Molecular mechanism of the crosstalk between glucocorticoid receptor (GR) and hypoxia-inducible factor 3α (HIF-3α) pathways

Meina Zhang , Yang Guo , Xiaotong Diao , Mengqi Guo , Huiling Teng , Xiangnan Sun , Jingjing Zhuang , Chun Song , Xiangyang Xie , Dalei Wu

Marine Life Science & Technology ›› : 1 -13.

PDF
Marine Life Science & Technology ›› : 1 -13. DOI: 10.1007/s42995-025-00306-9
Research Paper

Molecular mechanism of the crosstalk between glucocorticoid receptor (GR) and hypoxia-inducible factor 3α (HIF-3α) pathways

Author information +
History +
PDF

Abstract

Glucocorticoids, crucial regulatory hormones involved in the stress response, significantly influence growth, development, and metabolism through activation of the glucocorticoid receptor (GR). Hypoxia-inducible factor 3 alpha (HIF-3α), the least characterized paralog among three HIF-α proteins, plays a role in adaptation to oxygen level changes and metabolic reprogramming. Despite the potential functional overlaps between GR and HIF-3α pathways in regulating metabolism, their crosstalk remains poorly understood. Here, we demonstrate a regulatory mechanism governing the crosstalk between these two transcription factor pathways. We found that upon ligand activation, GR binds to the intronic region of the HIF3A gene and upregulates its mRNA transcription. Additionally, HIF-3α and GR engage in protein–protein interactions through the oxygen-dependent degradation domain of HIF-3α and all major domains of GR (i.e. the N-terminal, DNA-binding, and ligand-binding domains). Furthermore, we discovered that this interaction results in reciprocal attenuation of the transcriptional activities of both GR and HIF-3α, causing a negative feedback loop upon HIF3A gene expression. The GR-HIF-3α interaction may offer a targetable pivot to modulate these two TF pathways, potentially providing a novel therapeutic avenue for related diseases.

Keywords

Glucocorticoids / Glucocorticoid receptor / HIF-3α / Protein–protein interaction / Transcriptional regulation / Biological Sciences / Biochemistry and Cell Biology / Genetics

Cite this article

Download citation ▾
Meina Zhang, Yang Guo, Xiaotong Diao, Mengqi Guo, Huiling Teng, Xiangnan Sun, Jingjing Zhuang, Chun Song, Xiangyang Xie, Dalei Wu. Molecular mechanism of the crosstalk between glucocorticoid receptor (GR) and hypoxia-inducible factor 3α (HIF-3α) pathways. Marine Life Science & Technology 1-13 DOI:10.1007/s42995-025-00306-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ChandraV, HuangP, PotluriN, WuD, KimY, RastinejadF. Multidomain integration in the structure of the HNF-4alpha nuclear receptor complex. Nature, 2013, 495: 394-398.

[2]

ChandraV, WuD, LiS, PotluriN, KimY, RastinejadF. The quaternary architecture of RARbeta-RXRalpha heterodimer facilitates domain-domain signal transmission. Nat Commun, 2017, 8: 868.

[3]

ChenJ, XuL, ZhangXQ, LiuX, ZhangZX, ZhuQM, LiuJY, IqbalMO, DingN, ShaoCL, WeiMY, GuYC. Discovery of a natural small-molecule AMP-activated kinase activator that alleviates nonalcoholic steatohepatitis. Mar Life Sci Technol, 2023, 5: 196-210.

[4]

CuomoF, CoppolaA, BottiC, MaioneC, ForteA, ScisciolaL, LiguoriG, CaiafaI, UrsiniMV, GalderisiU, CipollaroM, AltucciL, CobellisG. Pro-inflammatory cytokines activate hypoxia-inducible factor 3alpha via epigenetic changes in mesenchymal stromal/stem cells. Sci Rep, 2018, 8: 5842.

[5]

CuomoF, Dell'AversanaC, ChioccarelliT, PorrecaV, ManfrevolaF, PapulinoC, CarafaV, BenedettiR, AltucciL, CobellisG, CobellisG. HIF3A inhibition triggers browning of white adipocytes via metabolic rewiring. Front Cell Dev Biol, 2021, 9. 740203

[6]

DiaoX, YeF, ZhangM, RenX, TianX, LuJ, SunX, HouZ, ChenX, LiF, ZhuangJ, DingH, PengC, RastinejadF, LuoC, WuD. Identification of oleoylethanolamide as an endogenous ligand for HIF-3alpha. Nat Commun, 2022, 13: 2529.

[7]

DickKJ, NelsonCP, TsaprouniL, SandlingJK, AissiD, WahlS, MeduriE, MorangePE, GagnonF, GrallertH, WaldenbergerM, PetersA, ErdmannJ, HengstenbergC, CambienF, GoodallAH, OuwehandWH, SchunkertH, ThompsonJR, SpectorTD, et al. . DNA methylation and body-mass index: a genome-wide analysis. Lancet, 2014, 383: 1990-1998.

[8]

DuanC. Hypoxia-inducible factor 3 biology: complexities and emerging themes. Am J Physiol Cell Physiol, 2016, 310: C260-269.

[9]

FadelL, DacicM, FondaV, SokolskyBA, QuagliariniF, RogatskyI, UhlenhautNH. Modulating glucocorticoid receptor actions in physiology and pathology: insights from coregulators. Pharmacol Ther, 2023, 251. 108531

[10]

FengX, LiG, WuW, LyuH, WangJ, LiuC, ZhongC, ShiS, HeZ. Expansion and adaptive evolution of the WRKY transcription factor family in Avicennia mangrove trees. Mar Life Sci Technol, 2023, 5: 155-168.

[11]

GertzJ, SavicD, VarleyKE, PartridgeEC, SafiA, JainP, CooperGM, ReddyTE, CrawfordGE, MyersRM. Distinct properties of cell-type-specific and shared transcription factor binding sites. Mol Cell, 2013, 52: 25-36.

[12]

GuY, MoranSM, HogeneschJB, WartmanLD, BradfieldCA. Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr, 1998, 7: 205-213

[13]

HatanakaM, ShimbaS, SakaueM, KondoY, KagechikaH, KokameK, MiyataT, HaraS. Hypoxia-inducible factor-3alpha functions as an accelerator of 3T3-L1 adipose differentiation. Biol Pharm Bull, 2009, 32: 1166-1172.

[14]

HiltunenJ, HelminenL, PaakinahoV. Glucocorticoid receptor action in prostate cancer: the role of transcription factor crosstalk. Front Endocrinol, 2024, 15: 1437179.

[15]

Janaszak-JasieckaA, BartoszewskaS, KochanK, PiotrowskiA, KalinowskiL, KamyszW, OchockaRJ, BartoszewskiR, CollawnJF. miR-429 regulates the transition between Hypoxia-Inducible Factor (HIF)1A and HIF3A expression in human endothelial cells. Sci Rep, 2016, 6: 22775.

[16]

KaiAK, ChanLK, LoRC, LeeJM, WongCC, WongJC, NgIO. Down-regulation of TIMP2 by HIF-1alpha/miR-210/HIF-3alpha regulatory feedback circuit enhances cancer metastasis in hepatocellular carcinoma. Hepatology, 2016, 64: 473-487.

[17]

KawahataT, TanakaK, OyamaK, UedaJ, OkamotoK, MakinoY. HIF3A gene disruption causes abnormal alveoli structure and early neonatal death. PLoS ONE, 2024, 19. e0300751

[18]

KhorasanizadehS, RastinejadF. Visualizing the architectures and interactions of nuclear receptors. Endocrinology, 2016, 157: 4212-4221.

[19]

KodamaT, ShimizuN, YoshikawaN, MakinoY, OuchidaR, OkamotoK, HisadaT, NakamuraH, MorimotoC, TanakaH. Role of the glucocorticoid receptor for regulation of hypoxia-dependent gene expression. J Biol Chem, 2003, 278: 33384-33391.

[20]

LeonardMO, GodsonC, BradyHR, TaylorCT. Potentiation of glucocorticoid activity in hypoxia through induction of the glucocorticoid receptor. J Immunol, 2005, 174: 2250-2257.

[21]

LiF, SongC, ZhangY, WuD. Structural overview and perspectives of the nuclear receptors, a major family as the direct targets for small-molecule drugs. Acta Biochim Biophys Sin, 2022, 54: 12-24.

[22]

MakinoY, CaoR, SvenssonK, BertilssonG, AsmanM, TanakaH, CaoY, BerkenstamA, PoellingerL. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature, 2001, 414: 550-554.

[23]

MarkwayBD, ChoH, Zilberman-RudenkoJ, HoldenP, McAlindenA, JohnstoneB. Hypoxia-inducible factor 3-alpha expression is associated with the stable chondrocyte phenotype. J Orthop Res, 2015, 33: 1561-1570.

[24]

MaynardMA, EvansAJ, HosomiT, HaraS, JewettMA, OhhM. Human HIF-3alpha4 is a dominant-negative regulator of HIF-1 and is down-regulated in renal cell carcinoma. FASEB J, 2005, 19: 1396-1406.

[25]

McGettrickAF, O'NeillLAJ. The role of HIF in immunity and inflammation. Cell Metab, 2020, 32: 524-536.

[26]

NicolaidesNC, GalataZ, KinoT, ChrousosGP, CharmandariE. The human glucocorticoid receptor: molecular basis of biologic function. Steroids, 2010, 75: 1-12.

[27]

PasanenA, HeikkilaM, RautavuomaK, HirsilaM, KivirikkoKI, MyllyharjuJ. Hypoxia-inducible factor (HIF)-3alpha is subject to extensive alternative splicing in human tissues and cancer cells and is regulated by HIF-1 but not HIF-2. Int J Biochem Cell Biol, 2010, 42: 1189-1200.

[28]

PingYQ, MaoC, XiaoP, ZhaoRJ, JiangY, YangZ, AnWT, ShenDD, YangF, ZhangH, QuC, ShenQ, TianC, LiZJ, LiS, WangGY, TaoX, WenX, ZhongYN, YangJ, et al. . Structures of the glucocorticoid-bound adhesion receptor GPR97-G(o) complex. Nature, 2021, 589: 620-626.

[29]

RastinejadF. Retinoic acid receptor structures: the journey from single domains to full-length complex. J Mol Endocrinol, 2022, 69: T25-T36.

[30]

RastinejadF. The protein architecture and allosteric landscape of HNF4alpha. Front Endocrinol, 2023, 14: 1219092.

[31]

RastinejadF. Allosteric communications between domains of nuclear receptors. Steroids, 2025, 214. 109551

[32]

RastinejadF, OllendorffV, PolikarpovI. Nuclear receptor full-length architectures: confronting myth and illusion with high resolution. Trends Biochem Sci, 2015, 40: 16-24.

[33]

RauluseviciuteI, Riudavets-PuigR, Blanc-MathieuR, Castro-MondragonJA, FerencK, KumarV, LemmaRB, LucasJ, ChenebyJ, BaranasicD, KhanA, FornesO, GundersenS, JohansenM, HovigE, LenhardB, SandelinA, WassermanWW, ParcyF, MathelierA. JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles. Nucleic Acids Res, 2024, 52: D174-D182.

[34]

Regan AndersonTM, MaSH, RajGV, CidlowskiJA, HelleTM, KnutsonTP, KrutilinaRI, SeagrovesTN, LangeCA. Breast tumor kinase (Brk/PTK6) is induced by HIF, glucocorticoid receptor, and PELP1-mediated stress signaling in triple-negative breast cancer. Cancer Res, 2016, 76: 1653-1663.

[35]

Roqueta-RiveraM, EsquejoRM, PhelanPE, SandorK, DanielB, FoufelleF, DingJ, LiX, KhorasanizadehS, OsborneTF. SETDB2 links glucocorticoid to lipid metabolism through insig2a regulation. Cell Metab, 2016, 24: 474-484.

[36]

SmoakKA, CidlowskiJA. Mechanisms of glucocorticoid receptor signaling during inflammation. Mech Ageing Dev, 2004, 125: 697-706.

[37]

SoccioRE, ChenER, RajapurkarSR, SafabakhshP, MarinisJM, DispiritoJR, EmmettMJ, BriggsER, FangB, EverettLJ, LimHW, WonKJ, StegerDJ, WuY, CivelekM, VoightBF, LazarMA. Genetic variation determines PPARgamma function and anti-diabetic drug response in vivo. Cell, 2015, 162: 33-44.

[38]

SunYY, WangCY, HsuMF, JuanSH, ChangCY, ChouCM, YangLY, HungKS, XuJ, LeeYH, HsuCY. Glucocorticoid protection of oligodendrocytes against excitotoxin involving hypoxia-inducible factor-1alpha in a cell-type-specific manner. J Neurosci, 2010, 30: 9621-9630.

[39]

SunX, JingL, LiF, ZhangM, DiaoX, ZhuangJ, RastinejadF, WuD. Structures of NPAS4-ARNT and NPAS4-ARNT2 heterodimers reveal new dimerization modalities in the bHLH-PAS transcription factor family. Proc Natl Acad Sci USA, 2022, 119. e2208804119

[40]

TieL, XiaoH, WuDL, YangY, WangP. A brief guide to good practices in pharmacological experiments: Western blotting. Acta Pharmacol Sin, 2021, 42: 1015-1017.

[41]

TimmermansS, SouffriauJ, LibertC. A general introduction to glucocorticoid biology. Front Immunol, 2019, 10: 1545.

[42]

TolonenJP, HeikkilaM, MalinenM, LeeHM, PalvimoJJ, WeiGH, MyllyharjuJ. A long hypoxia-inducible factor 3 isoform 2 is a transcription activator that regulates erythropoietin. Cell Mol Life Sci, 2020, 77: 3627-3642.

[43]

VanderhaeghenT, BeyaertR, LibertC. Bidirectional crosstalk between hypoxia inducible factors and glucocorticoid signalling in health and disease. Front Immunol, 2021, 12. 684085

[44]

WagnerAE, HuckG, StiehlDP, JelkmannW, Hellwig-BurgelT. Dexamethasone impairs hypoxia-inducible factor-1 function. Biochem Biophys Res Commun, 2008, 372: 336-340.

[45]

WangF, ZhangH, XuN, HuangN, TianC, YeA, HuG, HeJ, ZhangY. A novel hypoxia-induced miR-147a regulates cell proliferation through a positive feedback loop of stabilizing HIF-1alpha. Cancer Biol Ther, 2016, 17: 790-798.

[46]

WeikumER, KnueselMT, OrtlundEA, YamamotoKR. Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat Rev Mol Cell Biol, 2017, 18: 159-174.

[47]

WengerRH. Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol, 2000, 203: 1253-1263.

[48]

WynneK, RoweC, DelbridgeM, WatkinsB, BrownK, AddleyJ, WoodsA, MurrayH. Antenatal corticosteroid administration for foetal lung maturation. F1000Res, 2020, 9: 219.

[49]

XuF, DengS, GavriouchkinaD, ZhangG. Transcriptional regulation analysis reveals the complexity of metamorphosis in the Pacific oyster (Crassostrea gigas). Mar Life Sci Technol, 2023, 5: 467-477.

[50]

YangSL, WuC, XiongZF, FangX. Progress on hypoxia-inducible factor-3: its structure, gene regulation and biological function (Review). Mol Med Rep, 2015, 12: 2411-2416.

[51]

ZhangP, YaoQ, LuL, LiY, ChenPJ, DuanC. Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Rep, 2014, 6: 1110-1121.

[52]

ZhangC, DongX, MaoW, WangC, MaB, HuL, ChenR. Hypoxia- and dexamethasone-dependent HIF1alpha-glucocorticoid receptor interaction leads to degradation of glucocorticoid receptor in pituitary adenomas. Am J Transl Res, 2021, 13: 684-695

[53]

ZhouX, GuoX, ChenM, XieC, JiangJ. HIF-3alpha promotes metastatic phenotypes in pancreatic cancer by transcriptional regulation of the RhoC-ROCK1 signaling pathway. Mol Cancer Res, 2018, 16: 124-134.

[54]

ZhuangJ, ShangQ, RastinejadF, WuD. Decoding allosteric control in hypoxia-inducible factors. J Mol Biol, 2024, 436. 168352

RIGHTS & PERMISSIONS

Ocean University of China

AI Summary AI Mindmap
PDF

227

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/