Impact of maternal DHA-enriched plant-based diets on early development of rainbow trout offspring: insights into parental nutritional programming

Maud Martinat , Elodie Baranek , Cécile Heraud , Laurence Larroquet , Anne Surget , Anthony Lanuque , Nicolas Turonnet , Patrick Maunas , Frédéric Terrier , Stéphane Panserat , Jérôme Roy

Marine Life Science & Technology ›› : 1 -20.

PDF
Marine Life Science & Technology ›› :1 -20. DOI: 10.1007/s42995-025-00316-7
Research Article
research-article

Impact of maternal DHA-enriched plant-based diets on early development of rainbow trout offspring: insights into parental nutritional programming

Author information +
History +
PDF

Abstract

To promote sustainable aquaculture, plant-based ingredients are increasingly replacing fish meal (FM) and fish oil (FO) in aquafeeds, altering broodstock diets and reducing omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFAs), essential for reproductive success and progeny growth. Despite the critical role of ω-3 LC-PUFAs, particularly docosahexaenoic acid (DHA) in brain function, data on how fry cope with FM/FO-free diets during early development remain limited. To address this, we conducted a 2-year experiment comparing three broodstock diets: a commercial diet (C diet), a total plant-based diet (V1 diet), and a plant-based diet supplemented with DHA-rich Schizochytrium sp. microalgae oil (V2 diet). After reproduction, progeny were fed either a C diet or a plant-based diet (V). Six groups (C–C, C–V, V1–C, V1–V, V2–C, V2–V) were analyzed for survival, feed intake, and growth, as well as neuropeptide, neurotransmitter, and intestinal hormone expression. Results showed enhanced robustness in fry-fed V diets, particularly from V1 and V2-fed broodstock, with improved survival and feed intake. Fry from DHA-supplemented broodstock (V2–V) compensated for initial growth delays, achieving growth comparable to fry from commercial-fed mothers (C–V) within 30 days. Neurophysiological and gut–brain adaptations revealed complex compensatory mechanisms enabling fish to thrive on sustainable diets. These findings highlight the potential of DHA supplementation in plant-based diets to support sustainable aquaculture and warrant further validation under diverse nutritional and environmental conditions.

Keywords

First feeding / Nutritional programming / Maternal diet / Alternative diet / Feeding behavior

Cite this article

Download citation ▾
Maud Martinat, Elodie Baranek, Cécile Heraud, Laurence Larroquet, Anne Surget, Anthony Lanuque, Nicolas Turonnet, Patrick Maunas, Frédéric Terrier, Stéphane Panserat, Jérôme Roy. Impact of maternal DHA-enriched plant-based diets on early development of rainbow trout offspring: insights into parental nutritional programming. Marine Life Science & Technology 1-20 DOI:10.1007/s42995-025-00316-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AbramovaA, BrideJ, OgerC, DemionM, GalanoJ-M, DurandT, RoyJ. Metabolites derived from radical oxidation of PUFA : NEO-PUFAs, promising molecules for health?. Atherosclerosis, 2024, 398118600

[2]

AmoleN, UnniappanS. Fasting induces preproghrelin mRNA expression in the brain and gut of zebrafish, Danio rerio. Gen Comp Endocr, 2009, 161: 133-137

[3]

AntunesDF, TelesMC, ZuellingM, FriesenCN, OliveiraRF, Aubin-HorthN, TaborskyB. Early social deprivation shapes neuronal programming of the social decision-making network in a cooperatively breeding fish. Mol Ecol, 2021, 30: 4118-4132

[4]

Bacqué-CazenaveJ, BharatiyaR, BarrièreG, DelbecqueJ-P, BouguiyoudN, Di GiovanniG, CattaertD, de DeurwaerdèreP. Serotonin in animal cognition and behavior. Int J Mol Sci, 2020, 211649

[5]

BaldiniG, PhelanKD. The melanocortin pathway and control of appetite-progress and therapeutic implications. J Endocrinol, 2019, 241: R1-R33

[6]

BaranekE, DiasK, HeraudC, SurgetA, LarroquetL, Skiba-CassyS, RoyJ. Characterization of expression response in post-prandial situation of food sensing system in rainbow trout (Oncorhynchus mykiss) fed a plant-based diet : Focus on free fatty acid receptors and their signaling pathways. Aquaculture, 2024, 581740362

[7]

BaranekE, HeraudC, LarroquetL, SurgetA, LanuqueA, TerrierF, Skiba-CassyS, RoyJ. Long-term regulation of fat sensing in rainbow trout (Oncorhynchus mykiss) fed a vegetable diet from the first feeding : Focus on free fatty acid receptors and their signaling. Brit J Nutr, 2024, 131: 1-16

[8]

BellJG, HendersonRJ, TocherDR, SargentJR. Replacement of dietary fish oil with increasing levels of linseed oil : Modification of flesh fatty acid compositions in Atlantic salmon (Salmo salar) using a fish oil finishing diet. Lipids, 2004, 39: 223-232

[9]

Benítez-SantanaT, AtalahE, BetancorMB, CaballeroMJ, Hernández-CruzCM, IzquierdoM. DHA but not EPA, enhances sound induced escape behavior and Mauthner cells activity in Sparus aurata. Physiol Behav, 2014, 124: 65-71

[10]

BourreJM. Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing. J Nutr Health Aging, 2004, 8: 163-174

[11]

Bromage N, Roberts R (1995) Broodstock management and egg and larval quality. Bromage NR, Roberts RJ (Edt). Wiley-Blackwell, Oxford

[12]

CalletT, Dupont-NivetM, CluzeaudM, JaffrezicF, LaloëD, KerneisT, LabbéL, QuilletE, GeurdenI, MazuraisD, Skiba-CassyS, MédaleF. Detection of new pathways involved in the acceptance and the utilisation of a plant-based diet in isogenic lines of rainbow trout fry. PLoS ONE, 2018, 13e0201462

[13]

CalletT, HuH, LarroquetL, SurgetA, LiuJ, Plagnes-JuanE, MaunasP, TuronnetN, MennigenJA, BobeJ, BurelC, CorrazeG, PanseratS, MarandelL. Exploring the impact of a low-protein high-carbohydrate diet in mature broodstock of a glucose-intolerant teleost, the rainbow trout. Front Physiol, 2020, 11303

[14]

CalletT, LiH, SurgetA, TerrierF, SandresF, LanuqueA, PanseratS, MarandelL. No adverse effect of a maternal high carbohydrate diet on their offspring, in rainbow trout (Oncorhynchus mykiss). PeerJ, 2021, 9e12102

[15]

CardonaE, BaranekE, VigorC, GrosV, ReversatG, SurgetA, LarroquetL, MaunasP, TurronetN, OgerC, GalanoJ-M, DurandT, RoyJ. A two-year plant-based diet alters the fatty acid profile and enzymatic and non-enzymatic lipid metabolites, in the eggs and fry of female rainbow trout. Aquaculture, 2025, 595741602

[16]

Cardona E, Segret E, Cachelou Y, Vanderesse T, Larroquet L, Hermann A, Surget A, Corraze G, Cachelou F, Bobe J, Skiba-Cassy S (2022) Effect of micro-algae Schizochytrium sp. supplementation in plant diet on reproduction of female rainbow trout (Oncorhynchus mykiss) : Maternal programming impact of progeny. J Anim Sci Biotechnol 13:33

[17]

CinquinaV, KeimpemaE, PollakDD, HarkanyT. Adverse effects of gestational ω-3 and ω-6 polyunsaturated fatty acid imbalance on the programming of fetal brain development. J Neuroendocrinol, 2023, 35e13320

[18]

CorrazeG, KaushikS. Lipid nutrition and fish oil replacement by vegetable oils in pisciculture. Cah Agric, 2009, 18: 112-118

[19]

del VecchioG, MurashitaK, VerriT, GomesAS, RønnestadI. Leptin receptor-deficient (knockout) zebrafish : Effects on nutrient acquisition. Gen Comp Endocr, 2021, 310113832

[20]

DuY, LiQ, ZhouG, CaiZ, ManQ, WangWC. Early-life perfluorooctanoic acid exposure disrupts the function of dopamine transporter protein with glycosylation changes implicating the links between decreased dopamine levels and disruptive behaviors in larval zebrafish. Sci Total Environ, 2024, 917170408

[21]

DyallSC, BalasL, BazanNG, BrennaJT, ChiangN, da CostaSF, DalliJ, DurandT, GalanoJ-M, LeinPJ, SerhanCN, TahaAY. Polyunsaturated fatty acids and fatty acid-derived lipid mediators : Recent advances in the understanding of their biosynthesis, structures, and functions. Prog Lipid Res, 2022, 86101165

[22]

EcheverríaF, ValenzuelaR, Catalina Hernandez-RodasM, ValenzuelaA. Docosahexaenoic acid (DHA), a fundamental fatty acid for the brain : New dietary sources. Prostag Leukotr Ess, 2017, 124: 1-10

[23]

EmmansGC, KyriazakisI. The idea of optimisation in animals : Uses and dangers. Livest Prod Sci, 1995, 44: 189-197

[24]

FAO (2024) The State of World Fisheries and Aquaculture 2024. FAO ; https://openknowledge.fao.org/handle/20.500.14283/cd0683en

[25]

FolchJ, LeesM, StanleyGHS. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem, 1957, 226: 497-509

[26]

FrancisDS, TurchiniGM, JonesPL, de SilvaSS. Dietary lipid source modulates in vivo fatty acid metabolism in the freshwater fish, Murray cod (Maccullochella peelii peelii). J Agr Food Chem, 2007, 55: 1582-1591

[27]

FuruitaH, TakeuchiT, UematsuK. Effects of eicosapentaenoic and docosahexaenoic acids on growth, survival and brain development of larval Japanese flounder (Paralichthys olivaceus). Aquaculture, 1998, 161: 269-279

[28]

GalanoJ-M, RoyJ, DurandT, LeeJC-Y, Le GuennecJ-Y, OgerC, DemionM. Biological activities of non-enzymatic oxygenated metabolites of polyunsaturated fatty acids (NEO-PUFAs) derived from EPA and DHA : New anti-arrhythmic compounds?. Mol Aspects Med, 2018, 64: 161-168

[29]

GangaR, BellJG, MonteroD, RobainaL, CaballeroMJ, IzquierdoMS. Effect of dietary lipids on plasma fatty acid profiles and prostaglandin and leptin production in gilthead seabream (Sparus aurata). Comp Biochem Phys B, 2005, 142: 410-418

[30]

GangaR, TortL, AcereteL, MonteroD, IzquierdoMS. Modulation of ACTH-induced cortisol release by polyunsaturated fatty acids in interrenal cells from gilthead seabream, Sparus aurata. J Endocrinol, 2006, 190: 39-45

[31]

GisbertE, Ortiz-DelgadoJB, SarasqueteC. Nutritional cellular biomarkers in early life stages of fish. Histol Histopathol, 2008, 23: 1525-1539

[32]

GuesnetP, AlessandriJ-M. Docosahexaenoic acid (DHA) and the developing central nervous system (CNS)—Implications for dietary recommendations. Biochimie, 2011, 93: 7-12

[33]

HeraudC, HirschingerT, BaranekE, LarroquetL, SurgetA, SandresF, LanuqueA, TerrierF, RoyJ. Detection and modulation of olfactory sensing receptors in carnivorous rainbow trout (Oncorhynchus mykiss) fed from first feeding with plant-based diet. Int J Mol Sci, 2022, 232123

[34]

HouZ, FuimanLA. Nutritional programming in fishes : Insights from mammalian studies. Rev Fish Biol Fisher, 2020, 30: 67-92

[35]

InnisSM. Dietary omega 3 fatty acids and the developing brain. Brain Res, 2008, 1237: 35-43

[36]

IzquierdoMS, Fernández-PalaciosH, TaconAGJ. Effect of broodstock nutrition on reproductive performance of fish. Aquaculture, 2001, 197: 25-42

[37]

JoblingM. The National Research Council (NRC): Nutrient requirements of fish and shrimp. Acuqacult Int, 2011, 20: 601-602

[38]

KamalamBS, MedaleF, PanseratS. Utilisation of dietary carbohydrates in farmed fishes : New insights on influencing factors, biological limitations and future strategies. Aquaculture, 2017, 467: 3-27

[39]

KjeldahlJ. Neue methode zur bestimmung des stickstoffs in organischen Körpern. Fresenius’ Zeitschrift Für Analytische Chemie, 1883, 22: 366-382

[40]

KovenW, SchulteP. The effect of fasting and refeeding on mRNA expression of PepT1 and gastrointestinal hormones regulating digestion and food intake in zebrafish (Danio rerio). Fish Physiol Biochem, 2012, 38: 1565-1575

[41]

LarqueE, DemmelmairH, KoletzkoB. Perinatal supply and metabolism of long-chain polyunsaturated fatty acids : Importance for the early development of the nervous system. Ann NY Acad Sci, 2002, 967: 299-310

[42]

LatimerGWJrOfficial Methods of Analysis, 202322New York. Oxford University Press.

[43]

LauritzenL, BrambillaP, MazzocchiA, HarsløfLBS, CiappolinoV, AgostoniC. DHA effects in brain development and function. Nutrients, 2016, 86

[44]

LazzarottoV, CorrazeG, LeprevostA, QuilletE, Dupont-NivetM, MédaleF. Three-year breeding cycle of rainbow trout (Oncorhynchus mykiss) fed a plant-based diet, totally free of marine resources : Consequences for reproduction, fatty acid composition and progeny survival. PLoS ONE, 2015, 10e0117609

[45]

LazzarottoV, CorrazeG, LarroquetL, MazuraisD, MédaleF. Does broodstock nutritional history affect the response of progeny to different first-feeding diets? A whole-body transcriptomic study of rainbow trout alevins. Brit J Nutr, 2016, 115: 2079-2092

[46]

LazzarottoV, MédaleF, LarroquetL, CorrazeG. Long-term dietary replacement of fishmeal and fish oil in diets for rainbow trout (Oncorhynchus mykiss): Effects on growth, whole body fatty acids and intestinal and hepatic gene expression. PLoS ONE, 2018, 13e0190730

[47]

LeeK-J, RinchardJ, DabrowskiK, BabiakI, OttobreJS, ChristensenJE. Long-term effects of dietary cottonseed meal on growth and reproductive performance of rainbow trout : Three-year study. Anim Feed Sci Tech, 2006, 126: 93-106

[48]

LucasA. Programming by early nutrition in man. Ciba Found Symp, 1991, 156: 38-50

[49]

ManorML, ClevelandBM, WeberGM, KenneyPB. Effects of sexual maturation and feeding level on fatty acid metabolism gene expression in muscle, liver, and visceral adipose tissue of diploid and triploid rainbow trout, Oncorhynchus mykiss. Com Biochem Phys B, 2015, 179: 17-26

[50]

MassadiOA, NogueirasR, DieguezC, GiraultJ-A. Ghrelin and food reward. Neuropharmacology, 2019, 148: 131-138

[51]

MeguidMM, FetissovSO, VarmaM, SatoT, ZhangL, LavianoA, Rossi-FanelliF. Hypothalamic dopamine and serotonin in the regulation of food intake. Nutrition, 2000, 16: 843-857

[52]

Navarro-GuillénC, DiasJ, RochaF, CastanheiraMF, MartinsCIM, LaizéV, GavaiaPJ, EngrolaS. Does a ghrelin stimulus during zebrafish embryonic stage modulate its performance on the long-term?. Comp Biochem Phys A, 2019, 2: 1-8

[53]

Naya-CatalàF, BelenguerA, MonteroD, TorrecillasS, SorianoB, Calduch-GinerJ, LlorensC, FontanillasR, SarihS, ZamoranoMJ, IzquierdoM, Pérez-SánchezJ. Broodstock nutritional programming differentially affects the hepatic transcriptome and genome-wide DNA methylome of farmed gilthead sea bream (Sparus aurata) depending on genetic background. BMC Genomics, 2023, 24670

[54]

PanseratS, KolditzC, RichardN, Plagnes-JuanE, PiumiF, EsquerréD, MédaleF, CorrazeG, KaushikS. Hepatic gene expression profiles in juvenile rainbow trout (Oncorhynchus mykiss) fed fishmeal or fish oil-free diets. Brit J Nutr, 2008, 100: 953-967

[55]

PanseratS, HortopanGA, Plagnes-JuanE, KolditzC, LansardM, Skiba-CassyS, EsquerreD, GeurdenI, MedaleF, KaushikS, CorrazeG. Differential gene expression after total replacement of dietary fish meal and fish oil by plant products in rainbow trout (Oncorhynchus mykiss) liver. Aquaculture, 2009, 294: 123-131

[56]

PfafflMW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res, 2001, 29: 2003-2007

[57]

PolakofS, PanseratS, SoengasJL, MoonTW. Glucose metabolism in fish : A review. J Comp Physiol B, 2012, 182: 1015-1045

[58]

RandoOJ, SimmonsRA. I’m eating for two : Parental dietary effects on offspring metabolism. Cell, 2015, 161: 93-105

[59]

ReiserS, PohlmannDM, BlanckeT, KoopsU, TrautnerJ. Environmental enrichment during early rearing provokes epigenetic changes in the brain of a salmonid fish. Com Biochem Phys D, 2021, 39100838

[60]

Romero-ReyesJ, Molina-HernándezA, DíazNF, Camacho-ArroyoI. Role of serotonin in vertebrate embryo development. Reprod Biol, 2021, 21100475

[61]

RoyJ, Le GuennecJ-Y. Cardioprotective effects of omega 3 fatty acids : Origin of the variability. J Muscle Res Cell M, 2017, 38: 25-30

[62]

RoyJ, Le GuennecJ-Y, GalanoJ-M, ThireauJ, Bultel-PoncéV, DemionM, OgerC, LeeJC-Y, DurandT. Non-enzymatic cyclic oxygenated metabolites of omega-3 polyunsaturated fatty acid : Bioactive drugs?. Biochimie, 2016, 120: 56-61

[63]

RoyJ, LarroquetL, SurgetA, LanuqueA, SandresF, TerrierF, CorrazeG, LeeJC-Y, Skiba-CassyS. Impact on cerebral function in rainbow trout fed with plant based omega-3 long chain polyunsaturated fatty acids enriched with DHA and EPA. Fish Shellfish Immunol, 2020, 103: 409-420

[64]

RoyJ, MercierY, TonnetL, BurelC, LanuqueA, SurgetA, LarroquetL, CorrazeG, TerrierF, PanseratS, SkibaS. Rainbow trout prefer diets rich in omega-3 long chain polyunsaturated fatty acids DHA and EPA. Physiol Behav, 2020, 213112692

[65]

RoyJ, VigorC, VercauterenJ, ReversatG, ZhouB, SurgetA, LarroquetL, LanuqueA, SandresF, TerrierF, OgerC, GalanoJ-M, CorrazeG, DurandT. Characterization and modulation of brain lipids content of rainbow trout fed with 100% plant based diet rich in omega-3 long chain polyunsaturated fatty acids DHA and EPA. Biochimie, 2020, 178: 137-147

[66]

RoyJ, BaranekE, MercierY, LarroquetL, SurgetA, GanotA, SandresF, LanuqueA, TerrierF, BriandL. Involvement of taste receptors in the oro-sensory perception of nutrients in rainbow trout (Oncorhynchus Mikyss) fed diets with different fatty acid profiles. Aquacult Nutr, 2022, 2022e1152463

[67]

RoyJ, BaranekE, MarandelL. Characterization of free fatty acid receptor family in rainbow trout (Oncorhynchus mykiss): Towards a better understanding of their involvement in fatty acid signalisation. BMC Genomics, 2023, 24130

[68]

SalzeG, TocherDR, RoyWJ, RobertsonDA. Egg quality determinants in cod (Gadus morhua L.): Egg performance and lipids in eggs from farmed and wild broodstock. Aquac Res, 2005, 36: 1488-1499

[69]

SaravananS, SchramaJW, Figueiredo-SilvaAC, KaushikSJ, VerrethJAJ, GeurdenI. Constraints on energy intake in fish : The link between diet composition, energy metabolism, and energy intake in rainbow trout. PLoS ONE, 2012, 7e34743

[70]

SargentJR, McEvoyLA, BellJG. Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture, 1997, 155: 117-127

[71]

SargentJ, McEvoyL, EstevezA, BellG, BellM, HendersonJ, TocherD. Lipid nutrition of marine fish during early development : Current status and future directions. Aquaculture, 1999, 179: 217-229

[72]

SchipperL, BouyerK, OostingA, SimerlyRB, van der BeekEM. Postnatal dietary fatty acid composition permanently affects the structure of hypothalamic pathways controlling energy balance in mice. Am J Clin Nutr, 2013, 98: 1395-1401

[73]

SchjoldenJ, SchiöthHB, LarhammarD, WinbergS, LarsonET. Melanocortin peptides affect the motivation to feed in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocr, 2009, 160: 134-138

[74]

SinghM. Essential fatty acids, DHA and human brain. Indian J Pediatr, 2005, 72: 239-242

[75]

SpragueM, DickJR, TocherDR. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Sci Rep-UK, 2016, 621892

[76]

StillingRM, DinanTG, CryanJF. Microbial genes, brain & behaviour—Epigenetic regulation of the gut–brain axis. Genes Brain Behav, 2014, 13: 69-86

[77]

TurchiniGM, TorstensenBE, NgW-K. Fish oil replacement in finfish nutrition. Rev Aquacult, 2009, 1: 10-57

[78]

VoigtJ-P, FinkH. Serotonin controlling feeding and satiety. Behav Brain Res, 2015, 277: 14-31

[79]

WatanabeT, IzquierdoMS, TakeuchiT, SatohS, KitajimaC. Comparison between eicosapentaenoic and docosahexaenoic acids in terms of essential fatty acid efficacy in larval red seabream. NIPPON SUISAN GAKK, 1989, 55: 1635-1640

[80]

YamamotoT, MatsunariH, MurashitaK, YoshinagaH, OkuH, FuruitaH, KajiN, AoyagiT, MiuraM. Effect of feeding plant-based diet to broodstock on the utilization of plant-based diet in the offspring of rainbow trout Oncorhynchus mykiss. Aquaculture, 2023, 568739330

RIGHTS & PERMISSIONS

Ocean University of China

AI Summary AI Mindmap
PDF

231

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/