Integrative analysis of coral plasticity and adaptations reveals key proteins driving resilience to changes in ocean carbonate chemistry

Xiangcheng Yuan , Ellias Y. Feng , Jingtian Wang , Lei Jiang , Tao Yuan , Hui Huang , Weihua Zhou , Jack Chi-Ho Ip , Wei-Jun Cai , Senjie Lin

Marine Life Science & Technology ›› : 1 -13.

PDF
Marine Life Science & Technology ›› :1 -13. DOI: 10.1007/s42995-025-00321-w
Research Paper
research-article

Integrative analysis of coral plasticity and adaptations reveals key proteins driving resilience to changes in ocean carbonate chemistry

Author information +
History +
PDF

Abstract

Understanding how corals adapt to changes in seawater carbonate chemistry is crucial for developing effective coral conservation strategies. Research to date has mostly focused on short-term experiments, overlooking long-term evolutionary effects. Here, we investigated the link between short-term stress responses and long-term genetic adaptations in the coral species Porites pukoensis through experiments under varying CO2 and alkalinity conditions. Our results showed that alkalinity enrichment significantly increased coral calcification rates by 35%-45% compared to high CO2 treatment, highlighting the potential of alkalinity enrichment to mitigate acidification impacts. Corals modulated relative expression levels of basic and acidic proteins in response to changes in seawater carbonate chemistry in the stress experiments. Genomic data revealed that this mechanism has been evolutionarily fixed in various organisms adapting to seawater carbonate chemistry. Additionally, both experimental and genomic results showed that extracellular matrix proteins, like collagen with von Willebrand factor type A domain, were modified in response to distinct carbonate environments. Molecular dynamics simulations and in-vitro experiments demonstrated that the structural stability of these proteins contributes to coral resilience under acidified conditions. This study established an integrated framework combining stress experiments, multi-omics analyses, molecular simulations, and in-vitro validation to identify key proteins involved in coral adaptation to acidification.

Keywords

Alkalinity enrichment / Coral / Translation efficiency / Ocean acidification / Protein isoelectric point (pI)

Cite this article

Download citation ▾
Xiangcheng Yuan, Ellias Y. Feng, Jingtian Wang, Lei Jiang, Tao Yuan, Hui Huang, Weihua Zhou, Jack Chi-Ho Ip, Wei-Jun Cai, Senjie Lin. Integrative analysis of coral plasticity and adaptations reveals key proteins driving resilience to changes in ocean carbonate chemistry. Marine Life Science & Technology 1-13 DOI:10.1007/s42995-025-00321-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albright R. Reviewing the effects of ocean acidification on sexual reproduction and early life history stages of reef-building corals. J Mar Biol, 2011, 1(1): 1-14

[2]

Albright R, Caldeira L, Hosfelt J, Kwiatkowski L, Maclaren JK, Mason BM, Nebuchina Y, Ninokawa A, Pongratz J, Ricke KL, Rivlin T, Schneider K, Sesboue M, Shamberger K, Silverman J, Wolfe K, Zhu K, Caldeira K. Reversal of ocean acidification enhances net coral reef calcification. Nature, 2016, 531: 362-365

[3]

Anandakrishnan R, Aguilar B, Onufriev AV. H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res, 2012, 40: 537-541

[4]

Bhattacharya D, Agrawal S, Aranda M, Baumgarten S, Belcaid M, Drake JL, Erwin D, Foret S, Gates RD, Gruber DF, Kamel B, Lesser MP, Levy O, Liew YJ, MacManes M, Mass T, Medina M, Mehr S, Meyer E, Price DC, et al.. Comparative genomics explains the evolutionary success of reef-forming corals. Elife, 2016

[5]

Brown KT, Mello-Athayde MA, Sampayo EM, Chai A, Dove S, Barott KL. Environmental memory gained from exposure to extreme pCO₂ variability promotes coral cellular acid-base homeostasis. Proc Biol Sci, 2022, 289: 1-10

[6]

Cai W-J, Ma Y, Hopkinson BM, Grottoli AG, Warner ME, Ding Q, Hu X, Yuan X, Schoepf V, Xu H, Han C, Melman TF, Hoadley KD, Pettay DT, Matsui Y, Baumann JH, Levas S, Ying Y, Wang Y. Microelectrode characterization of coral daytime interior pH and carbonate chemistry. Nat Commun, 2016, 7: 11144

[7]

Caldeira K, Wickett ME. Anthropogenic carbon and ocean pH. Nature, 2003, 425: 365-365

[8]

Canadell JG, Monteiro PMS, Costa MH, Cotrim da Cunha L, Cox PM, Eliseev AV, Henson S, Ishii M, Jaccard S, Koven C, Lohila A, Patra PK, Piao S, Rogelj J, Syampungani S, Zaehle S, Zickfeld K, et al.. Masson-Delmotte V, et al.. Global carbon and other biogeochemical cycles and feedbacks. Climate change 2021: the physical science basis. contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2021, Cambridge, United Kingdom, Cambridge University Press673816

[9]

Cohen AL, McCorkle DC, Putron SD, Gaetani GA, Rose KA. Morphological and compositional changes in the skeletons of new coral recruits reared in acidified seawater: insights into the biomineralization response to ocean acidification. Geochem Geophys Geosyst, 2009, 10: 217-222

[10]

Comeau S, Carpenter R, Nojiri Y, Putnam H, Sakai K, Edmunds P. Pacific-wide contrast highlights resistance of reef calcifiers to ocean acidification. Proc R Soc Lond B Biol Sci, 2014, 28120141339

[11]

Comeau S, Cornwall CE, McCulloch MT. Decoupling between the response of coral calcifying fluid pH and calcification to ocean acidification. Sci Rep, 2017, 7: 7573

[12]

Comeau S, Cornwall CE, DeCarlo TM, Doo SS, Carpenter RC, McCulloch MT. Resistance to ocean acidification in coral reef taxa is not gained by acclimatization. Nat Clim Change, 2019, 9: 477-483

[13]

Conci N, Lehmann M, Vargas S, Wörheide G. Comparative proteomics of octocoral and scleractinian skeletomes and the evolution of coral calcification. Genome Biol Evol, 2020, 12: 1623-1635

[14]

Crean D, Felice L, Pierre P, Jennings P, Leonard MO. Inhibition of protein translation as a mechanism of acidotic pH protection against ischaemic injury through inhibition of CREB mediated tRNA synthetase expression. Exp Cell Res, 2013, 319: 3116-3127

[15]

De Bie T, Cristianini N, Demuth JP, Hahn MW. CAFE: a computational tool for the study of gene family evolution. Bioinformatics, 2006, 22: 1269-1271

[16]

DeCarlo TM, Comeau S, Cornwall CE, McCulloch MT. Coral resistance to ocean acidification linked to increased calcium at the site of calcification. Proc Biol Sci, 2018

[17]

Dixon G, Abbott E, Matz M. Meta-analysis of the coral environmental stress response: Acropora corals show opposing responses depending on stress intensity. Mol Ecol, 2020, 29: 2855-2870

[18]

Drake JL, Mass T, Haramaty L, Zelzion E, Bhattacharya D, Falkowski PG. Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata. Proc Natl Acad Sci USA, 2013, 110: 3788-3793

[19]

Drake JL, Mass T, Haramaty L, Zelzion E, Bhattacharya D, Falkowski PG. Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata (vol 110, pg 3788, 2013). Proc Natl Acad Sci USA, 2013, 110: 7958-7958

[20]

Elevi Bardavid R, Oren A. Acid-shifted isoelectric point profiles of the proteins in a hypersaline microbial mat: an adaptation to life at high salt concentrations?. Extremophiles, 2012, 16: 787-792

[21]

Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol, 2019, 20: 238

[22]

Fedyukina DV, Jennaro TS, Cavagnero S. Charge segregation and low hydrophobicity are key features of ribosomal proteins from different organisms. J Biol Chem, 2014, 289: 6740-6750

[23]

Feng EY, Keller DP, Koeve W, Oschlies A (2016) Could artificial ocean alkalinization protect tropical coral ecosystems from ocean acidification? Environ Res Lett 11:074008

[24]

Heinemann F, Gummich M, Radmacher M, Fritz M. Modification of CaCO₃ precipitation rates by water-soluble nacre proteins. Mater Sci Eng C Mater Biol Appl, 2011, 31: 99-105

[25]

Herrera S, Cordes EE. Genome assembly of the deep-sea coral Lophelia pertusa. GigaByte, 2023, 78: 1-12

[26]

Huerta-Cepas J, Szklarczyk D, Heller D, Hernandez-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, von Mering C, Bork P. EggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res, 2019, 47: 309-314

[27]

Hughes TP, Kerry JT, Alvarez-Noriega M, Alvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin CM, et al.. Global warming and recurrent mass bleaching of corals. Nature, 2017, 543: 373-377

[28]

Jiang L, Quo YJ, Zhang F, Zhang YY, McCook LJ, Yuan XC, Lei XM, Zhou GW, Guo ML, Cai L, Lian JS, Qian PY, Huang H. Diurnally fluctuating pCO₂ modifies the physiological responses of coral recruits under ocean acidification. Front Physiol, 2019, 9: 1952

[29]

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596: 583-589

[30]

Karlsen J, Asplund-Samuelsson J, Jahn M, Vitay D, Hudson EP. Slow protein turnover explains limited protein-level response to diurnal transcriptional oscillations in cyanobacteria. Front Microbiol, 2021, 12: 657379

[31]

Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006). Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. Report of a workshop sponsored by NSF, NOAA & USGS

[32]

Langdon C, Atkinson M. Effect of elevated pCO₂ on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res, 2005, 110C09S07

[33]

Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9: 559

[34]

Lanyi JK. Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev, 1974, 38: 272-290

[35]

Levis NA, Pfennig DW. Evaluating 'plasticity-first' evolution in nature: key criteria and empirical approaches. Trends Ecol Evol, 2016, 31: 563-574

[36]

Lewis E, Wallace DWR (1998). Program developed for CO₂ system calculations. CO2SYS: Excel version. carbon dioxide information analysis center, Oak Ridge National Laboratory, Oak Ridge, TN. Available at: https://zenodo.org/records/3952803#.X0kReGdKhTa

[37]

Lin Z, Wang L, Chen M, Zheng X, Chen J. Proteome and microbiota analyses characterizing dynamic coral-algae-microbe tripartite interactions under simulated rapid ocean acidification. Sci Total Environ, 2022, 810 152266

[38]

Liu C, Zhang R. Biomineral proteomics: a tool for multiple disciplinary studies. J Proteomics, 2021, 238 104171

[39]

Martinez S, Bellworthy J, Ferrier-Pages C, Mass T. Selection of mesophotic habitats by Oculina patagonica in the eastern mediterranean sea following global warming. Sci Rep, 2021, 11: 18134

[40]

Marubini F, Thake B. Bicarbonate addition promotes coral growth. Limnol Oceanogr, 1999, 44: 716-720

[41]

Mass T, Drake JL, Haramaty L, Rosenthal Y, Schofield OM, Sherrell RM, Falkowski PG. Aragonite precipitation by "proto-polyps" in coral cell cultures. PLoS ONE, 2012, 7 e35049

[42]

Mass T, Drake JL, Haramaty L, Kim JD, Zelzion E, Bhattacharya D, Falkowski PG. Cloning and characterization of four novel coral acid-rich proteins that precipitate carbonates in vitro. Curr Biol, 2013, 23: 1126-1131

[43]

Mayfield AB, Wang YB, Chen CS, Chen SH, Lin CY. Dual-compartmental transcriptomic+proteomic analysis of a marine endosymbiosis exposed to environmental change. Mol Ecol, 2016, 25: 5944-5958

[44]

McCulloch M, Falter J, Trotter J, Montagna P. Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Clim Change, 2012, 2: 623-627

[45]

Mongin M, Baird ME, Lenton A, Neill C, Akl J. Reversing ocean acidification along the great barrier reef using alkalinity injection. Environ Res Lett, 2021, 16 064068

[46]

Moya A, Huisman L, Ball EE, Hayward DC, Grasso LC, Chua CM, Woo HN, Gattuso JP, Forêt S, Miller DJ. Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO₂-driven acidification during the initiation of calcification. Mol Ecol, 2012, 21: 2440-2454

[47]

Mukai T, Kobayashi T, Hino N, Yanagisawa T, Sakamoto K, Yokoyama S. Adding l-lysine derivatives to the genetic code of mammalian cells with engineered pyrrolysyl-tRNA synthetases. Biochem Biophys Res Commun, 2008, 371: 818-822

[48]

Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, et al.. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 2005, 437: 681-686

[49]

Osorio D, Rondón-Villarreal P, Torres R. Peptides: a package for data mining of antimicrobial peptides. Small, 2015, 12: 44-444

[50]

Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL. Projecting coral reef futures under global warming and ocean acidification. Science, 2011, 333: 418-422

[51]

Ramos-Silva P, Kaandorp J, Huisman L, Marie B, Zanella-Cleon I, Guichard N, Miller DJ, Marin F. The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling. Mol Biol Evol, 2013, 30: 2099-2112

[52]

Reggi M, Fermani S, Levy O, Dubinsky Z, Goffredo S, Falini G. Goffredo S, Dubinsky Z. Influences of coral intra-skeletal organic matrix on calcium carbonate precipitation. The Cnidaria, past, present and future: the world of Medusa and her sisters, 2016, Cham, Springer International Publishing207222

[53]

Renforth P, Henderson G. Assessing ocean alkalinity for carbon sequestration. Rev Geophys, 2017, 55: 636-674

[54]

Ricaurte M, Schizas NV, Ciborowski P, Boukli NM. Proteomic analysis of bleached and unbleached Acropora palmata, a threatened coral species of the Caribbean. Mar Pollut Bull, 2016, 107: 224-232

[55]

Ricci CA, Kamal AHM, Chakrabarty JK, Fuess LE, Mann WT, Jinks LR, Brinkhuis V, Chowdhury SM, Mydlarz LD. Proteomic investigation of a diseased gorgonian coral indicates disruption of essential cell function and investment in inflammatory and other immune processes. Integr Comp Biol, 2019, 59: 830-844

[56]

Sanderson MJ. R8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics, 2003, 19: 301-302

[57]

Schoepf V, Grottoli AG, Warner ME, Cai WJ, Melman TF, Hoadley KD, Pettay DT, Hu X, Li Q, Xu H, Wang Y, Matsui Y, Baumann JH. Coral energy reserves and calcification in a high-CO₂ world at two temperatures. PLoS ONE, 2013, 8: e75049

[58]

Schoepf V, Jury CP, Toonen RJ, McCulloch MT. Coral calcification mechanisms facilitate adaptive responses to ocean acidification. Proc Biol Sci, 2017, 28420172117

[59]

Shamberger KE, Cohen AL, Golbuu Y, McCorkle DC, Lentz SJ, Barkley HC. Diverse coral communities in naturally acidified waters of a Western Pacific reef. Geophys Res Lett, 2014, 41: 499-504

[60]

Spencer Davies P. Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar Biol, 1989, 101: 389-395

[61]

Sun Y, Jiang L, Gong S, Diaz-Pulido G, Yuan X, Tong H, Huang L, Zhou G, Zhang Y, Huang H. Changes in physiological performance and protein expression in the larvae of the coral Pocillopora damicornis and their symbionts in response to elevated temperature and acidification. Sci Total Environ, 2022, 807 151251

[62]

Sun J, Lu F, Luo Y, Bie L, Xu L, Wang Y. Orthovenn3: an integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res, 2023, 51: 397-403

[63]

Takeuchi T, Yamada L, Shinzato C, Sawada H, Satoh N. Stepwise evolution of coral biomineralization revealed with genome-wide proteomics and transcriptomics. PLoS ONE, 2016, 11 e0156424

[64]

Veron JE. Mass extinctions and ocean acidification: biological constraints on geological dilemmas. Coral Reefs, 2008, 27: 459-472

[65]

Waldbauer JR, Rodrigue S, Coleman ML, Chisholm SW. Transcriptome and proteome dynamics of a light-dark synchronized bacterial cell cycle. PLoS ONE, 2012, 7: e43432

[66]

Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. Kaks_calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genom Proteom Bioinf, 2010, 8: 77-80

[67]

Wong YH, Zhang Y, Lun JCY, Qiu JW. A proteomic analysis of skeletal tissue anomaly in the brain coral Platygyra carnosa. Mar Pollut Bull, 2021, 164 111982

[68]

Yu G, Wang LG, Han Y, He QY. ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 2012, 16: 284-287

[69]

Zhang Z, Xiao J, Wu J, Zhang H, Liu G, Wang X, Dai L. ParaAT: a parallel tool for constructing multiple protein-coding DNA alignments. Biochem Biophys Res Commun, 2012, 419: 779-781

[70]

Zhang XF, Smits AH, van Tilburg GBA, Ovaa H, Huber W, Vermeulen M. Proteome-wide identification of ubiquitin interactions using UbIA-MS. Nat Protoc, 2018, 13: 530-550

RIGHTS & PERMISSIONS

The Author(s)

PDF

7

Accesses

0

Citation

Detail

Sections
Recommended

/