Development of cell labeling and gene editing tools in urochordate Ciona

Xiang Li , Lu Mu , Hongzhe Peng , Sun Nyunt Wai , Longjun Pu , Bo Dong

Marine Life Science & Technology ›› : 1 -12.

PDF
Marine Life Science & Technology ›› : 1 -12. DOI: 10.1007/s42995-025-00300-1
Research Paper

Development of cell labeling and gene editing tools in urochordate Ciona

Author information +
History +
PDF

Abstract

Urochordate Ciona spp. are ideal marine model organisms for studying embryogenesis and developmental and evolutionary biology. However, the effective implementation of genetic labeling and CRISPR/Cas9-based editing tools at cellular resolution remains challenging. This study successfully developed and validated a collection of Gateway-based vectors for cell labeling in Ciona spp. The destination vector sets contained two Gateway cassettes flanked by Minos sites, allowing the N- or C-terminal tagging of a protein of interest with various fluorescent markers. In addition, we optimized the CRISPR/Cas9 and CRISPR/dCas9 systems by incorporating P2A-mCherry, a fluorescent indicator for Cas9 expression at cellular resolution. We demonstrated the effective destruction or inhibition of target genes when CRISPR constructs were introduced into fertilized eggs. Furthermore, we engineered a dual fluorescence sensor system that helps visualize successful gene knockouts at the cellular level in specific tissues. The genetic tools developed in this study offer a robust method for gene expression, cell tracking, and subcellular protein localization while also facilitating tissue-specific functional analysis in Ciona embryos and other model systems.

Keywords

Ciona / Gateway / Cell labeling / CRISPR/Cas9 / Fluorescent sensor / Biological Sciences / Biochemistry and Cell Biology / Genetics

Cite this article

Download citation ▾
Xiang Li, Lu Mu, Hongzhe Peng, Sun Nyunt Wai, Longjun Pu, Bo Dong. Development of cell labeling and gene editing tools in urochordate Ciona. Marine Life Science & Technology 1-12 DOI:10.1007/s42995-025-00300-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AnzaloneAV, RandolphPB, DavisJR, SousaAA, KoblanLW, LevyJM, ChenPJ, WilsonC, NewbyGA, RaguramA, LiuDR. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576: 149-157.

[2]

BarrangouR, DoudnaJA. Applications of CRISPR technologies in research and beyond. Nat Biotechnol, 2016, 34: 933-941.

[3]

CaoS, SiriwardanaCL, KumimotoRW, HoltBF. Construction of high quality Gateway™ entry libraries and their application to yeast two-hybrid for the monocot model plant Brachypodium distachyon. BMC Biotechnol, 2011, 11: 53.

[4]

ChavezA, ScheimanJ, VoraS, PruittBW, TuttleM, IyerE, LinS, KianiS, GuzmanCD, WiegandDJ, Ter-OvanesyanD, BraffJL, DavidsohnN, HousdenBE, PerrimonN, WeissR, AachJ, CollinsJJ, ChurchGM. Highly efficient Cas9-mediated transcriptional programming. Nat Methods, 2015, 12: 326-328.

[5]

ChristiaenL, WagnerE, ShiW, LevineM. Isolation of sea squirt (Ciona) gametes, fertilization, dechorionation, and development. CSH Protoc, 2009, 2009: pdb.prot5344

[6]

CorboJC, LevineM, ZellerRW. Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis. Development, 1997, 124: 589-602.

[7]

CritchleyDR. Biochemical and structural properties of the integrin-associated cytoskeletal protein talin. Ann Rev Biophys, 2009, 38: 235-254.

[8]

DongB, HorieT, DenkerE, KusakabeTG, TsudaM, SmithWC, JiangD. Tube formation by complex cellular processes in Ciona intestinalis notochord. Dev Biol, 2009, 330: 237-249.

[9]

DonnellyMLL, HughesLE, LukeG, MendozaH, DamET, GaniD, RyanMD. The ‘cleavage’ activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring ‘2A-like’ sequences. J Gen Virol, 2001, 82: 1027-1041.

[10]

DouX, XiangL, HaiyanY, BoD. Dual roles of ascidian chondromodulin-1: promoting cell proliferation whilst suppressing the growth of tumor cells. Mar Drugs, 2018, 16: 59.

[11]

DoudnaJA, CharpentierE. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014, 346: 1258096.

[12]

GandhiS, HaeusslerM, RazykrajkaF, ChristiaenL, StolfiA. Evaluation and rational design of guide RNAs for efficient CRISPR/Cas9-mediated mutagenesis in Ciona. Dev Biol, 2017, 425: 8-20.

[13]

GilbertLA, LarsonMH, MorsutL, LiuZ, BrarGA, TorresSE, Stern-GinossarN, BrandmanO, WhiteheadEH, DoudnaJA, LimWA, WeissmanJS, QiLS. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013, 154: 442-451.

[14]

GilbertLA, HorlbeckMA, AdamsonB, VillaltaJE, ChenY, WhiteheadEH, GuimaraesC, PanningB, PloeghHL, BassikMC, QiLS, KampmannM, WeissmanJS. Genome-scale CRISPR-mediated control of gene repression and activation. Cell, 2014, 159: 647-661.

[15]

HolzerG, AntoninW. Nup50 plays more than one instrument. Cell Cycle, 2022, 21: 1785-1794.

[16]

HopeIA, StevensJ, GarnerA, HayesJ, CheoDL, BraschMA, VidalM. Feasibility of genome-scale construction of promoter::reporter gene fusions for expression in Caenorhabditis elegans using a multisite gateway recombination system. Genome Res, 2004, 14: 2070-2075.

[17]

JiaY, XuRG, RenX, Ewen-CampenB, RajakumarR, ZirinJ, Yang-ZhouD, ZhuR, WangF, MaoD. Next-generation CRISPR/Cas9 transcriptional activation in Drosophila using flySAM. Proc Natl Acad Sci USA, 2018, 115: 4719-4724.

[18]

KemmlerCL, MoranHR, MurrayBF, ScoresbyA, KlemJR, EckertRL, LepovskyE, BerthoS, NieuwenhuizeS, BurgerS, D'AgatiG, BetzC, PullerAC, FelkerA, DitrychovaK, BotschiS, AffolterM, RohnerN, LovelyCB, KwanKM, et al. . Next-generation plasmids for transgenesis in zebrafish and beyond. Development, 2023, 150: 201531.

[19]

KimM-H, RohH-E, LeeM-N, HurM-WJCP. New fast BiFC plasmid assay system for in vivo protein-protein interactions. Cell Physiol Biochem, 2007, 20: 703-714.

[20]

KlinakisAG, LoukerisTG, PavlopoulosA, SavakisC. Mobility assays confirm the broad host-range activity of the Minos transposable element and validate new transformation tools. Insect Mol Biol, 2000, 9: 269-275.

[21]

KogameT. 4-Fragment Gateway cloning format for MosSCI-compatible vectors integrating promoterome and 3′UTRome libraries of Caenorhabditis elegans. J Med Invest, 2015, 62: 161-166.

[22]

LiangZ, DondorpDC, ChatzigeorgiouM. The ion channel Anoctamin 10/TMEM16K coordinates organ morphogenesis across scales in the urochordate notochord. PLoS Biol, 2024, 22. e3002762

[23]

LivakKJ, SchmittgenTD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods, 2001, 25: 402-408.

[24]

LuQ, BhattachanP, DongB. Ascidian notochord elongation. Dev Biol, 2019, 448: 147-153.

[25]

MaY, ZhangJ, YinW, ZhangZ, SongY, ChangX. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods, 2016, 13: 1029.

[26]

MehlhornDG, WallmerothN, BerendzenKW, GrefenCHawesC, KriechbaumerV. 2in1 vectors improve in planta BiFC and FRET analyses. The plant endoplasmic reticulum. Methods in molecular biology, 2018New York, NYHumana Press139-158. 1691

[27]

MunroE, OdellGM. Polarized basolateral cell motility underlies invagination and convergent extension of the ascidian notochord. Development, 2002, 129: 13-24.

[28]

NaitoY, HinoK, BonoH, Ui-TeiK. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics, 2015, 31: 1120-1123.

[29]

NishiyamaA, FujiwaraS. RNA interference by expressing short hairpin RNA in the Ciona intestinalis embryo. Dev Growth Differ, 2008, 50: 521-529.

[30]

PennatiA, JakobiM, ZengF, CiampaL, RothbächerU. Optimizing CRISPR/Cas9 approaches in the polymorphic tunicate Ciona intestinalis. Dev Biol, 2024, 510: 31-39.

[31]

PetersenLK, StowersRS. A Gateway MultiSite recombination cloning toolkit. PLoS ONE, 2011, 6. e24531

[32]

Pickar-OliverA, GersbachCA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Bio, 2019, 20: 490-507.

[33]

PickettCJ, ZellerRW. Efficient genome editing using CRISPR-Cas-mediated homology directed repair in the ascidian Ciona robusta. Genesis, 2018, 56. e23260

[34]

PrashantM, JohnA, BenjaminSP, EsveltKM, MarkM, SriramK, LuhanY, ChurchGM. Cas9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol, 2013, 31: 833-838.

[35]

QiLS, LarsonMH, GilbertLA, DoudnaJA, WeissmanJS, ArkinAP, LimWA. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152: 1173-1183.

[36]

ReesHA, LiuDR. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet, 2018, 19: 770-788.

[37]

ReevesWM, ShimaiK, WinkleyKM, VeemanMT. Brachyury controls Ciona notochord fate as part of a feedforward network. Development, 2021, 148: dev195230.

[38]

RoureA, RothbacherU, RobinF, KalmarE, FeroneG, LamyC, MisseroC, MuellerF, LemaireP. A multicassette gateway vector set for high throughput and comparative analyses in Ciona and vertebrate embryos. PLoS ONE, 2007, 2. e916

[39]

RyanMD, DrewJ. Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. EMBO J, 1994, 13: 928-933.

[40]

SasakiH, YoshidaK, HozumiA, SasakuraY. CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis. Dev Growth Differ, 2014, 56: 499-510.

[41]

SehringIM, DongB, DenkerE, BhattachanP, DengW, MathiesenBT, JiangD. An equatorial contractile mechanism drives cell elongation but not cell division. PLoS Biol, 2014, 12. e1001781

[42]

StolfiA, GandhiS, SalekF, ChristiaenL. Tissue-specific genome editing in Ciona embryos by CRISPR/Cas9. Development, 2014, 141: 4115-4120.

[43]

StrittmatterSM, FankhauserC, HuangPL, MashimoH, FishmanMC. Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43. Cell, 1995, 80: 445-452.

[44]

ThuronyiBW, KoblanLW, LevyJM, YehW, ZhengC, NewbyGA, WilsonC, BhaumikM, ShubinaoleinikO, HoltJR, LiuDR. Continuous evolution of base editors with expanded target compatibility and improved activity. Nat Biotechnol, 2019, 37: 1070-1079.

[45]

TianG, LuQ, ZhangL, KohalmiSE, CuiY. Detection of protein interactions in plant using a gateway compatible bimolecular fluorescence complementation (BiFC) system. J Vis Exp, 2011, 55: e3473

[46]

TrichasG, BegbieJ, SrinivasS. Use of the viral 2A peptide for bicistronic expression in transgenic mice. BMC Biol, 2008, 6: 40.

[47]

VilligerL, JoungJ, KoblanL, WeissmanJ, AbudayyehOO, GootenbergJS. CRISPR technologies for genome, epigenome and transcriptome editing. Nat Rev Mol Cell Bio, 2024, 25: 464-487.

[48]

WilleT, BarlagB, JakovljevicV, HenselM, SourjikV, GerlachRG. A gateway-based system for fast evaluation of protein-protein interactions in bacteria. PLoS ONE, 2015, 10. e0123646

[49]

ZellerRW, WeldonDS, PellatiroMA, ConeAC. Optimized green fluorescent protein variants provide improved single cell resolution of transgene expression in ascidian embryos. Dev Dyn, 2006, 235: 456-546.

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/