Transformation-associated recombination and heterologous expression of noncanonical depsipeptide nonribosomal peptide synthetase derived from marine Streptomyces

Jeong Sang Yi, Jin Won Choi, Ngoc Han Le Thi, Sung Jin Kim, Hyun-Ju Kim, Jung Min Kim, Jun Eui Park, Kyuho Moon, Dong Chan Oh, Sang Hee Shim, Ki Sung Kang, Yeo Joon Yoon

Marine Life Science & Technology ›› 2025

Marine Life Science & Technology ›› 2025 DOI: 10.1007/s42995-025-00296-8
Research Paper

Transformation-associated recombination and heterologous expression of noncanonical depsipeptide nonribosomal peptide synthetase derived from marine Streptomyces

Author information +
History +

Abstract

Analysis of the secondary metabolite biosynthesis gene cluster (BGC) from marine Streptomyces sp. SNJ102 revealed the presence of a noncanonical nonribosomal peptide synthetase (NRPS), predicted to produce a depsipeptide compound. The NRPS gene cluster was captured by transformation-associated recombination and heterologously expressed in Streptomyces albus. The production of the new compound was confirmed using high-resolution liquid chromatography-mass spectrometry, and its structure was elucidated using nuclear magnetic resonance spectroscopy. The structure of the new depsipeptide was more similar to the monomeric structure of cyclic depsipeptides derived from fungi than to other Streptomyces-derived depsipeptides. In addition, the bacterial depsipeptide, which we named jejumide, showed promising anti-inflammatory activity. These results demonstrate that genome mining and successful heterologous expression of cryptic nonlinear NRPS BGCs from marine bacteria will facilitate the discovery of novel nonribosomal peptides and understanding of the complicated biosynthetic mechanism of nonlinear NRPS.

Keywords

Streptomyces / Depsipeptide / Nonribosomal peptide synthetase / Anti-inflammatory

Cite this article

Download citation ▾
Jeong Sang Yi, Jin Won Choi, Ngoc Han Le Thi, Sung Jin Kim, Hyun-Ju Kim, Jung Min Kim, Jun Eui Park, Kyuho Moon, Dong Chan Oh, Sang Hee Shim, Ki Sung Kang, Yeo Joon Yoon. Transformation-associated recombination and heterologous expression of noncanonical depsipeptide nonribosomal peptide synthetase derived from marine Streptomyces. Marine Life Science & Technology, 2025 https://doi.org/10.1007/s42995-025-00296-8

References

Agata N, Ohta M, Mori M, Isobe M. A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiol Lett, 1995, 129: 17-19.
Alonzo DA, Schmeing TM. Biosynthesis of depsipeptides, or depsi: the peptides with varied generations. Protein Sci, 2020, 29: 2316-2347
CrossRef Google scholar
Andavan GSB, Lemmens-Gruber R. Cyclodepsipeptides from marine sponges: natural agents for drug research. Mar Drugs, 2010, 8: 810-834
CrossRef Google scholar
Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res, 2019, 47: W81-W87
CrossRef Google scholar
Fenical W, Jensen PR. Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol, 2006, 2: 666-673
CrossRef Google scholar
Fukata M, Abreu MT. Role of toll-like receptors in gastrointestinal malignancies. Oncogene, 2008, 27: 234-243
CrossRef Google scholar
Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc, 2007, 2: 31-34
CrossRef Google scholar
Han AR, Park SR, Park JW, Lee EY, Kim DM, Kim BG, Yoon YJ. Biosynthesis of glycosylated derivatives of tylosin in Streptomyces venezuelae. J Microbiol Biotechnol, 2011, 21: 613-616
CrossRef Google scholar
Hassan HM, Degen D, Jang KH, Ebright RH, Fenical W. Salinamide F, new depsipeptide antibiotic and inhibitor of bacterial RNA polymerase from a marine-derived Streptomyces sp. J Antibiot (Tokyo), 2015, 68: 206-209
CrossRef Google scholar
Jaremko MJ, Davis TD, Corpuz JC, Burkart MD. Type II non-ribosomal peptide synthetase proteins: structure, mechanism, and protein–protein interactions. Nat Prod Rep, 2020, 37: 355-379
CrossRef Google scholar
Jirakkakul J, Punya J, Pongpattanakitshote S, Paungmoung P, Vorapreeda N, Tachaleat A, Klomnara C, Tanticharoen M, Cheevadhanarak S. Identification of the nonribosomal peptide synthetase gene responsible for bassianolide synthesis in wood-decaying fungus Xylaria sp. BCC1067. Microbiology, 2008, 154: 995-1006
CrossRef Google scholar
Kim MS, Bae M, Jung YE, Kim JM, Hwang S, Song MC, Ban YH, Bae ES, Hong S, Lee SK, Cha SS, Oh DC, Yoon YJ. Unprecedented noncanonical features of the nonlinear nonribosomal peptide synthetase assembly line for WS9326A biosynthesis. Angew Chem Int Ed Engl, 2021, 60: 19766-19773
CrossRef Google scholar
Kim H, Kim J-Y, Ji C, Lee D, Shim SH, Joo H-S, Kang H-S. Acidonemycins A-C, glycosylated angucyclines with antivirulence activity produced by the acidic culture of Streptomyces indonesiensis. J Nat Prod, 2023, 86: 2039-2045
CrossRef Google scholar
Kim SJ, Lee SH, Lee H, Shin M-S, Lee JW. Design, synthesis, and biological evaluation of 3-substituted-indolin-2-one derivatives as potent anti-inflammatory agents. Int J Mol Sci, 2023, 24: 2066
CrossRef Google scholar
Kleemann R, Rothe H, Kolb-Bachofen V, Xie Q, Nathan C, Martin S, Kolb H. Transcription and translation of inducible nitric oxide synthase in the pancreas of prediabetic BB rats. FEBS Lett, 1993, 328: 9-12
CrossRef Google scholar
Lee N, Hwang S, Lee Y, Cho S, Palsson B, Cho B-K. Synthetic biology tools for novel secondary metabolite discovery in Streptomyces. J Microbiol Biotechnol, 2019, 29: 667-686
CrossRef Google scholar
Liu Y, Ding S, Shen J, Zhu K. Nonribosomal antibacterial peptides that target multidrug-resistant bacteria. Nat Prod Rep, 2019, 36: 573-592
CrossRef Google scholar
Madeira F, Madhusoodanan N, Lee J, Eusebi A, Niewielska A, Tivey ARN, Lopez R, Butcher S. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024. Nucleic Acds Res, 2024, 52: W521-W525
CrossRef Google scholar
Makarieva TN, Romanenko LA, Mineev KS, Shubina LK, Guglya EB, Kalinovskaya NI, Ivanchina NV, Guzii AG, Belozerova OA, Kovalchuk SI, Popov RS, Denisenko VA, Mikhailov VV, Babenko VV, Ilina EN, Malakhova MV, Terekhov SS, Kudzhaev AM, Dmitrenok PS, Yampolsky IV, Stonik VA. Streptocinnamides A and B, Depsipeptides from Streptomyces sp. KMM 9044. Org Lett, 2022, 24: 4892-4895
CrossRef Google scholar
Meca G, Sospedra I, Soriano JM, Ritieni A, Moretti A, Mañes J. Antibacterial effect of the bioactive compound beauvericin produced by Fusarium proliferatum on solid medium of wheat. Toxicon, 2010, 56: 349-354
CrossRef Google scholar
Moon K, Lim C, Kim S, Oh D-C. Facile determination of the absolute configurations of α-hydroxy acids by chiral derivatization coupled with liquid chromatography–mass spectrometry analysis. J Chromatogr A, 2013, 1272: 141-144
CrossRef Google scholar
Mootz HD, Schwarzer D, Marahiel MA. Ways of assembling complex natural products on modular nonribosomal peptide synthetases a list of abbreviations can be found at the end of the text. Chem Bio Chem, 2002, 3: 490-504
CrossRef Google scholar
Myronovskyi M, Rosenkränzer B, Nadmid S, Pujic P, Normand P, Luzhetskyy A. Generation of a cluster-free Streptomyces albus chassis strains for improved heterologous expression of secondary metabolite clusters. Metab Eng, 2018, 49: 316324
CrossRef Google scholar
Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod, 2020, 83: 770-803
CrossRef Google scholar
Nogawa S, Forster C, Zhang F, Nagayama M, Ross ME, Iadecola C. Interaction between inducible nitric oxide synthase and cyclooxygenase-2 after cerebral ischemia. PNAS, 1998, 95: 10966-10971
CrossRef Google scholar
Palmer RMJ, Rees DD, Ashton DS, Moncada S. L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun, 1988, 153: 1251-1256
CrossRef Google scholar
Roig M, Meca G, Marín R, Ferrer E, Mañes J. Antibacterial activity of the emerging Fusarium mycotoxins enniatins A, A1, A2, B, B1, and B4 on probiotic microorganisms. Toxicon, 2014, 85: 1-4
CrossRef Google scholar
Shan J, Fu J, Zhao Z, Kong X, Huang H, Luo L, Yin Z. Chlorogenic acid inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in RAW264.7 cells through suppressing NF-κB and JNK/AP-1 activation. Int Immunopharmacol, 2009, 9: 1042-1048
CrossRef Google scholar
Steiniger C, Hoffmann S, Mainz A, Kaiser M, Voigt K, Meyer V, Süssmuth RD. Harnessing fungal nonribosomal cyclodepsipeptide synthetases for mechanistic insights and tailored engineering. Chem Sci, 2017, 8: 7834-7843
CrossRef Google scholar
Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics, 2011, 27: 1009-1010
CrossRef Google scholar
Surh Y-J, Chun K-S, Cha H-H, Han SS, Keum Y-S, Park K-K, Lee SS. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat Res, 2001, 480: 243-268
CrossRef Google scholar
Süssmuth R, Müller J, von Döhren H, Molnár I. Fungal cyclooligomerdepsipeptides: from classical biochemistry to combinatorial biosynthesis. Nat Prod Rep, 2011, 28: 99-124
CrossRef Google scholar
Takahashi K, Koshino H, Esumi Y, Tsuda E, Kurosawa K. SW-163C and E, novel antitumor depsipeptides produced by Streptomyces sp II Structure Elucidation. J Antibiot (Tokyo), 2001, 54: 622-627
CrossRef Google scholar
Um S, Lee J, Kim SJ, Cho KA, Kang KS, Kim SH. Xinghamide A, a new cyclic nonapeptide found in Streptomyces xinghaiensis. Mar Drugs, 2023, 21: 509
CrossRef Google scholar
Wang X, Gong X, Li P, Lai D, Zhou L. Structural diversity and biological activities of cyclic depsipeptides from fungi. Molecules, 2018, 23: 169
CrossRef Google scholar
Wenzel SC, Müller R. Formation of novel secondary metabolites by bacterial multimodular assembly lines: deviations from textbook biosynthetic logic. Curr Opin Chem Biol, 2005, 9: 447-458
CrossRef Google scholar
Yi JS, Yoo H-W, Kim E-J, Yang Y-H, Kim B-G. Engineering Streptomyces coelicolor for production of monomethyl branched chain fatty acids. J Biotechnol, 2020, 307: 69-76
CrossRef Google scholar
Yu D, Xu F, Zhang S, Zhan J. Decoding and reprogramming fungal iterative nonribosomal peptide synthetases. Nat Commun, 2017, 8: 15349
CrossRef Google scholar
Zhang T, Jia X, Zhuo Y, Liu M, Gao H, Liu J, Zhang L. Cloning and characterization of a novel 2-ketoisovalerate reductase from the beauvericin producer Fusarium proliferatum LF061. BMC Biotechnol, 2012, 12: 55
CrossRef Google scholar
Funding
Seoul National University

Accesses

Citations

Detail

Sections
Recommended

/