR, Hanage WP, Tiedje JM, Moniz K, Alm EJ, Zhang T. An omics-based framework for assessing the health risk of antimicrobial resistance genes. Nat Commun, 2021, 12: 4765

[76]

Zhang T, Ji Z, Li J, Yu L. Metagenomic insights into the antibiotic resistome in freshwater and seawater from an Antarctic ice-free area. Environ Pollut, 2022, 309 119738

[77]

Zhang X, Ma L, Zhang XX (2024) Neglected risks of enhanced antimicrobial resistance and pathogenicity in anaerobic digestion during transition from thermophilic to mesophilic. J Hazard Mater 475:134886

[78]

Zhou Z, Zhu R, Song Y, Zhang W, Sun B, Zhang Z, Yao H. Penguin-driven dissemination and high enrichment of antibiotic resistance genes in lake sediments across Antarctica. Environ Sci Technol, 2024, 58: 14460-14474

[79]

Zhu L, Lian Y, Lin D, Huang D, Yao Y, Ju F, Wang M. Insights into microbial contamination in multi-type manure-amended soils: the profile of human bacterial pathogens, virulence factor genes and antibiotic resistance genes. J Hazard Mater, 2022, 5 129356

RIGHTS & PERMISSIONS

Ocean University of China

PDF

13

Accesses

0

Citation

Detail

Sections
Recommended

/