scITDG: a tool for identifying time-dependent genes in single-cell transcriptome sequencing data

Yandong Zheng , Chengyu Liu , Weiqi Zhang , Jing Qu , Shuai Ma , Guang-Hui Liu

Marine Life Science & Technology ›› : 1 -16.

PDF
Marine Life Science & Technology ›› :1 -16. DOI: 10.1007/s42995-025-00311-y
Research Paper
research-article

scITDG: a tool for identifying time-dependent genes in single-cell transcriptome sequencing data

Author information +
History +
PDF

Abstract

Our study introduces scITDG, a tool designed for the analysis of time-dependent gene expression in single-cell transcriptomic sequencing data, effectively filling a gap in current analytical resources. A key advantage of scITDG is its ability to identify dynamic gene expression patterns across multiple time points at single-cell resolution, which is pivotal for deciphering complex biological processes such as aging and tissue regeneration. The tool is compatible with widely used single-cell analysis platforms such as Seurat and Scanpy. By integrating natural cubic splines regression with bootstrapping resampling, scITDG enhances the functionality of these platforms and broadens their applicability. In this study, based on scITDG, we revealed intricate gene expression modules in mice aging and axolotl limb regeneration, providing valuable insights into cellular function and response mechanisms. The versatility of scITDG makes it applicable to a wide range of biological contexts, including development, circadian rhythms, disease progression, and therapeutic responses.

Keywords

Aging / Regeneration / scITDG R package / Single-cell sequencing / Time-dependent genes

Cite this article

Download citation ▾
Yandong Zheng, Chengyu Liu, Weiqi Zhang, Jing Qu, Shuai Ma, Guang-Hui Liu. scITDG: a tool for identifying time-dependent genes in single-cell transcriptome sequencing data. Marine Life Science & Technology 1-16 DOI:10.1007/s42995-025-00311-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abu-Doleh A, Al Fahoum A. XgCPred: cell type classification using XGBoost-CNN integration and exploiting gene expression imaging in single-cell RNAseq data. Comput Biol Med, 2024, 181 109066

[2]

Aging Biomarker C, Zhang L, Guo J, Liu Y, Sun S, Liu B, Yang Q, Tao J, Tian XL, Pu J, Hong H, Wang M, Chen HZ, Ren J, Wang X, Liang Z, Wang Y, Huang K, Zhang W, Qu J et al. (2023) A framework of biomarkers for vascular aging: a consensus statement by the Aging Biomarker Consortium. Life Med 2:lnad033

[3]

Aging Biomarker C, Huang N, Ge M, Liu X, Tian X, Yin P, Bao Z, Cao F, Shyh-Chang N, Dong B, Dai L, Gan Z, Hu P, Qu J, Wang S, Wang H, Xiao Q, Yue R, Yue J, Zhang L et al. (2024a) A framework of biomarkers for skeletal muscle aging: a consensus statement by the Aging Biomarker Consortium. Life Med 3:lnaf001

[4]

Aging Biomarker C, Jiang M, Zheng Z, Wang X, Chen Y, Qu J, Ding Q, Zhang W, Liu YS, Yang J, Tang W, Hou Y, He J, Wang L, Huang P, Li LC, He Z, Gao Q, Lu Q, Wei L et al. (2024b) A biomarker framework for liver aging: the Aging Biomarker Consortium consensus statement. Life Med 3:lnae004

[5]

Akahori H, Karmali V, Polavarapu R, Lyle AN, Weiss D, Shin E, Husain A, Naqvi N, Van Dam R, Habib A, Choi CU, King AL, Pachura K, Taylor WR, Lefer DJ, Finn AV. CD163 interacts with TWEAK to regulate tissue regeneration after ischaemic injury. Nat Commun, 2015, 6: 7792

[6]

Amitay Y, Bussi Y, Feinstein B, Bagon S, Milo I, Keren L. Cell Sighter: a neural network to classify cells in highly multiplexed images. Nat Commun, 2023, 14: 4302

[7]

Ardehali MB, Damle M, Perea-Resa C, Blower MD, Kingston RE. Elongin A associates with actively transcribed genes and modulates enhancer RNA levels with limited impact on transcription elongation rate in vivo. J Biol Chem, 2021, 296 100202

[8]

Bian Z, Gong Y, Huang T, Lee CZW, Bian L, Bai Z, Shi H, Zeng Y, Liu C, He J, Zhou J, Li X, Li Z, Ni Y, Ma C, Cui L, Zhang R, Chan JKY, Ng LG, Lan Y, et al.. Deciphering human macrophage development at single-cell resolution. Nature, 2020, 582: 571-576

[9]

Breda L, Motta I, Lourenco S, Gemmo C, Deng W, Rupon JW, Abdulmalik OY, Manwani D, Blobel GA, Rivella S. Forced chromatin looping raises fetal hemoglobin in adult sickle cells to higher levels than pharmacologic inducers. Blood, 2016, 128: 1139-1143

[10]

Cai Y, Xiong M, Xin Z, Liu C, Ren J, Yang X, Lei J, Li W, Liu F, Chu Q, Zhang Y, Yin J, Ye Y, Liu D, Fan Y, Sun S, Jing Y, Zhao Q, Zhao L, Che S, et al.. Decoding aging-dependent regenerative decline across tissues at single-cell resolution. Cell Stem Cell, 2023, 30: 1674-1691

[11]

Chambers JM. S, R, and Data Science. R J, 2020, 12: 462-476

[12]

Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. Paper presented at the Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA,

[13]

Chen Y, Xu X, Chen Z, Chen L, Jiang Y, Mao Z (2024) Circadian factors CLOCK and BMAL1 promote nonhomologous end joining and antagonize cellular senescence. Life Med 3:lnae006

[14]

Cranenburg EC, Koos R, Schurgers LJ, Magdeleyns EJ, Schoonbrood TH, Landewé RB, Brandenburg VM, Bekers O, Vermeer C. Characterisation and potential diagnostic value of circulating matrix Gla protein (MGP) species. Thromb Haemost, 2010, 104: 811-822

[15]

De Domenico I, Ward DM, Kaplan J. Serum ferritin regulates blood vessel formation: a role beyond iron storage. Proc Natl Acad Sci USA, 2009, 106: 1683-1684

[16]

Ector C, Schmal C, Didier J, De Landtsheer S, Finger AM, Muller-Marquardt F, Schulte JH, Sauter T, Keilholz U, Herzel H, Kramer A, Granada AE (2024) Time-of-day effects of cancer drugs revealed by high-throughput deep phenotyping. Nat Commun 15:7205

[17]

Fornberg B, Zuev J. The runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput Math Appl, 2007, 54: 379-398

[18]

Geng L, Zhang B, Liu H, Wang S, Cai Y, Yang K, Zou Z, Jiang X, Liu Z, Li W, Wu Z, Liu X, Chu Q, Liu GH, Qu J, Zhang W (2023) A comparative study of metformin and nicotinamide riboside in alleviating tissue aging in rats. Life Med 2:lnac045

[19]

Hao Y, Hao S, Andersen-Nissen E, Mauck WM3rd, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, Hoffman P, Stoeckius M, Papalexi E, Mimitou EP, Jain J, Srivastava A, Stuart T, Fleming LM, Yeung B, Rogers AJ, et al.. Integrated analysis of multimodal single-cell data. Cell, 2021, 184: 3573-3587

[20]

Hastie TJ. Generalized additive models. Statistical models in S, 2017, New York, Routledge249307

[21]

Jiang W, Sun W, Peng Y, Xu H, Fan H, Jin X, Xiao Y, Wang Y, Yang P, Shu W, Li J (2024) Single-cell RNA sequencing reveals the intercellular crosstalk and the regulatory landscape of stromal cells during the whole life of the mouse ovary. Life Med 3:lnae041

[22]

Kim IH, Kim N, Kim S, Toda K, Catavero CM, Courtland JL, Yin HH, Soderling SH. Dysregulation of the synaptic cytoskeleton in the PFC drives neural circuit pathology, leading to social dysfunction. Cell Rep, 2020, 32 107965

[23]

Kubiak JZ, Kloc M. Elusive role of TCTP protein and mRNA in cell cycle and cytoskeleton regulation. Results Probl Cell Differ, 2017, 64: 217-225

[24]

Kumar L, Futschik ME. Mfuzz: a software package for soft clustering of microarray data. Bioinformation, 2007, 2: 5-7

[25]

Lee Y, Song MJ, Park JH, Shin MH, Kim MK, Hwang D, Lee DH, Chung JH. Histone deacetylase 4 reverses cellular senescence via DDIT4 in dermal fibroblasts. Aging, 2022, 14: 4653-4672

[26]

Lei J, Xin Z, Liu N, Ning T, Jing Y, Qiao Y, He Z, Jiang M, Yang Y, Zhang Z, Zhao L, Li J, Lv D, Yan Y, Zhang H, Xiao L, Zhang B, Huang H, Sun S, Zheng F, et al.. Senescence-resistant human mesenchymal progenitor cells counter aging in primates. Cell, 2025, 188: 1-23

[27]

Li H, Wei X, Zhou L, Zhang W, Wang C, Guo Y, Li D, Chen J, Liu T, Zhang Y, Ma S, Wang C, Tan F, Xu J, Liu Y, Yuan Y, Chen L, Wang Q, Qu J, Shen Y, et al.. Dynamic cell transition and immune response landscapes of axolotl limb regeneration revealed by single-cell analysis. Protein Cell, 2021, 12: 57-66

[28]

Liang C, Liu Z, Song M, Li W, Wu Z, Wang Z, Wang Q, Wang S, Yan K, Sun L, Hishida T, Cai Y, Belmonte JCI, Guillen P, Chan P, Zhou Q, Zhang W, Qu J, Liu GH (2021) Stabilization of heterochromatin by CLOCK promotes stem cell rejuvenation and cartilage regeneration. Cell Res 31:187–205

[29]

Liu F, Lu Y, Wang X, Sun S, Pan H, Wang M, Wang Z, Zhang W, Ma S, Sun G, Chu Q, Wang S, Qu J, Liu GH. Identification of FOXO1 as a geroprotector in human synovium through single-nucleus transcriptomic profiling. Protein Cell, 2024, 15: 441-459

[30]

Ma S, Sun S, Geng L, Song M, Wang W, Ye Y, Ji Q, Zou Z, Wang S, He X, Li W, Esteban CR, Long X, Guo G, Chan P, Zhou Q, Belmonte JCI, Zhang W, Qu J, Liu GH. Caloric restriction reprograms the single-cell transcriptional landscape of rattus norvegicus aging. Cell, 2020, 180: 984-1001

[31]

Mayr JA, Feichtinger RG, Tort F, Ribes A, Sperl W. Lipoic acid biosynthesis defects. J Inherited Metab Dis, 2014, 37: 553-563

[32]

Michna A, Braselmann H, Selmansberger M, Dietz A, Hess J, Gomolka M, Hornhardt S, Blüthgen N, Zitzelsberger H, Unger K. Natural cubic spline regression modeling followed by dynamic network reconstruction for the identification of radiation-sensitivity gene association networks from time-course transcriptome data. PLoS ONE, 2016, 11 e0160791

[33]

Mortimer T, Smith JG, Munoz-Canoves P, Benitah SA (2025) Circadian clock communication during homeostasis and ageing. Nat Rev Mol Cell Biol 26:314–331

[34]

Nueda MJ, Tarazona S, Conesa A. Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series. Bioinformatics, 2014, 30: 2598-2602

[35]

Oh VS, Li RW. Temporal dynamic methods for bulk RNA-seq time series data. Genes, 2021, 12: 352

[36]

Pan X, Zhang Z, Liu C, Zhao M, Wang X, Zhai J, Wang C, Song G. Circulating levels of DDIT4 and mTOR, and contributions of BMI, inflammation and insulin sensitivity in hyperlipidemia. Exp Ther Med, 2022, 24: 1-8

[37]

Rhodes JM, Simons M. The extracellular matrix and blood vessel formation: not just a scaffold. J Cell Mol Med, 2007, 11: 176-205

[38]

Sahraeian SME, Mohiyuddin M, Sebra R, Tilgner H, Afshar PT, Au KF, Bani Asadi N, Gerstein MB, Wong WH, Snyder MP, Schadt E, Lam HYK. Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis. Nat Commun, 2017, 8: 59

[39]

Sanavia T, Finotello F, Di Camillo B. FunPat: function-based pattern analysis on RNA-seq time series data. BMC Genomics, 2015, 16: 1-13

[40]

Shao X, Lu X, Liao J, Chen H, Fan X. New avenues for systematically inferring cell-cell communication: through single-cell transcriptomics data. Protein Cell, 2020, 11: 866-880

[41]

Shore D, Albert B. Ribosome biogenesis and the cellular energy economy. Curr Biol, 2022, 32: R611-R617

[42]

Sklavenitis-Pistofidis R, Getz G, Ghobrial I. Single-cell RNA sequencing: one step closer to the clinic. Nat Med, 2021, 27: 375-376

[43]

Smith LK, He Y, Park JS, Bieri G, Snethlage CE, Lin K, Gontier G, Wabl R, Plambeck KE, Udeochu J, Wheatley EG, Bouchard J, Eggel A, Narasimha R, Grant JL, Luo J, Wyss-Coray T, Villeda SA. β2-microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis. Nat Med, 2015, 21: 932-937

[44]

Spies D, Ciaudo C. Dynamics in transcriptomics: advancements in RNA-seq time course and downstream analysis. Comput Struct Biotechnol J, 2015, 13: 469-477

[45]

Spies D, Renz PF, Beyer TA, Ciaudo C. Comparative analysis of differential gene expression tools for RNA sequencing time course data. Brief Bioinform, 2019, 20: 288-298

[46]

Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. Nat Rev Genet, 2019, 20: 631-656

[47]

Su H, Na N, Zhang X, Zhao Y. The biological function and significance of CD74 in immune diseases. Inflamm Res, 2017, 66: 209-216

[48]

Sun X, Dalpiaz D, Wu D, Liu JS, Zhong W, Ma P. Statistical inference for time course RNA-Seq data using a negative binomial mixed-effect model. BMC Bioinformatics, 2016, 17: 324

[49]

Sun G, Zheng Y, Fu X, Zhang W, Ren J, Ma S, Sun S, He X, Wang Q, Ji Z, Cheng F, Yan K, Liu Z, Belmonte JCI, Qu J, Wang S, Chai R, Liu GH. Single-cell transcriptomic atlas of mouse cochlear aging. Protein & cell, 2023, 14: 180-201

[50]

Sweatt A, Sane DC, Hutson SM, Wallin R. Matrix Gla protein (MGP) and bone morphogenetic protein-2 in aortic calcified lesions of aging rats. J Thromb Haemost, 2003, 1: 178-185

[51]

Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, Lao K, Surani MA. mRNA-seq whole-transcriptome analysis of a single cell. Nat Methods, 2009, 6: 377-382

[52]

The-Tabula-Muris-Consortium. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature, 2020, 583: 590-595

[53]

Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol, 2014, 32: 381-386

[54]

Usami Y, Wu Y, Göttlinger HG. SERINC3 and SERINC5 restrict HIV-1 infectivity and are counteracted by Nef. Nature, 2015, 526: 218-223

[55]

Wang Y, Zhao Y, Zhao Z, Li D, Nie H, Sun Y, Feng X, Zhang T, Ma Y, Nie J, Cai G, Chen X, Zuo W. Single-cell RNA-Seq analysis identified kidney progenitor cells from human urine. Protein Cell, 2021, 12: 305-312

[56]

Wang D, Wang X, Ba H, Ren J, Wang Z, Sun HX, Chen L, Liu C, Wang Y, Li J, Liu L, Liu T, Yang YP, Liu GH, Gu Y, Li C (2023) Chimeric blood vessels sustained development of the xenogeneic antler: a unique model for xenogeneic organ generation. Life Med 2:lnac021

[57]

Wei X, Fu S, Li H, Liu Y, Wang S, Feng W, Yang Y, Liu X, Zeng YY, Cheng M, Lai Y, Qiu X, Wu L, Zhang N, Jiang Y, Xu J, Su X, Peng C, Han L, Lou WP, et al.. Single-cell Stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration. Science, 2022, 377: eabp9444

[58]

Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Bio, 2018, 19: 1-5

[59]

Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S, Bo X, Yu G. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation, 2021, 2: 100141

[60]

Yang Y, Lu X, Liu N, Ma S, Zhang H, Zhang Z, Yang K, Jiang M, Zheng Z, Qiao Y, Hu Q, Huang Y, Zhang Y, Xiong M, Liu L, Jiang X, Reddy P, Dong X, Xu F, Wang Q, et al.. Metformin decelerates aging clock in male monkeys. Cell, 2024, 187: 6358-6378.e29

[61]

Yee TW. Vector generalized linear and additive models: with an implementation in R, 2015, New York, Springer 10

[62]

Yee TW, Wild CJ. Vector generalized additive models. J R Statist Soc B, 1996, 58: 481-493

[63]

Zhang H, Li J, Ren J, Sun S, Ma S, Zhang W, Yu Y, Cai Y, Yan K, Li W, Hu B, Chan P, Zhao GG, Belmonte JCI, Zhou Q, Qu J, Wang S, Liu GH. Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell, 2021, 12: 695-716

[64]

Zhang B, Yan H, Liu X, Sun L, Ma S, Wang S, Qu J, Liu G-H, Zhang W. SenoIndex: S100A8/S100A9 as a novel aging biomarker. Life Med, 2023, 2: lnad022

[65]

Zhao Q, Zheng Y, Zhao D, Zhao L, Geng L, Ma S, Cai Y, Liu C, Yan Y, Belmonte JCI, Wang S, Zhang W, Liu GH, Qu J. Single-cell profiling reveals a potent role of quercetin in promoting hair regeneration. Protein & cell, 2023, 14: 398-415

RIGHTS & PERMISSIONS

Ocean University of China

PDF

12

Accesses

0

Citation

Detail

Sections
Recommended

/