Distinct evolutionary origins and mixed-mode transmissions of methanogenic endosymbionts are revealed in anaerobic ciliated protists

Tingting Hao , Hua Su , Zijing Quan , Ruixin Zhang , Minjie Yu , Jiahui Xu , Jia Li , Song Li , Alan Warren , Saleh A. Al-Farraj , Zhenzhen Yi

Marine Life Science & Technology ›› : 1 -17.

PDF
Marine Life Science & Technology ›› : 1 -17. DOI: 10.1007/s42995-025-00295-9
Research Paper

Distinct evolutionary origins and mixed-mode transmissions of methanogenic endosymbionts are revealed in anaerobic ciliated protists

Author information +
History +
PDF

Abstract

Methanogenic endosymbionts are the only known intracellular archaeans and are especially common in anaerobic ciliated protists. Studies on the evolution of associations between anaerobic ciliates and their methanogenic endosymbionts offer an excellent opportunity to broaden our knowledge about symbiosis theory and adaptation of eukaryotes to anoxic environments. Here, the diversity of methanogenic endosymbionts was analyzed with the addition of nine anaerobic ciliate populations that were newly studied by various methods. Results showed that diverse anaerobic ciliates host methanogenic endosymbionts that are limited to a few genera in orders Methanomicrobiales, Methanobacteriales, and Methanosarcinales. For the first time, anaerobic ciliates of the classes Muranotrichea and Prostomatea were found to host methanogenic endosymbionts. Distinct origins of endosymbiosis were revealed for classes Armophorea and Plagiopylea. We posit that armophoreans and plagiopyleans might have harbored Methanoregula (order Methanomicrobiales) and Methanocorpusculum (order Methanomicrobiales), respectively, as methanogenic endosymbionts at the beginning of their evolution. Subsequently, independent endosymbiont replacement events occurred in methanogen-ciliate associations, probably due to ecological transitions, species radiation of ciliate hosts, and vertical transmission bottlenecks of endosymbionts. Our results shed light on the evolution of associations between anaerobic ciliates and methanogens, and identifies the necessary preconditions for illustrating mechanisms by which endosymbioses between these partners were established.

Keywords

Anaerobic ciliates / Endosymbiont replacement / Evolution of associations / Methanogenic endosymbionts / Biological Sciences / Evolutionary Biology

Cite this article

Download citation ▾
Tingting Hao, Hua Su, Zijing Quan, Ruixin Zhang, Minjie Yu, Jiahui Xu, Jia Li, Song Li, Alan Warren, Saleh A. Al-Farraj, Zhenzhen Yi. Distinct evolutionary origins and mixed-mode transmissions of methanogenic endosymbionts are revealed in anaerobic ciliated protists. Marine Life Science & Technology 1-17 DOI:10.1007/s42995-025-00295-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AkinyemiTS, ShaoN, WhitmanWBTrujilloME, DedyshS, DeVosP, HedlundB, KämpferP, RaineyFA, WhitmanWB. Methanotrichales ord. nov.. Bergey’s manual of systematics of archaea and bacteria, 2025New YorkJohn Wiley & Sons1-2

[2]

BeinartRA, RotterováJ, ČepičkaI, GastRJ, EdgcombVP. The genome of an endosymbiotic methanogen is very similar to those of its free-living relatives. Environ Microbiol, 2018, 20: 2538-2551.

[3]

BolyenE, RideoutJR, DillonMR, BokulichNA, AbnetCC, Al-GhalithGA, AlexanderH, AlmEJ, ArumugamM, AsnicarF. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol, 2019, 37: 852-857.

[4]

BoscaroV, KoliskoM, FellettiM, VanniniC, LynnD, KeelingPJ. Parallel genome reduction in symbionts descended from closely related free-living bacteria. Nat Ecol Evol, 2017, 1: 1160-1167.

[5]

BoscaroV, FokinS, PetroniG, VerniF, KeelingPJ, VanniniC. Symbiont replacement between bacteria of different classes reveals additional layers of complexity in the evolution of symbiosis in the ciliate Euplotes. Protist, 2018, 169: 43-52.

[6]

BoscaroV, HusníkF, VanniniC, KeelingPJ. Symbionts of the ciliate Euplotes: diversity, patterns and potential as models for bacteria–eukaryote endosymbioses. Proc Roy Soc B-Biol Sci, 2019, 286: 20190693.

[7]

BrightM, BulgheresiS. A complex journey: transmission of microbial symbionts. Nat Rev Microbiol, 2010, 8: 218-230.

[8]

CallahanBJ, McMurdiePJ, RosenMJ. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods, 2016, 13: 581-583.

[9]

CaporasoJG, KuczynskiJ, StombaughJ, BittingerK, BushmanFD, CostelloEK, FiererN, PeñaAG, GoodrichJK, GordonJI, HuttleyGA, KelleyST, KnightsD, KoenigJE, LeyRE, LozuponeCA, McDonaldD, MueggeBD, PirrungM, ReederJ, et al. . QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 2010, 7: 335-336.

[10]

ChenZ, LiJ, Salas-LeivaDE, ChenM, ChenS, LiS, WuY, YiZ. Group-specific functional patterns of mitochondrion-related organelles shed light on their multiple transitions from mitochondria in ciliated protists. Mar Life Sci Technol, 2022, 4: 609-623.

[11]

ClarkeKJ, FinlayBJ, EstebanG, GuhlBE, EmbleyTM. Cyclidium porcatum n. sp.: a free-living anaerobic scuticociliate containing a stable complex of hydrogenosomes, eubacteria and archaeobacteria. Eur J Protistol, 1993, 29: 262-270.

[12]

CoolenMJ, HopmansEC, RijpstraWI, MuyzerG, SchoutenS, VolkmanJK, DamsteJSS. Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene: response of methanogens and methanotrophs to environmental change. Org Geochem, 2004, 35: 1151-1167.

[13]

DoddemaHJ, VogelsGD. Improved identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol, 1978, 36: 752-754.

[14]

DziallasC, AllgaierM, MonaghanMT, GrossartHP. Act together-implications of symbioses in aquatic ciliates. Front Microbiol, 2012, 3: 288.

[15]

EdgcombVP, LeadbetterER, BourlandW, BeaudoinD, BernhardJM. Structured multiple endosymbiosis of bacteria and archaea in a ciliate from marine sulfidic sediments: a survival mechanism in low oxygen, sulfidic sediments. Front Microbiol, 2011, 2: 55.

[16]

EmbleyTM, FinlayBJ. The use of small subunit rRNA sequences to unravel the relationships between anaerobic ciliates and their methanogen endosymbionts. Microbiology, 1994, 140: 225-235.

[17]

EmbleyTM, FinlayBJ, BrownS. RNA sequence analysis shows that the symbionts in the ciliate Metopus contortus are polymorphs of a single methanogen species. FEMS Microbiol Lett, 1992, 97: 57-61.

[18]

EmbleyTM, FinlayBJ, ThomasRH, DyalPL. The use of rRNA sequences and fluorescent probes to investigate the phylogenetic positions of the anaerobic ciliate Metopus palaeformis and its archaeobacterial endosymbiont. Microbiology, 1992, 138: 1479-1487

[19]

FenchelT, FinlayBJ. Synchronous division of an endosymbiotic methanogenic bacterium in the anaerobic ciliate Plagiopyla frontata Kahl. J Protozool, 1991, 38: 22-28.

[20]

FenchelT, FinlayBJ. Production of methane and hydrogen by anaerobic ciliates containing symbiotic methanogens. Arch Microbiol, 1992, 157: 475-480.

[21]

FenchelT, FinlayBJ. Free-living protozoa with endosymbiotic methanogens. (Endo)symbiotic methanogens, 2010New YorkSpringer1-11

[22]

FinlayBJ, FenchelT. An anaerobic ciliate as a natural chemostat for the growth of endosymbiotic methanogens. Eur J Protistol, 1992, 28: 127-137.

[23]

FinlayBJ, EmbleyTM, FenchelT. A new polymorphic methanogen, closely related to Methanocorpusculum parvum, living in stable symbiosis within the anaerobic ciliate Trimyema sp. Microbiology, 1993, 139: 371-378

[24]

GijzenHJ, BroersCA, BarughareM, StummCK. Methanogenic bacteria as endosymbionts of the ciliate Nyctotherus ovalis in the cockroach hindgut. Appl Environ Microbiol, 1991, 57: 1630-1634.

[25]

GoosenNK, WagenerS, StummCK. A comparison of two strains of the anaerobic ciliate Trimyema compressum. Arch Microbiol, 1990, 153: 187-192.

[26]

GouyM, GuindonS, GascuelO. SeaView Version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol, 2010, 27: 221-224.

[27]

GuoH, YuZ, LiuR, ZhangH, ZhongQ, XiongZ. Methylotrophic methanogenesis governs the biogenic coal bed methane formation in Eastern Ordos Basin, China. Appl Microbiol Biotechnol, 2012, 96: 1587-1597.

[28]

HacksteinJH(Endo)symbiotic methanogenic archaea, 2018New YorkSpringer. 19

[29]

HacksteinJH, VogelsGD. Endosymbiotic interactions in anaerobic protozoa. Anton Leeuw Int J G, 1997, 71: 151-158.

[30]

HirakataY, OshikiM, KurodaK, HatamotoM, KubotaK, YamaguchiT, HaradaH, ArakiN. Identification and detection of prokaryotic symbionts in the ciliate Metopus from anaerobic granular sludge. Microbes Environ, 2015, 30: 335-338.

[31]

HusnikF, TashyrevaD, BoscaroV, GeorgeEE, LukešJ, KeelingPJ. Bacterial and archaeal symbioses with protists. Curr Biol, 2021, 31: 862-877.

[32]

JiangL, WangC, Al-FarrajSA, HinesHN, HuX. Morphological and molecular examination of the ciliate family Lagynusidae (Protista, Ciliophora, Prostomatea) with descriptions of two new genera and two new species from China. Mar Life Sci Technol, 2023, 5: 178-195.

[33]

JinD, LiC, ChenX, ByerlyA, StoverNA, ZhangT, ShaoC, WangY. Comparative genome analysis of three euplotid protists provides insights into the evolution of nanochromosomes in unicellular eukaryotic organisms. Mar Life Sci Technol, 2023, 5: 300-315.

[34]

JonesJ, NagleDPJr, WhitmanWB. Methanogens and the diversity of archaebacteria. FEMS Microbiol Rev, 1987, 51: 135-177.

[35]

KatohK, StandleyDM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol, 2013, 30: 772-780.

[36]

KimKH, KimJM, BaekJH, JeongSE, KimH, YoonHS, JeonCO. Metabolic relationships between marine red algae and algae-associated bacteria. Mar Life Sci Technol, 2024, 6: 298-314.

[37]

LetunicI, BorkP. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res, 2019, 47: 256-259.

[38]

LewisWH, SendraKM, EmbleyTM, EstebanGF. Morphology and phylogeny of a new species of anaerobic ciliate, Trimyema finlayi n. sp., with endosymbiotic methanogens. Front Microbiol, 2018, 9: 140.

[39]

LewisWH, LindAE, SendraKM, OnsbringH, WilliamsTA, EstebanGF, HirtRP, EttemaTJG, EmbleyTM. Convergent evolution of hydrogenosomes from mitochondria by gene transfer and loss. Mol Biol Evol, 2019, 37: 524-539.

[40]

LiJ, LiS, SuH, YuM, XuJ, YiZ. Comprehensive phylogenomic analyses reveal that order Armophorida is most closely related to class Armophorea (Protista, Ciliophora). Mol Phylogenet Evol, 2023, 182: 107737.

[41]

LiR, ZhuangW, FengX, Al-FarrajSA, SchrecengostA, RotterováJ, BeinartRA, HuX. Molecular phylogeny and taxonomy of three anaerobic plagiopyleans (Alveolata: Ciliophora), retrieved from two geographically distant localities in Asia and North America. Zool J Linn Soc, 2023, 199: 493-510.

[42]

LindAE, LewisWH, SpangA, GuyL, EmbleyTM, EttemaTJ. Genomes of two archaeal endosymbionts show convergent adaptations to an intracellular lifestyle. ISME J, 2018, 12: 2655-2667.

[43]

López-GarcíaP, PhilippeH, GailF, MoreiraD. Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc Natl Acad Sci, 2003, 100: 697-702.

[44]

LuB, HuX, WarrenA, SongW, YanY. From oral structure to molecular evidence: new insights into the evolutionary phylogeny of the ciliate order Sessilida (Protista, Ciliophora), with the establishment of two new families and new contributions to the poorly studied family Vaginicolidae. Sci China Life Sci, 2023, 66: 1535-1553.

[45]

LyuZ, ShaoN, AkinyemiT, WhitmanWB. Methanogenesis. Curr Biol, 2018, 28: 727-732.

[46]

MayumiD, MochimaruH, TamakiH, YamamotoK, YoshiokaH, SuzukiY, KamagataY, SakataS. Methane production from coal by a single methanogen. Science, 2016, 354: 222-225.

[47]

MedlinL, ElwoodHJ, StickelS, SoginML. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene, 1988, 71: 491-499.

[48]

Méndez-SánchezD, SchrecengostA, RotterováJ, KoštířováK, BeinartRA, ČepičkaI. Methanogenic symbionts of anaerobic ciliates are host and habitat specific. ISME J, 2024, 18: wrae164.

[49]

NarayananN, PriyaM, HaridasA, ManilalVB. Isolation and culturing of a most common anaerobic ciliate, Metopus sp. Anaerobe, 2007, 13: 14-20.

[50]

NarayananN, KrishnakumarB, AnupamaVN, ManilalVB. Methanosaeta sp., the major archaeal endosymbiont of Metopus es. Res Microbiol, 2009, 160: 600-607.

[51]

NguyenLT, SchmidtHA, HaeselerAV, MinhBQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol, 2015, 32: 268-274.

[52]

NitlaV, SerraV, FokinSI, ModeoL, VerniF, SandeepBV, KalavatiC, PetroniG. Critical revision of the family Plagiopylidae (Ciliophora: Plagiopylea), including the description of two novel species, Plagiopyla ramani and Plagiopyla narasimhamurtii, and redescription of Plagiopyla nasuta Stein, 1860 from India. Zool J Linn Soc, 2019, 186: 1-45.

[53]

NowackEC, MelkonianM. Endosymbiotic associations within protists. Phil Trans R Soc B, 2010, 365: 699-712.

[54]

Nylander J (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden

[55]

OmarA, ZhangQ, ZouS, GongJ. Morphology and phylogeny of the soil ciliate Metopus yantaiensis n. sp. (Ciliophora, Metopida), with identification of the intracellular bacteria. J Eukaryot Microbiol, 2017, 64: 792-805.

[56]

ØvreåsL, ForneyL, DaaeFL, TorsvikV. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol, 1997, 63: 3367-3373.

[57]

PomahačO, Méndez-SánchezD, PolákováK, MüllerM, SolitoMM, BourlandWA, ČepičkaI. Rediscovery of remarkably rare anaerobic tentaculiferous ciliate genera Legendrea and Dactylochlamys (Ciliophora: Litostomatea). Biology, 2023, 12: 707.

[58]

QuastC, PruesseE, YilmazP, GerkenJ, SchweerT, YarzaP, PepliesJ, GlöcknerFO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res, 2013, 41: 590-596.

[59]

RognesT, FlouriT, NicholsB, QuinceC, MahéF. VSEARCH: a versatile open source tool for metagenomics. PeerJ, 2016, 4: e2584.

[60]

RonquistF, TeslenkoM, van der MarkP, AyresDL, DarlingA, HöhnaS, LargetB, LiuL, SuchardMA, HuelsenbeckJP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol, 2012, 61: 539-542.

[61]

RosenbergE, DeLongEF, LoryS, StackebrandtE, ThompsonFThe prokaryotes: other major lineages of bacteria and the archaea, 2014New YorkSpringer.

[62]

RotterováJ, SalomakiE, PánekT, BourlandW, ŽihalaD, TáborskýP, EdgcombVP, BeinartRA, KolískoM, ČepičkaI. Genomics of new ciliate lineages provides insight into the evolution of obligate anaerobiosis. Curr Biol, 2020, 30: 2037-2050.

[63]

RotterováJ, EdgcombVP, ČepičkaI, BeinartRA. Anaerobic ciliates as a model group for studying symbioses in oxygen-depleted environments. J Eukaryot Microbiol, 2022, 69: e12912.

[64]

SchrecengostA, RotterováJ, PolákováK, ČepičkaI, BeinartRA. Divergent marine anaerobic ciliates harbor closely related Methanocorpusculum endosymbionts. ISME J, 2024, 18: wrae125.

[65]

ShinzatoN, WatanabeI, MengX, SekiguchiY, TamakiH, MatsuiT, KamagataY. Phylogenetic analysis and fluorescence in situ hybridization detection of archaeal and bacterial endosymbionts in the anaerobic ciliate Trimyema compressum. Microb Ecol, 2007, 54: 627-636.

[66]

SkillmanLC, EvansPN, NaylorGE, MorvanB, JarvisGN, JoblinKN. 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs. Anaerobe, 2004, 10: 277-285.

[67]

SuH, XuJ, LiJ, YiZ. Four ciliate-specific expansion events occurred during actin gene family evolution of eukaryotes. Mol Phylogenet Evol, 2023, 184: 107789.

[68]

SuH, HaoT, YuM, ZhouW, WuL, ShengY, YiZ. Complex evolutionary patterns within the tubulin gene family of ciliates, unicellular eukaryotes with diverse microtubular structures. BMC Biol, 2024, 22: 170.

[69]

TakeshitaK, YamadaT, KawaharaY, NarihiroT, ItoM, KamagataY, ShinzatoN. Tripartite symbiosis of an anaerobic scuticociliate with two hydrogenosome-associated endosymbionts, a Holospora-related alphaproteobacterium and a methanogenic archaeon. Appl Environ Microbiol, 2019, 85: e00854-e919.

[70]

TamuraK, StecherG, KumarS. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol, 2021, 38: 3022-3027.

[71]

TangD, LiuY, WangC, LiL, Al-FarrajSA, ChenX, YanY. Invasion by exogenous RNA: cellular defense strategies and implications for RNA inference. Mar Life Sci Technol, 2023, 5: 573-584.

[72]

Van BruggenJJA, ClaudiusKS, VogelsGD. Symbiosis of methanogenic bacteria and sapropelic protozoa. Arch Microbiol, 1983, 136: 89-95.

[73]

Van BruggenJJA, ZwartKB, van AssemaRM, StummCK, VogelsGG. Methanobacterium formicicum, an endosymbiont of the anaerobic ciliate Metopus striatus McMurrich. Arch Microbiol, 1984, 139: 1-7.

[74]

Van BruggenJJA, ZwartKB, HermansJGF, van HoveEM, StummCK, VogelsGD. Isolation and characterization of Methanoplanus endosymbiosus sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt. Arch Microbiol, 1986, 144: 367-374.

[75]

Van HoekAH, van AlenTA, SprakelVS, LeunissenJA, BriggeT, VogelsGD, HacksteinJHP. Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol Biol Evol, 2000, 17: 251-258.

[76]

XuJ, ShenZ, HaoT, SuH, ChenM, PanX, YiZ. Exploring the evolution of anaerobes within ciliate class Prostomatea by phylogenomic analyses and metabolisms of mitochondrion-related organelles. Mol Phylogenet Evol, 2025, 207. 108345

[77]

ZhangC, PanJ, LiuY, DuanC, LiM. Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments. Microbiome, 2020, 8: 1-12.

[78]

ZhouZ, ZhangC, LiuP, FuL, Laso-PérezR, YangL, BaiL, LiJ, YangM, LinJ, WangW. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species. Nature, 2022, 601: 257-262.

[79]

ZhuangW, LiR, FengX, Al-FarrajSA, HuX. New contribution to the diversity of the anaerobic genus Metopus (Ciliophora, Armophorea), with descriptions of three new marine species. Front Mar Sci, 2022, 9: 884834.

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/