Sesquiterpenoids from the hydrothermal vent sediment derived fungus Penicillium sp. JWM79-5-1 with antithrombotic and pro-angiogenic activities

Wenjuan Ding , Xiaobin Li , Xiyue Wang , Shuqing Yu , Xunuo Li , FangFang Wang , Danmei Tian , Bin Wu , Jinshan Tang

Marine Life Science & Technology ›› : 1 -14.

PDF
Marine Life Science & Technology ›› :1 -14. DOI: 10.1007/s42995-025-00303-y
Research Paper
research-article

Sesquiterpenoids from the hydrothermal vent sediment derived fungus Penicillium sp. JWM79-5-1 with antithrombotic and pro-angiogenic activities

Author information +
History +
PDF

Abstract

Seven previously unreported sesquiterpenes including three rare 5/5/6-fused tricyclic gymnomitrane-type sesquiterpenes (13), an ent-longipinane-type sesquiterpene (4), a cuparane-type sesquiterpene (5), and two chamigrane-type sesquiterpenes (6 and 7), along with a known chamigrane-type sesquiterpene xylariterpenoid C (8) were isolated from the hydrothermal vent sediment derived fungus Penicillium sp. JWM79-5–1. Their structures were identified on the basis of 1D and 2D NMR, in conjunction with Mosher’s method, X-ray crystallography, and electronic circular dichroism (ECD). The antithrombotic activity of compounds 16 and 8 was evaluated in arachidonic acid (AA)-induced zebrafish thrombosis model in vivo. The results revealed compound 1 with potent antithrombotic activity in a concentration-dependent manner. Further, the pro-angiogenic activities of compounds 16 and 8 were evaluated in a transgenic zebrafish model that expresses vegfr2, the receptor for the angiogenic factor VEGF, tagged with the green fluorescence protein (vegfr2-GFP) through detecting the length of both intersegmental vessels (ISVs) and subintestinal veins (SIVs). The results revealed that compound 1 exhibited a potent antithrombotic activity while 3 revealed a potent pro-angiogenic activity. These findings strongly support drug development of these compounds in cardiovascular disease treatment.

Keywords

Marine-derived fungus / Secondary metabolites / Sesquiterpenes / Antithrombotic activity / Pro-angiogenic activity

Cite this article

Download citation ▾
Wenjuan Ding, Xiaobin Li, Xiyue Wang, Shuqing Yu, Xunuo Li, FangFang Wang, Danmei Tian, Bin Wu, Jinshan Tang. Sesquiterpenoids from the hydrothermal vent sediment derived fungus Penicillium sp. JWM79-5-1 with antithrombotic and pro-angiogenic activities. Marine Life Science & Technology 1-14 DOI:10.1007/s42995-025-00303-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AndersenNH, Richard CostinC, MichaelK, YoshimotoO, SiegfriedH. Sesquiterpenes of Barbilophozia species. Phytochemistry, 1973, 12: 2709-2716

[2]

BäckrydE. Do the potential benefits outweigh the risks? An update on the use of ziconotide in clinical practice. Eur J Pain, 2018, 22: 1193-1202

[3]

BinhPT, DescouturesD, DangNH, NguyenNP, DatNT. A new cytotoxic gymnomitrane sesquiterpene from ganoderma lucidum fruiting bodies. Nat Prod Commun, 2015, 10: 1911-1912

[4]

CarrollAR, CoppBR, GrkovicT, KeyzersRA, PrinsepMR. Marine natural products. Nat Prod Rep, 2024, 41: 162-207

[5]

ChenZM, ChenHP, WangF, LiZH, FengT, LiuJK. New triquinane and gymnomitrane sesquiterpenes from fermentation of the basidiomycete Antrodiella albocinnamomea. Fitoterapia, 2015, 102: 61-66

[6]

ChenY, ChenPD, BaoBH, ShanMQ, ZhangKC, ChengFF, CaoYD, ZhangL, DingAW. Anti-thrombotic and pro-angiogenic effects of Rubia cordifolia extract in zebrafish. J Ethnopharmacol, 2018, 219: 152-160

[7]

ChokpaiboonS, SommitD, BunyapaiboonsriT, MatsubaraK, PudhomK. Antiangiogenic effect of chamigrane endoperoxides from a Thai mangrove-derived fungus. J Nat Prod, 2011, 74: 2290-2294

[8]

ChoodejS, TeerawatananondT, MitsunagaT, PudhomK. Chamigrane sesquiterpenes from a basidiomycetous endophytic fungus XG8D associated with Thai mangrove Xylocarpus granatum. Mar Drugs, 2016, 14132

[9]

DaiQ, ZhangFL, FengT. Sesquiterpenoids specially produced by fungi: structures, biological activities, chemical and biosynthesis (2015–2020). J Fungi, 2021, 71026

[10]

Diaz-FloresL, GutierrezR, VarelaH. Angiogenesis: an update. Histol Histopathol, 1994, 9: 807-843

[11]

DingWJ, UvaraniC, WangFF, XueYX, WuN, HeLM, TianDM, ChenM, ZhangYW, HongK, TangJS. New ophiobolins from the deep-sea derived fungus Aspergillus sp. WHU0154 and their anti-inflammatory effects. Mar Drugs, 2020, 18575

[12]

DingWJ, TianDM, ChenM, XiaZX, TangXY, ZhangSH, WeiJH, LiXN, YaoXS, WuB, TangJS. Molecular networking-guided isolation of cyclopentapeptides from the hydrothermal vent sediment derived fungus Aspergillus pseudoviridinutans TW58-5 and their anti-inflammatory effects. J Nat Prod, 2023, 86: 1919-1930

[13]

Eisai Co Ltd (2011) Eisai announces canadian approval of its anticancer agent HalavenTM. https://www.eisai.com/news/news201179.html. Accessed 15 Dec 2011

[14]

European Medicines Agency (2023) Halaven. https://www.ema.europa.eu/en/medicines/human/EPAR/halaven. Accessed 23 Oct 2011

[15]

FakeeJ, BoltonJJ, Le Roes-HillM, DurrellKA, AntunesE, BeukesDR. Antimicrobial activity of the secondary metabolites isolated from a south african red seaweed. Laurencia Corymbose Mol, 2023, 282063

[16]

FanYF, YangGY. Therapeutic angiogenesis for brain ischemia: a brief review. J Neuroimmune Pharmacol, 2007, 2: 284-289

[17]

FangH, GaoB, ZhaoY, FangX, BianM, XiaQ. Curdione inhibits thrombin-induced platelet aggregation via regulating the AMP-activated protein kinase-vinculin/talin-integrin αIIbβ3 sign pathway. Phytomedicine, 2019, 61152859

[18]

GanD, WangCY, LiCZ, ZhuL, ZhangXR, DingH, CaiL, DingZT. Secondary metabolites from Annulohypoxylon sp. and structural revision of Emericellins A and B. J Nat Prod, 2022, 85: 828-837

[19]

HeJ, YuWW, IsakaM, CoxRJ, LiuJK, FengT. Antroxazole A, an oxazole-containing chamigrane dimer from the fungus Antrodiella albocinnamomea with immunosuppressive activity. Org Biomol Chem, 2022, 20: 7278-7283

[20]

HuC, XiongJ, LiJY, GaoLX, WangWX, ChenKJ, YangGX, LiJ, HuJF. Rare sesquiterpenoids from the shed trunk barks of the critically endangered plant Abies beshanzuensis and their bioactivities. Eur J Org Chem, 2016, 10: 1832-1835

[21]

JiangMH, WuZE, GuoH, LiuL, ChenSH. A review of terpenes from marine-derived fungi: 2015–2019. Mar Drugs, 2020, 18321

[22]

KimuraJ, KamadaN, TsujimotoY. Fourteen chamigrane derivatives from a red alga, laurencia nidifica. Bull Chem Soc Jpn, 2003, 72: 289-292

[23]

LiP, ZhangM, XieD, ZhangX, ZhangS, GaoF, WangY, HsiaoCD, LiX, LiuK. Characterization and bioactivities of phospholipids from squid viscera and gonads using ultra-performance liquid chromatography-Q-exactive orbitrap/mass spectrometry-based lipidomics and zebrafish models. Food Funct, 2021, 12: 7986-7996

[24]

LiCS, LiuLT, YangL, LiJ, DongX. Chemistry and bioactivity of marine-derived bisabolane sesquiterpenoids: a review. Front Chem, 2022, 10881767

[25]

LiangAH, DingXS, LiW, XueBY, WangJH, YangHJ. Development of an animal model of blood stasis syndrome and thrombosis. China J Chin Mater Med, 2005, 30: 1613-1616

[26]

LiuMYJ, ZhaoL, HanLW, LiHN, ShiYP, CuiJ, WangCY, XuL, ZhongLH. Discovery and identification of proangiogenic chemical markers from Gastrodiae Rhizoma based on zebrafish model and metabolomics approach. Phytochem Anal, 2020, 31: 835-845

[27]

LiuF, ChenJF, QiaoMM, ZhaoHY, ZhouQM, GuoL, PengC, XiongL. Seven pairs of new enantiomeric sesquiterpenoids from Curcuma phaeocaulis. Bioorg Chem, 2020, 99103820

[28]

LvHW, SuHB, XueYX, JiaJ, BiHK, WangSB, ZhangJK, ZhuMD, EmamM, WangH, HongK, LiX-N. Polyketides with potential bioactivities from the mangrove-derived fungus Talaromyces sp. WHUF0362. Mar Life Sci Technol, 2023, 5: 232-241

[29]

MarkhamA. Lurbinectedin: first approval. Drugs, 2020, 80: 1345-1353

[30]

Martínez-SerraJ, MaffiotteE, MartínJ, BexT, Navarro-PalouM, RosT, PlazasJM, VöglerO, GutiérrezA, AmatJC, RamosR, SausC, GinésJ, AlemanyR, DiazM, BesalduchJ. Yondelis® (ET-743, Trabectedin) sensitizes cancer cell lines to CD95-mediated cell death: new molecular insight into the mechanism of action. Eur J Pharmacol, 2011, 658: 57-64

[31]

MensahGA, FusterGA, MurrayCJL, RothGA. Global burden of cardiovascular diseases and risks, 1990–2022. J Am Coll Cardiol, 2023, 82: 2350-2473

[32]

NahedO, BawakidWaliedM, AlorfiAS. Antimicrobial sesquiterpenoids from Laurencia obtusa Lamouroux. Open Chem, 2017, 15: 219-224

[33]

NeuhausGF, LoesgenS. Antibacterial drimane sesquiterpenes from Aspergillus ustus. J Nat Prod, 2021, 84: 37-45

[34]

NingZ, HuB, SunYY, DingJF, HanXY, LuXL, YinZF, HeY, JiaoBH, YuHB, LiuXY. Eutypellaolides A-J, Sesquiterpene diversity expansion of the polar fungus Eutypella sp. D-1. Front Microbiol, 2024, 151349151

[35]

NingYD, GuQWF, ZhengT, XuY, LiS, ZhuYP, HuB, YuHB, LiuXY, ZhangY, JiaoBH, LuXL. Genome mining leads to diverse sesquiterpenes with anti-inflammatory activity from an arctic-derived fungus. J Nat Prod, 2024, 87: 1426-1440

[36]

PósaA, SzabóR, SzalaiZ, KupaiK, DeimZ, MurlasitsZ, BencsikO, SzekeresA, VágvölgyiC, LaszloB, JuhászB, SzilvássyZ, VargaC. The effect of acute ophiobolin a treatment on HO-mediated inflammatory processes. Hum Exp Toxicol, 2016, 36: 594-602

[37]

RossleinL, TammC, ZiircherW, RiesenA, ZehnderM. Sambucinic acid, a new metabolite of Fusarium sambucinum. Helv Chim Acta, 1988, 71: 588-595

[38]

SunCX, ShahM, ZhangZZ, FengYY, ChangYM, CheQ, GuQQ, ZhuTJ, ZhangGJ, LiDH. Secondary metabolites from deep-sea derived microorganisms. Curr Med Chem, 2020, 27: 6244-6273

[39]

TorstenB, AnuS, YasminH, GerhardB. SpecDics: Quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality, 2013, 25: 243-249

[40]

WarmersU, KönigWA. Biosynthesis of the gymnomitrane-type sesquiterpenes in liverworts. Phytochemistry, 2000, 53: 645-650

[41]

WuZY, WuY, ChenGD, HuD, LiXX, SunX, GuoLD, LiY, YaoXS, GaoH. Xylariterpenoids A-D, four new sesquiterpenoids from the Xylariaceae fungus. RSC Adv, 2014, 4: 54144-54148

[42]

WuW, LiXB, ZuoGF, PuJQ, WuXL, ChenSL. The role of angiogenesis in coronary artery disease: a double-edged sword: intraplaque angiogenesis in physiopathology and therapeutic angiogenesis for treatment. Curr Pharm des, 2018, 24: 451-464

[43]

YuHB, WangXL, ZhangYX, XuWH, ZhangJP, ZhouXY, LuXL, LiuXY, JiaoBH. Libertellenones O-S and Eutypellenones A and B, pimarane diterpene derivatives from the arctic fungus Eutypella sp. D-1. J Nat Prod, 2018, 81: 1553-1560

[44]

YuanX, HanL, FuP, ZengHW, LvC, ChangWL, RunyonRS, IshiiM, HanLW, LiuKC, FanTP, ZhangW, LiuRH. Cinnamaldehyde accelerates wound healing by promoting angiogenesis via up-regulation of PI3K and MAPK signaling pathways. Lab Invest, 2018, 98: 783-798

[45]

ZhangJZ, FanPH, ZhuRX, LiRJ, LinZM, SunB, ZhangCM, ZhouJC, LouHX. Marsupellins A-F, ent-longipinane-type sesquiterpenoids from the Chinese liverwort Marsupella alpine with acetylcholinesterase inhibitory activity. J Nat Prod, 2014, 77: 1031-1036

[46]

ZhangP, DengY, GuiY, ChenZ, LiuC, ZhangDZ. Research review of antithrombotic mechanism of function(Chinese). The Med Forum, 2020, 24: 3682-3685

[47]

ZhangJP, LiuD, FanA, HuangJ, LinWH. Eremophilane-type sesquiterpenes from a marine-derived fungus Penicillium Copticola with antitumor and neuroprotective activities. Mar Drugs, 2022, 20712

[48]

ZhangJ, ChenS, SunP, LiuY, JiangJ, GuoC, ChengJ, LiuX, ZhangJ, ChenC, DiJ, LiuA, XuQ. Ginkgolides with anti-PAF activity from Ginkgo biloba L. Fitoterapia, 2024, 175105915

[49]

ZhaoZZ, LiangXB, FengWS, WuY, ZhiYL, XueGM, ChenHP, LiuJK. Unusual constituents from the medicinal mushroom Ganoderma lingzhi. RSC Adv, 2019, 9: 36931-36939

[50]

ZhaoZZ, FengWS, LiangXB, XueGM, SiYY, ChenHP, LiuJK. Ochracines A-E, chamigrane-related norsesquiterpene derivatives from the basidiomycete Steccherinum ochraceum HFG119. Fitoterapia, 2019, 139104362

[51]

ZhouY, ZhangYX, ZhangJP, YuHB, LiuXY, LuXL. A new sesquiterpene lactone from fungus Eutypella sp. D-1. Nat Prod Res, 2017, 31: 1676-1681

[52]

ZhuXY, LiuHC, GuoSY, XiaB, SongRS, LaoQC, XuanYX, LiCQ. A zebrafish thrombosis model for assessing antithrombotic drugs. Zebrafish, 2016, 13: 335-344

[53]

ZhuravlevaOI, BelousovaEB, OleinikovaGK, AntonovAS, KhudyakovaYV, RasinAB, PopovRS, MenchinskayaES, TrinhPTH, YurchenkoAN, YurchenkoEA. Cytotoxic drimane-type sesquiterpenes from co-culture of the marine-derived fungi Aspergillus carneus KMM 4638 and Beauveria felina (=Isaria felina) KMM 4639. Mar Drugs, 2022, 20584

[54]

ZouG, YangWC, ChenT, LiuZM, ChenY, LiTB, SaidG, SunB, WangB, SheZG. Griseofulvin enantiomers and bromine-containing griseofulvin derivatives with antifungal activity produced by the mangrove endophytic fungus Nigrospora sp. QQYB1. Mar Life Sci Technol, 2024, 6: 102-114

RIGHTS & PERMISSIONS

Ocean University of China

PDF

286

Accesses

0

Citation

Detail

Sections
Recommended

/