Isochrysis zhanjiangensis exhibits protective effects against metabolic abnormalities induced by high-fat diet in mice

Mei Wu , Yu Bai , Yanrong Li , Kang Chen , Jingyang Le , Jian Li , Chengxu Zhou , Spiros N. Agathos , Lin Zhang , Xiaojun Yan , Jichang Han

Marine Life Science & Technology ›› : 1 -20.

PDF
Marine Life Science & Technology ›› :1 -20. DOI: 10.1007/s42995-025-00320-x
Research Paper
research-article

Isochrysis zhanjiangensis exhibits protective effects against metabolic abnormalities induced by high-fat diet in mice

Author information +
History +
PDF

Abstract

While Isochrysis zhanjiangensis, a marine microalga, has been widely adopted in aquaculture for its health-promoting properties, its potential as a functional food for human metabolic health remains unexplored. To bridge this gap, this study systematically evaluated the nutritional composition, biosafety, and therapeutic efficacy of I. zhanjiangensis against high-fat diet (HFD)-induced metabolic disorders in mice. Our results revealed that I. zhanjiangensis exhibits a desirable nutritional profile with no detectable toxicity, and its dietary supplementation significantly attenuated HFD-induced metabolic dysregulation. Gut microbiota profiling further demonstrated that I. zhanjiangensis supplementation restored microbial homeostasis, evidenced by mitigation of the elevated Firmicutes/Bacteroidota ratio and enrichment of beneficial genera including Muribaculum, Candidatus_Arthromitus, and Veillonella. Hepatic metabolomics identified key metabolites modulated by I. zhanjiangensis, such as N1-methyl-2-pyridone-5-carboxamide, N-acetyl-L-histidine, and eicosapentaenoic acid, which are mechanistically linked to lipid metabolism regulation. These findings not only position I. zhanjiangensis as a promising candidate for functional food development targeting HFD-induced metabolic dysregulation, but also highlight the untapped potential of aquaculture microalgae as sustainable resources for nutraceutical innovation.

Keywords

Bait microalgae / High-fat diet / Isochrysis zhanjiangensis / Microbiota stability / Metabolomics

Cite this article

Download citation ▾
Mei Wu, Yu Bai, Yanrong Li, Kang Chen, Jingyang Le, Jian Li, Chengxu Zhou, Spiros N. Agathos, Lin Zhang, Xiaojun Yan, Jichang Han. Isochrysis zhanjiangensis exhibits protective effects against metabolic abnormalities induced by high-fat diet in mice. Marine Life Science & Technology 1-20 DOI:10.1007/s42995-025-00320-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abeysiri HASN, Wanigasuriya JKP, Suresh TS, Beneragama DH, Manage PM. Nephrotoxicity of cylindrospermopsin (CYN) and microcystin-LR (MC-LR) on mammalian kidney: Wistar rat as a model assessment. Nat Environ Pollut Technol, 2024, 23: 1761-1773.

[2]

Albracht-Schulte K, Gonzalez S, Jackson A, Wilson S, Ramalingam L, Kalupahana NS, Moustaid-Moussa N. Eicosapentaenoic acid improves hepatic metabolism and reduces inflammation independent of obesity in high-fat-fed mice and in HepG2 cells. Nutrients, 2019, 11: 599.

[3]

Araya M, García S, Rengel J, Pizarro S, Álvarez G. Determination of free and protein amino acid content in microalgae by HPLC-DAD with pre-column derivatization and pressure hydrolysis. Mar Chem, 2021, 234. 103999

[4]

Atalah E, Cruz CMH, Izquierdo MS, Rosenlund G, Caballero MJ, Valencia A, Robaina L. Two microalgae Crypthecodinium cohnii and Phaeodactylum tricornutum as alternative source of essential fatty acids in starter feeds for seabream (Sparus aurata). Aquaculture, 2007, 270: 178-185.

[5]

Banaszak M, Dobrzyńska M, Kawka A, Górna I, Woźniak D, Przysławski J, Drzymała-Czyż S. Role of omega-3 fatty acids eicosapentaenoic (EPA) and docosahexaenoic (DHA) as modulatory and anti-inflammatory agents in noncommunicable diet-related diseases—reports from the last 10 years. Clin Nutr ESPEN, 2024, 63: 240-258.

[6]

Batista AP, Niccolai A, Bursic I, Sousa I, Raymundo A, Rodolfi L, Biondi N, Tredici MR. Microalgae as functional ingredients in savory food products: application to wheat crackers. Foods, 2019, 8: 611.

[7]

Brosolo G, Da Porto A, Marcante S, Picci A, Capilupi F, Capilupi P, Bertin N, Vivarelli C, Bulfone L, Vacca A, Catena C, Sechi LA. Omega-3 fatty acids in arterial hypertension: is there any good news?. Int J Mol Sci, 2023, 24. 9520

[8]

Calder PC. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology?. Br J Clin Pharmacol, 2013, 75: 645-662.

[9]

Chamorro-Cevallos G, Garduno-Siciliano L, Barron BL, Madrigal-Bujaidar E, Cruz-Vega DE, Pages N. Chemoprotective effect of Spirulina (Arthrospira) against cyclophosphamide-induced mutagenicity in mice. Food Chem Toxicol, 2008, 46: 567-574.

[10]

Chen J, Liu H. Nutritional indices for assessing fatty acids: a mini-review. Int J Mol Sci, 2020, 215965

[11]

Chen MF, Zhang YY, Di He M, Li CY, Zhou CX, Hong PZ, Qian ZJ. Antioxidant peptide purified from enzymatic hydrolysates of Isochrysis zhanjiangensis and its protective effect against ethanol induced oxidative stress of HepG2 cells. Biotechnol Bioprocess Eng, 2019, 24: 308-317.

[12]

Chen J, Xiao Y, Li D, Zhang S, Wu Y, Zhang Q, Bai W. New insights into the mechanisms of high-fat diet mediated gut microbiota in chronic diseases. iMeta, 2023, 2. 69

[13]

Cheng Z, Li N, Chen Z, Li K, Qiao D, Zhao S, Zhang B. Ingesting retrograded rice (Oryza sativa) starch relieves high-fat diet induced hyperlipidemia in mice by altering intestinal bacteria. Food Chem, 2023, 426. 136540

[14]

Chiang JYL, Ferrell JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am J Physiol-Gastrointest Liver Physiol, 2020, 318: G554-G573.

[15]

Chiang JYL, Ferrell JM. Discovery of farnesoid X receptor and its role in bile acid metabolism. Mol Cell Endocrinol, 2022, 548. 111618

[16]

Cutignano A, Conte M, Tirino V, Del Vecchio V, De Angelis R, Nebbioso A, Altucci L, Romano G. Cytotoxic potential of the marine diatom Thalassiosira rotula: insights into bioactivity of 24-methylene cholesterol. Mar Drugs, 2022, 20. 595

[17]

Dawczynski C, Schubert R, Jahreis G. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem, 2007, 103: 891-899.

[18]

Demarco M, Oliveira de Moraes J, Matos ÂP, Derner RB, de Farias NF, Tribuzi G. Digestibility, bioaccessibility and bioactivity of compounds from algae. Trends Food Sci Technol, 2022, 121: 114-128.

[19]

Drolz A, Horvatits T, Rutter K, Landahl F, Roedl K, Meersseman P, Wilmer A, Kluwe J, Lohse AW, Kluge S, Trauner M, Fuhrmann V. Lactate improves prediction of short-term mortality in critically ill patients with cirrhosis: a multinational study. Hepatology, 2019, 69: 258-269.

[20]

El-Baz FK, Salama A, Salama RAA, Gabr M. Dunaliella salina attenuates diabetic neuropathy induced by STZ in rats: involvement of thioredoxin. Biomed Res Int, 2020, 2020: 11.

[21]

Fang S, Suh JM, Reilly SM, Yu E, Osborn O, Lackey D, Yoshihara E, Perino A, Jacinto S, Lukasheva Y, Atkins AR, Khvat A, Schnabl B, Yu RT, Brenner DA, Coulter S, Liddle C, Schoonjans K, Olefsky JM, Saltiel AR. et al.. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med, 2015, 21: 159-165.

[22]

Fang Y, Cai Y, Zhang Q, Ruan R, Zhou T. Research status and prospects for bioactive compounds of Chlorella species: composition, extraction, production, and biosynthesis pathways. Process Saf Environ Prot, 2024, 191: 345-359.

[23]

Franklin LM, Mitchell AE. Review of the sensory and chemical characteristics of almond (prunus dulcis) flavor. J Agric Food Chem, 2019, 67: 2734-2735.

[24]

Ha AW, Kim WK. The effect of fucoxanthin rich power on the lipid metabolism in rats with a high fat diet. Nutr Res Pract, 2013, 7: 287.

[25]

Hallen A, Jamie JF, Cooper AJ. Lysine metabolism in mammalian brain: an update on the importance of recent discoveries. Amino Acids, 2013, 45: 1249-1272.

[26]

Hammond BG, Mayhew DA, Holson JF, Nemec MD, Mast RW, Sander WJ. Safety assessment of DHA-rich microalgae from Schizochytrium sp.: II. developmental toxicity evaluation in rats and rabbits. Regul Toxicol Pharm, 2001, 33: 205-217.

[27]

Holeček M. Histidine in health and disease: metabolism, physiological importance, and use as a supplement. Nutrients, 2020, 12: 848.

[28]

Huang Y, Ying N, Zhao Q, Chen J, Teow S-Y, Dong W, Lin M, Jiang L, Zheng H. Amelioration of obesity-related disorders in high-fat diet-fed mice following fecal microbiota transplantation from inulin-dosed mice. Molecules, 2023, 28: 3997.

[29]

Iyad AH, Christopher CP, Robert JH. Sterol composition of blue mussels fed algae and effluent diets from finfish culture. J Shellfish Res, 2016, 35: 429-434.

[30]

Jacobs DRJr, Tapsell LC. Food, not nutrients, is the fundamental unit in nutrition. Nutr Rev, 2007, 65: 439-450.

[31]

Jeong H, Kwon HJ, Kim MK. Hypoglycemic effect of Chlorella vulgaris intake in type 2 diabetic Goto-Kakizaki and normal Wistar rats. Nutr Res Pract, 2009, 3: 23.

[32]

Kagan ML, Matulka RA. Safety assessment of the microalgae Nannochloropsis oculata. Toxicol Rep, 2015, 2: 617-623.

[33]

Kersten S. Integrated physiology and systems biology of PPARα. Mol Metab, 2014, 3: 354-371.

[34]

Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 2016, 165: 1332-1345.

[35]

Koutsoumanis K, Allende A, Álvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, de Cesare A, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cocconcelli PS, Fernández Escámez PS, Maradona MP, Querol A, Sijtsma L. et al.. Update of the list of qualified presumption of safety (QPS) recommended microorganisms intentionally added to food or feed as notified to EFSA. EFSA J, 2023, 217988

[36]

Kumar M, Kumari P, Trivedi N, Shukla MK, Gupta V, Reddy CRK, Jha B. Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India. J Appl Phycol, 2010, 23: 797-810.

[37]

Lagkouvardos I, Lesker TR, Hitch TCA, Gálvez EJC, Smit N, Neuhaus K, Wang J, Baines JF, Abt B, Stecher B, Overmann J, Strowig T, Clavel T. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome, 2019, 7: 28.

[38]

Leong YK, Chen CY, Varjani S, Chang JS. Producing fucoxanthin from algae—recent advances in cultivation strategies and downstream processing. Bioresour Technol, 2022, 344. 126170

[39]

Li W, Luo C, Huang Y, Zhan J, Lei J, Li N, Huang X, Luo H. Evaluation of antifatigue and antioxidant activities of the marine microalgae Isochrysis galbana in mice. Food Sci Biotechnol, 2020, 29: 549-557.

[40]

Liu X, Zhang Y, Li W, Zhang B, Yin J, Liuqi S, Wang J, Peng B, Wang S. Fucoidan ameliorated dextran sulfate sodium-induced ulcerative colitis by modulating gut microbiota and bile acid metabolism. J Agric Food Chem, 2022, 70: 14864-14876.

[41]

Liu Q, Lin L, Li H, Qian ZJ. Neuroprotection of truncated peptide IIAVE from Isochrysis zhanjiangensis: quantum chemical, molecular docking, and bioactivity studies. Molecules, 2024, 29: 692.

[42]

Liu W, Wang J, Gao Q, Shen W, Weng P, Wu Z, Qin W, Liu Y. Combined analysis of gut microbiota and metabolomics in high-fat model mice fed with Chlorella pyrenoidosa peptides. J Funct Foods, 2024, 121. 106410

[43]

Lu X, Yang S, He Y, Zhao W, Nie M, Sun H. Nutritional value and productivity potential of the marine microalgae Nitzschia laevis, Phaeodactylum tricornutum and Isochrysis galbana. Mar Drugs, 2024, 22: 386.

[44]

Ma K, Bao Q, Wu Y, Chen S, Zhao S, Wu H, Fan J. Evaluation of microalgae as immunostimulants and recombinant vaccines for diseases prevention and control in aquaculture. Front Bioeng Biotechnol, 2020, 8. 590431

[45]

Ma L, Ni Y, Wang Z, Tu W, Ni L, Zhuge F, Zheng A, Hu L, Zhao Y, Zheng L, Fu Z. Spermidine improves gut barrier integrity and gut microbiota function in diet-induced obese mice. Gut Microbes, 2020, 12: 1-19.

[46]

Magni P, Macchi C, Morlotti B, Sirtori CR, Ruscica M. Risk identification and possible countermeasures for muscle adverse effects during statin therapy. Eur J Intern Med, 2015, 26: 82-88.

[47]

Manon LG, Eric LF, Claire M, Virginie M, Dominique L-G, Benoît S, Lionel U. Microalgal carotenoids and phytosterols regulate biochemical mechanisms involved in human health and disease prevention. Biochimie, 2019, 167: 106-118.

[48]

Martinez-Micaelo N, González-Abuín N, Terra X, Richart C, Ardèvol A, Pinent M, Blay M. Omega-3 docosahexaenoic acid and procyanidins inhibit cyclo-oxygenase activity and attenuate NF-κB activation through a p105/p50 regulatory mechanism in macrophage inflammation. Biochem J, 2012, 441: 653-663.

[49]

Matos J, Cardoso C, Bandarra NM, Afonso C. Microalgae as healthy ingredients for functional food: a review. Food Funct, 2017, 8: 2672-2685.

[50]

Mayer C, Richard L, Côme M, Ulmann L, Nazih H, Chénais B, Ouguerram K, Mimouni V. The marine microalga, Tisochrysis lutea, protects against metabolic disorders associated with metabolic syndrome and obesity. Nutrients, 2021, 13: 430.

[51]

Mehmood A, Li J, Rehman AU, Kobun R, Llah IU, Khan I, Althobaiti F, Albogami S, Usman M, Alharthi F, Soliman MM, Yaqoob S, Awan KA, Zhao L, Zhao L. Xanthine oxidase inhibitory study of eight structurally diverse phenolic compounds. Front Nutr, 2022, 9. 966557

[52]

Mendes AR, Spínola MP, Lordelo M, Prates JA. Chemical compounds, bioactivities, and applications of Chlorella vulgaris in food, feed and medicine. Appl Sci, 2024, 14: 10810.

[53]

Micallef MA, Garg ML. The lipid-lowering effects of phytosterols and (n-3) polyunsaturated fatty acids are synergistic and complementary in hyperlipidemic men and women. J Nutr, 2008, 138: 1086-1090.

[54]

Mizota T, Hishiki T, Shinoda M, Naito Y, Hirukawa K, Masugi Y, Itano O, Obara H, Kitago M, Yagi H, Abe Y, Matsubara K, Suematsu M, Kitagawa Y. The hypotaurine-taurine pathway as an antioxidative mechanism in patients with acute liver failure. J Clin Biochem Nutr, 2022, 70: 54-63.

[55]

Mohammad BE, Wan MWO. Differential growth and biochemical composition of photoautotrophic and heterotrophic Isochrysis maritima: evaluation for use as aquaculture feed. J Appl Phycol, 2017, 29: 1159-1170.

[56]

Mularczyk M, Michalak I, Marycz K. Astaxanthin and other nutrients from Haematococcus pluvialis-multifunctional applications. Mar Drugs, 2020, 18. 459

[57]

Nayak SN, Aravind B, Malavalli SS, Sukanth BS, Poornima R, Bharati P, Hefferon K, Kole C, Puppala N. Omics technologies to enhance plant based functional foods: an overview. Front Genet, 2021, 12. 742095

[58]

Nikmaram N, Dar BN, Roohinejad S, Koubaa M, Barba FJ, Greiner R, Johnson SK. Recent advances in gamma-aminobutyric acid (GABA) properties in pulses: an overview. J Sci Food Agric, 2017, 97: 2681-2689.

[59]

Park S, Kim HW, Joo Lee C, Kim Y, Sung J. Profiles of volatile sulfur compounds in various vegetables consumed in Korea using HS-SPME-GC/MS technique. Front Nutr, 2024, 11: 1409008.

[60]

Pelantova H, Buganova M, Holubova M, Sediva B, Zemenova J, Sykora D, Kavalkova P, Haluzik M, Zelezna B, Maletinska L, Kunes J, Kuzma M. Urinary metabolomic profiling in mice with diet-induced obesity and type 2 diabetes mellitus after treatment with metformin, vildagliptin and their combination. Mol Cell Endocrinol, 2016, 15: 88-100.

[61]

Qian H, Chao X, Williams J, Fulte S, Li T, Yang L, Ding WX. Autophagy in liver diseases: a review. Mol Aspects Med, 2021, 82. 100973

[62]

Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J, 2008, 22: 659-661.

[63]

Rincon-Cervera MA, Gonzalez-Barriga V, Romero J, Rojas R, Lopez-Arana S. Quantification and distribution of omega-3 fatty acids in south Pacific fish and shellfish species. Foods, 2020, 9: 233.

[64]

Romero J, Catalán N, Ramírez C, Miranda C, Oliva M, Flores H, Romero M, Rojas R. High abundance of Candidatus arthromitus in intestinal microbiota of Seriolella violacea (palm ruff) under reared conditions. Fishes, 2023, 8: 109.

[65]

Ru ITK, Sung YY, Jusoh M, Wahid MEA, Nagappan T. Chlorella vulgaris: a perspective on its potential for combining high biomass with high value bioproducts. J Appl Phycol, 2020, 1: 2-11.

[66]

Rzymski P, Budzulak J, Niedzielski P, Klimaszyk P, Proch J, Kozak L, Poniedziałek B. Essential and toxic elements in commercial microalgal food supplements. J Appl Phycol, 2018, 31: 3567-3579.

[67]

Sakamoto K, Butera MA, Zhou C, Maurizi G, Chen B, Ling L, Shawkat A, Patlolla L, Thakker K, Calle V, Morgan DA, Rahmouni K, Schwartz GJ, Tahiri A, Buettner C. Overnutrition causes insulin resistance and metabolic disorder through increased sympathetic nervous system activity. Cell Metab, 2025, 37: 121-137.e6.

[68]

Scheiman J, Luber JM, Chavkin TA, MacDonald T, Tung A, Pham LD, Wibowo MC, Wurth RC, Punthambaker S, Tierney BT, Yang Z, Hattab MW, Avila-Pacheco J, Clish CB, Lessard S, Church GM, Kostic AD. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med, 2019, 25: 1104-1109.

[69]

Schoeler M, Ellero-Simatos S, Birkner T, Mayneris-Perxachs J, Olsson L, Brolin H, Loeber U, Kraft JD, Polizzi A, Martí-Navas M, Puig J, Moschetta A, Montagner A, Gourdy P, Heymes C, Guillou H, Tremaroli V, Fernández-Real JM, Forslund SK, Burcelin R. et al.. The interplay between dietary fatty acids and gut microbiota influences host metabolism and hepatic steatosis. Nat Commun, 2023, 14: 9250017.

[70]

Shah MR, Lutzu GA, Alam A, Sarker P, Kabir Chowdhury MA, Parsaeimehr A, Liang Y, Daroch M. Microalgae in aquafeeds for a sustainable aquaculture industry. J Appl Phycol, 2018, 30: 197-213.

[71]

Sun H, Yang S, Zhao W, Kong Q, Zhu C, Fu X, Zhang F, Liu Z, Zhan Y, Mou H, He Y. Fucoxanthin from marine microalgae: a promising bioactive compound for industrial production and food application. Crit Rev Food Sci Nutr, 2023, 63: 7996-8012.

[72]

Szántó M, Bai P. The role of ADP-ribose metabolism in metabolic regulation, adipose tissue differentiation, and metabolism. Genes Dev, 2020, 34: 321-340.

[73]

Tilg H, Adolph TE, Trauner M. Gut-liver axis: pathophysiological concepts and clinical implications. Cell Metab, 2022, 34: 1700-1718.

[74]

Vallianou N, Dalamaga M, Stratigou T, Karampela I, Tsigalou C. Do antibiotics cause obesity through long-term alterations in the gut microbiome? A review of current evidence. Curr Obes Rep, 2021, 10: 244-262.

[75]

Velázquez KT, Enos RT, Bader JE, Sougiannis AT, Carson MS, Chatzistamou I, Carson JA, Nagarkatti PS, Nagarkatti M, Murphy EA. Prolonged high-fat-diet feeding promotes non-alcoholic fatty liver disease and alters gut microbiota in mice. World J Hepatol, 2019, 11: 619-637.

[76]

Vilar EG, O’Sullivan MG, Kerry JP, Kilcawley KN. Volatile compounds of six species of edible seaweed: a review. Algal Res, 2020, 45. 101740

[77]

Vizcaíno AJ, Saéz MI, López G, Arizcun M, Abellán E, Martínez TF, Cerón-García MC, Alarcón FJ. Tetraselmis suecia and Tisochrysis lutea meal as dietary ingredients for gilthead sea bream (Sparus aurata L.) fry. J Appl Phycol, 2016, 28: 2843-2855.

[78]

Volkman J. Sterols in microorganisms. Appl Microbiol Biotechnol, 2003, 60: 495-506.

[79]

Wan X, Li T, Liu D, Chen Y, Liu Y, Liu B, Zhang H, Zhao C. Effect of marine microalga Chlorella pyrenoidosa ethanol extract on lipid metabolism and gut microbiota composition in high-fat diet-fed rats. Mar Drugs, 2018, 16. 498

[80]

Wang Y, Nakajima T, Gonzalez FJ, Tanaka N. Ppars as metabolic regulators in the liver: lessons from liver-specific PPAR-null mice. Int J Mol Sci, 2020, 21. 2061

[81]

Wang Y, Fang F, Liu X. Targeting histamine in metabolic syndrome: insights and therapeutic potential. Life Sci, 2024, 358. 123172

[82]

Wen Y, Zhou Y, Tian L, He Y. Ethanol extracts of Isochrysis zhanjiangensis alleviate acute alcoholic liver injury and modulate intestinal bacteria dysbiosis in mice. J Sci Food Agric, 2024, 104: 4354-4362.

[83]

Whitehead A, Beck EJ, Tosh S, Wolever TMS. Cholesterol-lowering effects of oat β-glucan: a meta-analysis of randomized controlled trials. Am J Clin Nutr, 2014, 100: 1413-1421.

[84]

Xie Y, Lyu S, Zhang Y, Cai C. Adsorption and degradation of volatile organic compounds by metal–organic frameworks (MOFs): a review. Materials, 2022, 15: 7727.

[85]

Yang L, Wang Y, Li Z, Wu X, Mei J, Zheng G. Brain targeted peptide-functionalized chitosan nanoparticles for resveratrol delivery: impact on insulin resistance and gut microbiota in obesity-related Alzheimer’s disease. Carbohydr Polym, 2023, 15. 120714

[86]

Yang Y, Xia Y, Zhang B, Li D, Yan J, Yang J, Sun J, Cao H, Wang Y, Zhang F. Effects of different n-6/n-3 polyunsaturated fatty acids ratios on lipid metabolism in patients with hyperlipidemia: a randomized controlled clinical trial. Front Nutr, 2023, 1. 1166702

[87]

Ye J, Zheng J, Tian X, Xu B, Yuan F, Wang B, Yang Z, Huang F. Fucoxanthin attenuates free fatty acid-induced nonalcoholic fatty liver disease metabolism/oxidative stress/inflammation via the AMPK/Nrf2/TLR4 signaling pathway. Mar Drugs, 2022, 20. 225

[88]

Yi X, Xu S, Huang F, Wen C, Zheng S, Feng H, Guo J, Chen J, Feng X, Yang F. Effects of chronic exposure to microcystin-LR on kidney in mice. Int J Environ Res Public Health, 2019, 16: 5030.

[89]

Yu P, Yang Y, Sun J, Jia X, Zheng C, Zhou Q, Huang F. Identification of volatile sulfur-containing compounds and the precursor of dimethyl sulfide in cold-pressed rapeseed oil by GC–SCD and UPLC–MS/MS. Food Chem, 2022, 367. 130741

[90]

Zanella L, Vianello F. Microalgae of the genus Nannochloropsis: chemical composition and functional implications for human nutrition. J Funct Foods, 2020, 68. 103919

[91]

Zhang Y, Lee FY, Barrera G, Lee H, Vales C, Gonzalez FJ, Willson TM, Edwards PA. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci, 2006, 103: 1006-1011.

[92]

Zhao M, Liu Z, Zhang W, Xia G, Li C, Rakariyatham K, Zhou D. Advance in aldehydes derived from lipid oxidation: a review of the formation mechanism, attributable food thermal processing technology, analytical method and toxicological effect. Food Res Int, 2025, 203. 115811

[93]

Zheng JY, Tao NP, Gong J, Gu SQ, Xu CH. Comparison of non-volatile taste-active compounds between the cooked meats of pre- and post-spawning Yangtze Coilia ectenes. Fish Sci, 2015, 81: 559-568.

[94]

Zhou Y, Zhang J, Xu K, Zhang W, Chen F, Liu B, Guo B. Fucoxanthin improves serum lipids, liver metabolism and gut microbiota in hyperlipidemia mice. Food Sci Hum Wellness, 2025, 14. 9250017

[95]

Zhu Y, Chen B, Zhang X, Akbar MT, Wu T, Zhang Y, Zhi L, Shen Q. Exploration of the Muribaculaceae family in the gut microbiota: diversity, metabolism, and function. Nutrients, 2024, 16: 2660.

RIGHTS & PERMISSIONS

Ocean University of China

PDF

210

Accesses

0

Citation

Detail

Sections
Recommended

/