Spatial environmental heterogeneity of ocean currents affects pelagic ciliate community structure, assembly, and co-occurrence network complexity in the Scotia Sea, Antarctic

Tianjing Shi , Furong Cao , Wangxinze Shu , Yurou Jiang , Eun Jin Yang , Qian Liu , Mingjian Liu , Yong Jiang

Marine Life Science & Technology ›› : 1 -22.

PDF
Marine Life Science & Technology ›› :1 -22. DOI: 10.1007/s42995-025-00308-7
Research Paper
research-article

Spatial environmental heterogeneity of ocean currents affects pelagic ciliate community structure, assembly, and co-occurrence network complexity in the Scotia Sea, Antarctic

Author information +
History +
PDF

Abstract

The complex current systems of the Southern Ocean play a critical role in shaping the heterogeneity and distinctiveness of Antarctic habitats. Nonetheless, how Antarctic water masses influence ciliates, one of the most common groups of protozoa in polar regions, remains largely unknown. The present study investigated how the ciliate communities are affected by complex Southern Ocean currents by analyzing the diversity distributions, community assembly mechanisms, and co-occurrence networks of ciliates across three distinct water masses in the Scotia Sea. The findings reveal that the hydrography of the Scotia Sea significantly affects the spatial patterns of planktonic ciliates, primarily through the combination of temperature, salinity, and depth. In contract to surface waters (Antarctic Surface Water and Antarctic Circumpolar Current), ciliates inhabiting deep waters (Circumpolar Deep Water) exhibit stronger and more direct correlations with the environment parameters, alongside greater network stability. Community assembly in surface and deep-water masses is governed by stochastic and deterministic processes, respectively. Compared to other Antarctic regions documented in previous studies, the Scotia Sea demonstrated the lowest alpha diversity indices for ciliates while harboring the highest number of endemic species. A detailed re-evaluation of Antarctic ciliate community structure in the Antarctic from prior research offers valuable insights into how dynamic ocean currents shape the ecological dynamics of ciliate communities, thus providing a broader understanding of the environmental changes impacting polar marine ecosystems.

Keywords

Ciliated protists / Co-occurrence network / Microbial community assembly / Polar water masses / Southern Ocean

Cite this article

Download citation ▾
Tianjing Shi, Furong Cao, Wangxinze Shu, Yurou Jiang, Eun Jin Yang, Qian Liu, Mingjian Liu, Yong Jiang. Spatial environmental heterogeneity of ocean currents affects pelagic ciliate community structure, assembly, and co-occurrence network complexity in the Scotia Sea, Antarctic. Marine Life Science & Technology 1-22 DOI:10.1007/s42995-025-00308-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdullah AM, Wang W, Jin L, Chen H, Xue Y, Jeppesen E, Majaneva M, Xu H, Yang J. Planktonic ciliate community driven by environmental variables and cyanobacterial blooms: a 9-year study in two subtropical reservoirs. Sci Total Environ, 2023, 858: 159866.

[2]

Agatha S. Global diversity of aloricate Oligotrichea (Protista, Ciliophora, Spirotricha) in marine and brackish sea water. PLoS ONE, 2011, 6. e22466

[3]

Agbangba CE, Aide ES, Honfo H, Kakai RG. On the use of post-hoc tests in environmental and biological sciences: a critical review. Heliyon, 2024, 10. e25131

[4]

Alder V, Boltovskoy D. The ecology of larger microzooplankton in the Weddell-Scotia confluence area: horizontal and vertical distribution patterns. J Mar Res, 1993, 51: 323-344.

[5]

Amos AF. A decade of oceanographic variability in summertime near Elephant Island, Antarctica. J Geophys Res Oceans, 2001, 106: 22401-22423.

[6]

Anderson MJ, Gorley RN, Clarke KS, Anderson MS, Gorley RN, Clarke KR, Andersom M (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth, MA

[7]

Arrigo KR, Alderkamp A-C. Shedding dynamic light on Fe limitation (DynaLiFe). Deep Sea Res Part II Top Stud Oceanogr, 2012, 71–76: 1-4.

[8]

Ax P, Ax R. Experimentelle Untersuchungen über die Salzgehaltstoleranz von Ciliaten aus dem Brackwasser und Süsswasser. Biol Zentralbl, 1960, 79: 7-31

[9]

Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nat Rev Microbiol, 2007, 5: 782-791.

[10]

Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser, 1983, 10: 257-326.

[11]

Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In: Proceedings of the international AAAI conference on web and social media, vol 3, pp 361–362

[12]

Bock C, Jensen M, Forster D, Marks S, Nuy J, Psenner R, Beisser D, Boenigk J. Factors shaping community patterns of protists and bacteria on a European scale. Environ Microbiol, 2020, 22: 2243-2260.

[13]

Boltovskoy D, Alder VA. Microzooplankton and tintinnid species-specific assemblage structures: patterns of distribution and year-to-year variations in the Weddell Sea (Antarctica). J Plankton Res, 1992, 14: 1405-1423.

[14]

Boltovskoy D, Alder VA, Spinelli F. Summer Weddell Sea microplankton: assemblage structure, distribution and abundance, with special emphasis on the Tintinnina. Polar Biol, 1989, 9: 447-456.

[15]

Burckle LH, Mortlock R. Sea-ice extent in the Southern Ocean during the Last Glacial Maximum: another approach to the problem. Ann Glaciol, 1998, 27: 302-304.

[16]

Cabral AF, Buosi PRB, Segóvia BT, Velho LFM, Bini LM. Taxonomic sufficiency in detecting hydrological changes and reproducing ordination patterns: a test using planktonic ciliates. Ecol Indic, 2017, 82: 227-232.

[17]

Calbet A, Saiz E. The ciliate-copepod link in marine ecosystems. Aquat Microb Ecol, 2005, 38: 157-167.

[18]

Caron DA, Hutchins DA. The effects of changing climate on microzooplankton grazing and community structure: drivers, predictions and knowledge gaps. J Plankton Res, 2013, 35: 235-252.

[19]

Carter L, Bostock-Lyman H, Bowen MFlorindo F, Siegert M, Santis LD, Naish T. Water masses, circulation and change in the modern Southern Ocean. Antarctic climate evolution, 20222AmsterdamElsevier165-197.

[20]

Chen W, Pan Y, Yu L, Yang J, Zhang W. Patterns and processes in marine microeukaryotic community biogeography from Xiamen coastal waters and intertidal sediments, southeast China. Front Microbiol, 2017, 8: 1912.

[21]

Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth, Massachusetts

[22]

Constable AJ, Melbourne-Thomas J, Corney SP, Arrigo KR, Barbraud C, Barnes DKA. et al.. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Glob Change Biol, 2014, 20: 3004-3025.

[23]

Coppellotti O. Description of Uronema marinum (Ciliophora, Scuticociliatida) from the Antarctica and observations on the nuclear events in conjugation. Polar Biol, 1990, 10: 365-371.

[24]

Cordone A, D’Errico G, Magliulo M, Bolinesi F, Selci M, Basili M, de Marco R, Saggiomo M, Rivaro P, Giovannelli D, Mangoni O. Bacterioplankton diversity and distribution in relation to phytoplankton community structure in the Ross Sea surface waters. Front Microbiol, 2022, 13. 722900

[25]

Cordone A, Selci M, Barosa B, Bastianoni A, Bastoni D, Bolinesi F, Capuozzo R, Cascone M. et al.. Surface bacterioplankton community structure crossing the Antarctic Circumpolar Current fronts. Microorganisms, 2023, 11: 702.

[26]

Delaney MP. Effects of temperature and turbulence on the predator-prey interactions between a heterotrophic flagellate and a marine bacterium. Microb Ecol, 2003, 45: 218-225.

[27]

Dolan JR. Phosphorus and ammonia excretion by planktonic protists. Mar Geol, 1997, 139: 109-122.

[28]

Dolan JR, Ritchie ME, Ras J. The “neutral” community structure of planktonic herbivores, tintinnid ciliates of the microzooplankton, across the SE Tropical Pacific Ocean. Biogeosciences, 2007, 4: 297-310.

[29]

Dolan JR, Yang EJ, Kim TW, Kang S-H. Microzooplankton in a warming Arctic: a comparison of tintinnids and radiolarians from summer 2011 and 2012 in the Chukchi Sea. Acta Protozool, 2014, 53: 101-113

[30]

Dolan JR, Yang EJ, Kang S-H, Rhee TS. Declines in both redundant and trace species characterize the latitudinal diversity gradient in tintinnid ciliates. ISME J, 2016, 10: 2174-2183.

[31]

Ducklow HW, Stukel MR, Eveleth R, Doney SC, Jickells T, Schofield O, Baker AR, Brindle J, Chance R, Cassar N. Spring–summer net community production, new production, particle export and related water column biogeochemical processes in the marginal sea ice zone of the Western Antarctic Peninsula 2012–2014. Phil Trans R Soc A, 2018, 376: 20170177.

[32]

Earland KA, Montagnes DJS. Description of a new marine species of Askenasia Blochmann, 1895 (Ciliophora, Haptoria), with notes on its ecology. J Eukaryot Microbiol, 2002, 49: 423-427.

[33]

Edwards ES, Burkill PH. Abundance, biomass and distribution of microzooplankton in the Irish Sea. J Plankton Res, 1995, 17: 771-782.

[34]

Feng Y, Li D, Zhao J, Han Z, Pan J, Fan G, Zhang H, Hu J, Zhang H, Wu J, Zhu Q. Environmental drivers of phytoplankton crops and taxonomic composition in northeastern Antarctic Peninsula adjacent sea area. Acta Oceanol Sin, 2022, 41: 99-117.

[35]

Freilich MA, Wieters E, Broitman BR, Marquet PA, Navarrete SA. Species co-occurrence networks: can they reveal trophic and non-trophic interactions in ecological communities?. Ecology, 2018, 99: 690-699.

[36]

Fuhrman J. Microbial community structure and its functional implications. Nature, 2009, 459: 193-199.

[37]

Garabato ACN, Polzin KL, King BA, Heywood KJ, Visbeck M. Widespread intense turbulent mixing in the Southern Ocean. Science, 2004, 303: 210-213.

[38]

Garcia-Cuetos L, Moestrup Ø, Hansen PJ. Studies on the genus Mesodinium II. Ultrastructural and molecular investigations of five marine species help clarifying the taxonomy. J Eukaryot Microbiol, 2012, 59: 374-400.

[39]

Garrison DL, Buck KR. Protozooplankton in the Weddell Sea, Antarctica: abundance and distribution in the ice-edge zone. Polar Biol, 1989, 9: 341-351.

[40]

Garzio LM, Steinberg DK. Microzooplankton community composition along the Western Antarctic Peninsula. Deep Sea Res Part Oceanogr Res Pap, 2013, 77: 36-49.

[41]

Gimmler A, Korn R, de Vargas C, Audic S, Stoeck T. The Tara Oceans voyage reveals global diversity and distribution patterns of marine planktonic ciliates. Sci Rep, 2016, 6: 33555.

[42]

Gong J, Song W, Warren A. Periphytic ciliate colonization: annual cycle and responses to environmental conditions. Aquat Microb Ecol, 2005, 39: 159-170.

[43]

Gordon AL, Mensch M, Dong Z, Smethie Jr. WM, de Bettencourt J. Deep and bottom water of the Bransfield Strait eastern and central basins. J Geophys Res Oceans, 2000, 105: 11337-11346.

[44]

Gotelli NJ. Null model analysis of species co-occurrence patterns. Ecology, 2000, 81: 2606-2621.

[45]

Gu B, Wang Y, Xu J, Jiao N, Xu D. Water mass shapes the distribution patterns of planktonic ciliates (Alveolata, Ciliophora) in the subtropical Pearl River Estuary. Mar Pollut Bull, 2021, 167. 112341

[46]

Heinbokel JF, Coats DW. Patterns of tintinnine abundance and reproduction near the edge of seasonal pack-ice in the Weddell Sea, November 1983. Mar Ecol Prog Ser, 1986, 33: 71-80.

[47]

Hu J, Amor DR, Barbier M, Bunin G, Gore J. Emergent phases of ecological diversity and dynamics mapped in microcosms. Science, 2022, 378: 85-89.

[48]

Huang H, Yang J, Huang S, Gu B, Wang Y, Wang L, Jiao N, Xu D. Spatial distribution of planktonic ciliates in the western Pacific Ocean: along the transect from Shenzhen (China) to Pohnpei (Micronesia). Mar Life Sci Technol, 2020, 3: 103-115.

[49]

Huelsmann M, Ackermann M. Community instability in the microbial world. Science, 2022, 378: 29-30.

[50]

Hwang J-S, Li H, Xu Z, Zhang W, Wang S, Zhang G, Xiao T. Boreal tintinnid assemblage in the northwest Pacific and its connection with the Japan Sea insummer 2014. PLoS ONE, 2016, 11. e0153379

[51]

Jakobsen HH, Montagnes DJS. A redescription of Balanion comatum Wulff, 1919 (Prorodontida, Ciliophora), with notes on its cultivation and behaviour. J Eukaryot Microbiol, 1999, 46: 198-205.

[52]

Jasmine P, Muraleedharan KR, Madhu NV, Asha Devi CR, Alagarsamy R, Achuthankutty CT, Jayan Z, Sanjeevan VN, Sahayak S. Hydrographic and productivity characteristics along 45°E longitude in the southwestern Indian Ocean and Southern Ocean during austral summer 2004. Mar Ecol Prog Ser, 2009, 389: 97-116.

[53]

Jiang Y, Xu H, Hu X, Zhu M, Al-Rasheid KAS, Warren A. An approach to analyzing spatial patterns of planktonic ciliate communities for monitoring water quality in Jiaozhou Bay, northern China. Mar Pollut Bull, 2011, 62: 227-235.

[54]

Jiang Y, Yang EJ, Kim SY, Kim Y-N, Lee S. Spatial patterns in pelagic ciliate community responses to various habitats in the Amundsen Sea (Antarctica). Prog Oceanogr, 2014, 128: 49-59.

[55]

Jiang Y, Yang EJ, Min J-O, Kim TW, Kang S-H. Vertical variation of pelagic ciliate communities in the western Arctic Ocean. Deep Sea Res Part II Top Stud Oceanogr, 2015, 120: 103-113.

[56]

Jiang Y, Liu Q, Yang EJ, Wang M, Kim TW, Cho K-H, Lee S. Pelagic ciliate communities within the Amundsen Sea polynya and adjacent sea ice zone, Antarctica. Deep Sea Res Part II Top Stud Oceanogr, 2016, 123: 69-77.

[57]

Kamiyama TOhtsuka S, Suzaki T, Horiguchi T, Suzuki N, Not F. Planktonic ciliates: diverse ecological function in seawater. Marine protists: diversity and dynamics, 2015TokyoSpringer277-309.

[58]

Klaas C. Microprotozooplankton distribution and their potential grazing impact in the antarctic circumpolar current. Deep Sea Res Part II Top Stud Oceanogr, 1997, 44: 375-393.

[59]

Krainer KH, Foissner W. Revision of the genus Askenasia Blochmann, 1895, with proposal of two new species, and description of Rhabdoaskenasia minima n. g., n. sp. (Ciliophora, Cyclotrichida). J Protozool Res, 1990, 37: 414-427.

[60]

Kulaš A, Gulin V, Kepčija RM, Žutinić P, Perić MS, Orlić S, Kajan K, Stoeck T, Lentendu G, Čanjevac I, Martinić I, Udovič MG. Ciliates (Alveolata, Ciliophora) as bioindicators of environmental pressure: a karstic river case. Ecol Indic, 2021, 124: 10743.

[61]

Labat J-P, Gasparini S, Mousseau L, Prieur L, Boutoute M, Mayzaud P. Mesoscale distribution of zooplankton biomass in the northeast Atlantic Ocean determined with an Optical Plankton Counter: relationships with environmental structures. Deep Sea Res Part Oceanogr Res Pap, 2009, 56: 1742-1756.

[62]

Lebourges-Dhaussy A, Coetzee J, Hutchings L, Roudaut G, Nieuwenhuys C. Zooplankton spatial distribution along the South African coast studied by multifrequency acoustics, and its relationships with environmental parameters and anchovy distribution. ICES J Mar Sci, 2009, 66: 1055-1062.

[63]

Li H, Liang C, Yang G, Wang C, Zhang W. Spatial distribution of planktonic ciliates in waters around the northeastern Antarctic Peninsula and the South Orkney Plateau. Polar Biol, 2023, 46: 623-637.

[64]

Liang C, Li H, Dong Y, Zhao Y, Tao Z, Li C, Zhang W, Gregori G. Planktonic ciliates in different water masses in open waters near Prydz Bay (East Antarctica) during austral summer, with an emphasis on tintinnid assemblages. Polar Biol, 2018, 41: 2355-2371.

[65]

Lin L, Xiong J, Liu L, Wang F, Cao W, Xu W. Microbial interactions strengthen deterministic processes during community assembly in a subtropical estuary. Sci Total Environ, 2024, 906. 167499

[66]

Liu Q, Jiang Y. Application of microbial network analysis to discriminate environmental heterogeneity in Fildes Peninsula, Antarctica. Mar Pollut Bull, 2020, 156. 111244

[67]

Liu W, Yi Z, Li J, Warren A, Al-Farraj SA, Lin X. Taxonomy, morphology and phylogeny of three new oligotrich ciliates (Protozoa, Ciliophora, Oligotrichia) from southern China. Int J Stst Evol Micr, 2013, 63: 4805-4817.

[68]

Liu W, McManus GB, Lin X, Huang H, Zhang W, Tan Y. Distribution patterns of ciliate diversity in the South China Sea. Front Microbiol, 2021, 12. 689688

[69]

Liu J, Li D-W, He X, Liu R, Cheng H, Su C, Chen M, Wang Y, Zhao Z, Xu H, Cheng Z, Wang Z, Pedentchouk N, Lea-Smith DJ, Todd JD, Liu X, Zhao M, Zhang X-H. A unique subseafloor microbiosphere in the Mariana Trench driven by episodic sedimentation. Mar Life Sci Technol, 2024, 6: 168-181.

[70]

Lu Z, Liu D, Liao J, Wang J, Li H, Zhang J. Characterizing spatial distribution of chlorophyll a in the Southern Ocean on a circumpolar cruise in summer. Sci Total Environ, 2020, 708. 134833

[71]

Lucas CH, Jones DOB, Hollyhead CJ, Condon RH, Duarte CM, Graham WM, Robinson KL, Pitt KA, Schildhauer M, Regetz J. Gelatinous zooplankton biomass in the global oceans: geographic variation and environmental drivers. Glob Ecol Biogeogr, 2014, 23: 701-714.

[72]

Luo X, Hu X, Suzuki T. Microscopic investigation of three species of Diophrys (Ciliophora, Euplotida, Uronychiidae) from Japan, including Diophrys peculiaris nov. spec. Eur J Protistol, 2014, 50: 496-508.

[73]

Lynn DHThe ciliated protozoa: characterization, classification, and guide to the literature, 20083DordrechtSpringer

[74]

Meunier A (1910) Microplankton des Mers de Barents et de Kara. Campagne arctique de 1907. Imprimerie scientifique Charles Bulens, Bruxelles

[75]

Mo Y, Zhang W, Yang J, Lin Y, Yu Z, Lin S. Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes. ISME J, 2018, 12: 2198-2210.

[76]

Montagnes DJS, Humphrey E. A description of occurrence and morphology of a new species of red-water forming Strombidium (Spirotrichea, Oligotrichia). J Eukaryot Microbiol, 1998, 45: 502-506.

[77]

Montagnes DJS, Lynn DH, Roff JC, Taylor WD. The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic role. Mar Biol, 1988, 99: 21-30.

[78]

Morley S, Abele D, Barnes D, Cárdenas C, Cotte C, Gutt J, Henley S, Höfer J, Hughes K, Martin S, Moffat C, Raphael M, Stammerjohn S, Suckling C, Tulloch V, Waller C, Constable A. Global drivers on Southern Ocean ecosystems: changing physical environments and anthropogenic pressures in an Earth system. Front Mar Sci, 2020, 7. 547188

[79]

Murphy EJ, Watkins JL, Trathan PN, Reid K, Meredith MP, Thorpe SE, Johnston NM, Clarke A, Tarling GA, Collins MA, Forcada J, Shreeve RS, Atkinson A, Korb R, Whitehouse MJ, Ward P, Rodhouse PG, Enderlein P, Hirst AG, Martin AR. et al.. Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centred food web. Philos Trans R Soc B Biol Sci, 2006, 362: 113-148.

[80]

Nguyen D, Masasa M, Ovadia O, Guttman L. Ecological insights into the resilience of marine plastisphere throughout a storm disturbance. Sci Total Environ, 2023, 858. 159775

[81]

Ning D, Wang Y, Fan Y, Wang J, Van Nostrand JD, Wu L, Zhang P, Curtis DJ, Tian R, Lui L, Hazen TC, Alm EJ, Fields MW, Poole F, Adams MWW, Chakraborty R, Stahl DA, Adams PD, Arkin AP, He Z. et al.. Environmental stress mediates groundwater microbial community assembly. Nat Microbiol, 2024, 9: 490-501.

[82]

Okoye K, Hosseini S (2024) Correlation tests in R: Pearson Cor, Kendall’s Tau, and Spearman’s Rho. In: R programming. Springer, Singapore

[83]

Pace ML, Orcutt JD. The relative importance of protozoans, rotifers, and crustaceans in a freshwater zooplankton community. Limnol Oceanogr, 1981, 26. 822430

[84]

Patterson SL, Sievers HA. The Weddell–Scotia confluence. J Phys Oceanogr, 1980, 10: 1584-1610.

[85]

Peng Z, Wang P, Luo X, Deng Q, Yang Z, Wu J, Xian W, Yan W, Mou X, Yuan Y, Li W, Li J. Community structure and carbon metabolism functions of bacterioplankton in the Guangdong coastal zone. Mar Life Sci Technol, 2024, 6: 547-561.

[86]

Prend CJ, Gille ST, Talley LD, Mitchell BG, Rosso I, Mazloff MR. Physical drivers of phytoplankton bloom initiation in the Southern Ocean’s Scotia Sea. J Geophys Res Oceans, 2019, 124: 5811-5826.

[87]

Rakshit D, Sahu G, Mohanty AK, Satpathy KK, Jonathan MP, Murugan K, Sarkar SK. Bioindicator role of tintinnid (Protozoa: Ciliophora) for water quality monitoring in Kalpakkam, Tamil Nadu, south east coast of India. Mar Pollut Bull, 2017, 114: 134-143.

[88]

Ritchie RJ. Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica, 2008, 46: 115-126.

[89]

Romano F, Pitta P, John U. Community dynamics and co-occurrence relationships of pelagic ciliates and their potential prey at a coastal and an offshore station in the ultra-oligotrophic Eastern Mediterranean Sea. Front Genet, 2023, 14: 1219085.

[90]

Rottjers L, Faust K. From hairballs to hypotheses-biological insights from microbial networks. FEMS Microbiol Rev, 2018, 42: 761-780.

[91]

Santoferrara L, Alder V. Abundance trends and ecology of planktonic ciliates of the south-western Atlantic (35–63°S): a comparison between neritic and oceanic environments. J Plankton Res, 2009, 31: 837-851.

[92]

Santoferrara L, Alder V. Abundance and diversity of tintinnids (planktonic ciliates) under contrasting levels of productivity in the Argentine Shelf and Drake Passage. J Sea Res, 2012, 71: 25-30.

[93]

Segata N, Boernigen D, Tickle TL, Morgan XC, Garrett WS, Huttenhower C. Computational meta'omics for microbial community studies. Genome Biol, 2013, 9: 666

[94]

Shen C, Gunina A, Luo Y, Wang J, He J-Z, Kuzyakov Y, Hemp A, Classen AT, Ge Y. Contrasting patterns and drivers of soil bacterial and fungal diversity across a mountain gradient. Environ Microbiol, 2020, 22: 3287-3301.

[95]

Sherr EB, Sherr BF. High rates of consumption of bacteria by pelagic ciliates. Nature, 1987, 325: 710-711.

[96]

Sherr EB, Sherr BFKemp PF, Sherr BF, Sherr EB, Cole JJ. Preservation and storage of samples for enumeration of heterotrophic protists. Handbook of methods in aquatic microbial ecology, 19931Boca RatonLewis Publishers207-212

[97]

Shu W, Zhang G, Li D, Wen Y, Zhang G, Sun J. Spatial and temporal changes in the assembly mechanism and co-occurrence network of the chromophytic phytoplankton communities in coastal ecosystems under anthropogenic influences. Sci Total Environ, 2023, 877. 162831

[98]

Smith WO, Nelson DM. Phytoplankton bloom produced by a receding ice edge in the Ross Sea: spatial coherence with the density field. Science, 1985, 227: 163-166.

[99]

Stoecker DK, Judith MC. Predation on Protozoa: its importance to zooplankton. J Plankton Res, 1990, 12: 891-908.

[100]

Stoecker DK, Sieracki MR, Verity PG, Michaels AE, Haugen E, Burkill PH, Edwards ES. Nanoplankton and protozoan microzooplankton during the JGOFS North Atlantic Bloom Experiment. J Mar Biol Assoc UK, 1994, 74: 427-443.

[101]

Stoecker DK, Gifford DJ, Putt M. Preservation of marine planktonic ciliates: losses and cell shrinkage during fixation. Mar Ecol Prog Ser, 1994, 110: 293-299.

[102]

Sun P, Huang L, Xu D, Warren A, Huang B, Wang Y, Wang L, Xiao W, Kong J. Integrated space-time dataset reveals high diversity and distinct community structure of ciliates in mesopelagic waters of the northern South China Sea. Front Microbiol, 2019, 10: 2178.

[103]

Suzuki T, Taniguchi A. Sinking rate of loricae of some common tintinnid ciliates. Fish Oceanogr, 2007, 4: 257-263.

[104]

Tamura M, Katz LA, McManus GB. Distribution and diversity of oligotrich and choreotrich ciliates across an environmental gradient in a large temperate estuary. Aquat Microb Ecol, 2011, 64: 51-67.

[105]

Toubiana D, Maruenda H. Guidelines for correlation coefficient threshold settings in metabolite correlation networks exemplified on a potato association panel. BMC Bioinform, 2021, 22: 116.

[106]

Trifoglio NL, Olguín Salinas HF, Alder VA (2023) Diatoms, tintinnids, and the protist community of the western Weddell Sea in summer: latitudinal distribution and biogeographic boundaries. Polar Biol 46:427–444

[107]

Trombetta T, Vidussi F, Roques C, Mas S, Scotti M, Mostajir B. Co-occurrence networks reveal the central role of temperature in structuring the plankton community of the Thau Lagoon. Sci Rep, 2021, 11: 17675.

[108]

Vellend M. Conceptual synthesis in community ecology. Q Rev Biol, 2010, 85: 183-206.

[109]

Vereshchaka A, Musaeva E, Lunina A. Biogeography of the Southern Ocean: environmental factors driving mesoplankton distribution South of Africa. PeerJ, 2021, 9. e11411

[110]

Vimercati L, Bueno de Mesquita CP, Johnson BW, Mineart D, DeForce E, Vimercati Molano Y, Ducklow H, Schmidt SK. Dynamic trophic shifts in bacterial and eukaryotic communities during the first 30 years of microbial succession following retreat of an Antarctic glacier. FEMS Microbiol Ecol, 2022, 98: 1-17.

[111]

Wang C, Wang X, Xu Z, Luo G, Chen C, Li H, Liu Y, Li J, He J, Chen H, Zhang W. Full-depth vertical distribution of planktonic ciliates (Ciliophora) and a novel bio-index for indicating habitat suitability of tintinnid in the Arctic Ocean. Mar Environ Res, 2023, 186. 105924

[112]

Wasik A, Mikolajczyk E. Annual cycle of tintinnids in Admiralty Bay with an emphasis on seasonal variability in Cymatocylis affinis/convallaria lorica morphology. J Plankton Res, 1994, 16: 1-8.

[113]

Wickham Hggplot2: elegant graphics for data analysis, 2016New YorkSpringer.

[114]

Wickham SA, Steinmair U, Kamennaya N. Ciliate distributions and forcing factors in the Amundsen and Bellingshausen Seas (Antarctic). Aquat Microb Ecol, 2011, 62: 215-230.

[115]

Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science, 2015, 347: 1257594.

[116]

Wu L, Jing Z, Riser S, Visbeck M. Seasonal and spatial variations of Southern Ocean diapycnal mixing from Argo profiling floats. Nat Geosci, 2011, 4: 363-366.

[117]

Wu S, Lembke-Jene L, Lamy F, Arz HW, Nowaczyk N, Xiao W, Zhang X, Hass HC, Titschack J, Zheng X, Liu J, Dumm L, Diekmann B, Nürnberg D, Tiedemann R, Kuhn G. Orbital- and millennial-scale Antarctic circumpolar current variability in Drake Passage over the past 140,000 years. Nat Commun, 2021, 12: 3948.

[118]

Xie Z, Yan K, Kong L, Gai Y, Jin HY, Wang Y, Chen F, Lin L, Lin Z, Xu H, Shao Z, Liu S, Wang D. Metabolic tuning of a stable microbial community in the surface oligotrophic Indian Ocean revealed by integrated meta-omics. Mar Life Sci Technol, 2022, 4: 277-290.

[119]

Xu D, Song W, Hu X. Notes on two marine ciliates from the Yellow Sea, China: Placus salinus and Strombidium apolatum (Protozoa, Ciliophora). J Ocean Univ, 2005, 4: 137-144.

[120]

Yager P, Sherrell R, Stammerjohn S, Alderkamp A-C, Schofield O, Abrahamsen P, Arrigo KR, Bertilsson S, Garay L, Guerrero R, Lowry KE, Moksnes P, Ndungo K, Post AF, Randall-Goodwin E, Riemann L, Severmann S, Thatje S, van Dijken GL, Wilson SE. ASPIRE: the amundsen sea polynya international research expedition. Oceanography, 2012, 25: 40-53.

[121]

Yang EJ, Hyun J-H, Kim D, Park J, Mang S-H, Shin HC, Lee S. Mesoscale distribution of protozooplankton communities and their herbivory in the western Scotia Sea of the Southern Ocean during the austral spring. J Exp Mar Biol Ecol, 2012, 428: 5-15.

[122]

Yang J, Huang S, Fan W, Warren A, Jiao N, Xu D. Spatial distribution patterns of planktonic ciliate communities in the East China Sea: potential indicators of water masses. Mar Pollut Bull, 2020, 156. 111253

[123]

Yang M, Zhao L, Yu X, Shu W, Cao F, Liu Q, Liu M, Wang J, Jiang Y. Microbial community structure and co-occurrence network stability in seawater and microplastic biofilms under prometryn pollution in marine ecosystems. Mar Pollut Bull, 2024, 199. 115960

[124]

Yu Y, Zhang W, Feng M, Zhao Y, Zhang C, Zhou F, Xiao T. Differences in the vertical distribution and response to freshwater discharge between aloricate ciliates and tintinnids in the East China Sea. J Mar Syst, 2016, 154: 103-109.

[125]

Yu X, Li X, Liu Q, Yang M, Wang X, Guan Z, Yang J, Liu M, Yang EJ, Jiang Y. Community assembly and co-occurrence network complexity of pelagic ciliates in response to environmental heterogeneity affected by sea ice melting in the Ross Sea, Antarctica. Sci Total Environ, 2022, 836. 155695

[126]

Yu X, Gao X, Shang L, Wang X, Jiao Y, Zhang X-H, Shi X. Spatial and temporal change determined co-occurrence networks stability and community assembly processes of epipelagic seawater microbial community in the Nordic Sea. Sci Total Environ, 2023, 859. 160321

[127]

Yuan MM, Guo X, Wu L, Zhang Y, Xiao N, Ning D, Shi Z, Zhou X, Wu L, Yang Y, Tiedje JM, Zhou J. Climate warming enhances microbial network complexity and stability. Nat Clim Change, 2021, 11: 343-U100.

[128]

Zhang W, Feng M, Yu N, Zhang C, Xiao TAn illustrated guide to contemporary tintinnids in the world, 2012BeijingScience Press

[129]

Zhang W, Yu Y, Xiao TIllustrated guide to marine planktonic aloricate oligotrich ciiates, 2015BeijingScience Press

[130]

Zhang C, Liu Q, Li X, Wang M, Liu X, Yang J, Xu J, Jiang Y. Spatial patterns and co-occurrence networks of microbial communities related to environmental heterogeneity in deep-sea surface sediments around Yap Trench, Western Pacific Ocean. Sci Total Environ, 2021, 759. 143799

[131]

Zhang M, Booge D, Yan J, Xu S, Liang C, Wu Y, Yang B, Wang J, Zhao J, Li D, Pan J, Park K. Abundant microzooplankton possibly cause ultrahigh seawater dimethylsulfide during Southern Ocean algal blooms. Prog Oceanogr, 2022, 202: 102744.

[132]

Zhao F, Filker S, Stoeck T, Xu K. Ciliate diversity and distribution patterns in the sediments of a seamount and adjacent abyssal plains in the tropical Western Pacific Ocean. BMC Microbiol, 2017, 17: 192.

RIGHTS & PERMISSIONS

Ocean University of China

PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

/