Impact of dispersion correction in DFT-enhanced anisotropic NMR for stereochemical elucidation of flexible marine natural products

Lu-Ping Chi , Xiao-Lu Li , Anton F. Ketzel , Armando Navarro-Vázquez , Caspar J. Schattenberg , Xiao-Ming Li , Xin Li , Han Sun , Bin-Gui Wang

Marine Life Science & Technology ›› : 1 -11.

PDF
Marine Life Science & Technology ›› : 1 -11. DOI: 10.1007/s42995-025-00294-w
Research Paper

Impact of dispersion correction in DFT-enhanced anisotropic NMR for stereochemical elucidation of flexible marine natural products

Author information +
History +
PDF

Abstract

Although anisotropic NMR spectroscopy has emerged as a powerful method for determining the relative configuration of complex natural products, major challenges persist with structurally flexible molecules. In this study, we conducted a systematic comparative analysis of stereochemical elucidation, combining anisotropic NMR spectroscopy and density functional theory (DFT) calculations on spiroepicoccin B (1) and epicoccin V (2), which were characterized as thiodiketopiperazine marine natural products isolated from the deep-sea-derived fungus Epicoccum nigrum SD-388. For the flexible compound 2, we compared various conformational sampling approaches, including an assessment of the quality of relative energies within the obtained ensembles. We demonstrated the critical role of dispersion correction within DFT computations to precisely account for weak non-bonded intramolecular interactions. By integrating anisotropic NMR analysis, chemical shifts, electronic circular dichroism, and DFT computations, we determined the absolute configurations and conformational ensembles for 1 and 2, respectively, highlighting the significance of the intramolecular methyl–π interaction in stabilizing one of the conformers. Our study introduces new strategies to address conformational flexibility in the stereochemical elucidation of challenging organic molecules.

Keywords

Stereochemical elucidation / Residual dipolar couplings (RDCs) / Residual chemical shifts anisotropy (RCSAs) / TD-DFT calculations / Computer-assisted structural elucidation 3D (CASE-3D) approach

Cite this article

Download citation ▾
Lu-Ping Chi, Xiao-Lu Li, Anton F. Ketzel, Armando Navarro-Vázquez, Caspar J. Schattenberg, Xiao-Ming Li, Xin Li, Han Sun, Bin-Gui Wang. Impact of dispersion correction in DFT-enhanced anisotropic NMR for stereochemical elucidation of flexible marine natural products. Marine Life Science & Technology 1-11 DOI:10.1007/s42995-025-00294-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AntonyJ, GrimmeS. Density functional theory including dispersion correction for intermolecular interactions in a large benchmark set of biologically relevant molecules. Phys Chem Chem Phys, 2006, 8: 5287-5293.

[2]

AroulandaC, LesotP. Molecular enantiodiscrimination by NMR spectroscopy in chiral oriented systems: concept, tools, and applications. Chirality, 2022, 34: 182-244.

[3]

AutschbachJ, Nitsch-VelasquezL, RudolphM. Time-dependent density functional response theory for electronic chiroptical properties of chiral molecules. Top Curr Chem, 2011, 298: 1-98

[4]

BeckeAD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648-5652.

[5]

BeckeAD, JohnsonER. A density-functional model of the dispersion interaction. J Chem Phys, 2005, 123. 154101

[6]

BifulcoG, DambruosoP, Gomez-PalomaL, RiccioR. Determination of relative configuration in organic compounds by NMR spectroscopy and computational methods. Chem Rev, 2007, 107: 3744-3779.

[7]

BrandlM, WeissMS, JabsA, SühnelJ, HilgenfeldR. C-H π-interactions in proteins. J Mol Biol, 2001, 307: 357-377.

[8]

BurschM, MewesJM, HansenA, GrimmeS. Best-practice DFT protocols for basic molecular computational chemistry. Angew Chem Int Ed Engl, 2022, 61. e202205735

[9]

CaldeweyherE, BannwarthC, GrimmeS. Extension of the D3 dispersion coefficient model. J Chem Phys, 2017, 147. 034112

[10]

CancèsE, MennucciB, TomasiJ. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys, 1997, 107: 3032-3041.

[11]

CarrollWR, ZhaoC, SmithMD, PellechiaPJ, ShimizuKD. A molecular balance for measuring aliphatic CH−π interactions. Org Lett, 2011, 13: 4320-4323.

[12]

ChiLP, LiXM, LiX, WangBG. New antibacterial thiodiketopiperazines from the deep sea sediment-derived fungus Epicoccum nigrum SD-388. Chem Biodiv, 2020, 17. e2000320

[13]

ClarkT, ChandrasekharJ, SpitznagelGW, SchleyerPVR. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3–21+G basis set for first-row elements, Li–F. J Comput Chem, 1983, 4: 294-301.

[14]

CornilescuG, AlvarengaRF, WycheTP, BugniTS, GilRR, CornilescuCC, WestlerWM, MarkleyJL, SchwietersCD. Progressive Stereo Locking (PSL): a residual dipolar coupling based force field method for determining the relative configuration of natural products and other small molecules. ACS Chem Biol, 2017, 12: 2157-2163.

[15]

Di PietroME, SternbergU, LuyB. Molecular dynamics with orientational tensorial constraints: a new approach to probe the torsional angle distributions of small rotationally flexible molecules. J Phys Chem B, 2019, 123: 8480-8491.

[16]

EhlertS, GrimmeS, HansenA. Conformational energy benchmark for longer n-alkane chains. J Phys Chem A, 2022, 126: 3521-3535.

[17]

FranclMM, PietroWJ, HehreWJ, BinkleyJS, GordonMS, DeFreesDJ, PopleJA. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys, 1982, 77: 3654-3665.

[18]

GrimblatN, ZanardiMM, SarottiAM. Beyond DP4: an improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J Org Chem, 2015, 80: 12526-12534.

[19]

GrimmeS. Exploration of chemical compound, conformer, and reaction space with meta-dynamics simulations based on tight-binding quantum chemical calculations. J Chem Theory Comput, 2019, 15: 2847-2862.

[20]

GrimmeS, AntonyJ, EhrlichS, KriegH. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys, 2010, 132. 154104

[21]

GrimmeS, HansenA, BrandenburgJG, BannwarthC. Dispersion-corrected mean-field electronic structure methods. Chem Rev, 2016, 116: 5105-5154.

[22]

GrimmeS, BohleF, HansenA, PrachtP, SpicherS, StahnM. Efficient quantum chemical calculation of structure ensembles and free energies for nonrigid molecules. J Chem A, 2021, 125: 4039-4054

[23]

GuanY, Sowndarya ShreeSV, GallegosLC, John StPC, PatonRS. Real-time prediction of (1)H and (13)C chemical shifts with DFT accuracy using a 3D graph neural network. Chem Sci, 2021, 12: 12012-12026.

[24]

HehreW, KlunzingerP, DeppmeierB, DriessenA, UchidaN, HashimotoM, FukushiE, TakataY. Efficient protocol for accurately calculating 13C chemical shifts of conformationally flexible natural products: scope, assessment, and limitations. J Nat Prod, 2019, 82: 2299-2306.

[25]

ImmelS, KöckM, ReggelinM. Configurational analysis by residual dipolar coupling driven floating chirality distance geometry calculations. Chem Eur J, 2018, 24: 13918-13930.

[26]

ImmelS, KöckM, ReggelinM. Bayesian inference applied to NMR-based configurational assignments by floating chirality distance geometry calculations. J Am Chem Soc, 2022, 144: 6830-6838.

[27]

ImmelS, KöckM, ReggelinM. NMR-based configurational assignments of natural products: how floating chirality distance geometry calculations simplify gambling with 2N–1 diastereomers. J Nat Prod, 2022, 85: 1837-1849.

[28]

JohnsonER, BeckeAD. A post-Hartree-Fock model of intermolecular interactions: inclusion of higher-order corrections. J Chem Phys, 2006, 124. 174104

[29]

KoosMRM, Navarro-VázquezA, AnklinC, GilRR. Computer-assisted 3D structure elucidation (CASE-3D): the structural value of 2JCH in addition to 3JCH coupling constants. Angew Chem Int Ed, 2020, 59: 3938-3941.

[30]

KruseH, GoerigkL, GrimmeS. Why the standard B3LYP/6-31G* model chemistry should not be used in DFT calculations of molecular thermochemistry: understanding and correcting the problem. J Org Chem, 2012, 77: 10824-10834.

[31]

LeiX, QiuF, SunH, BaiL, WangWX, XiangW, XiaoH. A self-assembled oligopeptide as a versatile NMR alignment medium for the measurement of residual dipolar couplings in methanol. Angew Chem Int Ed, 2017, 56: 12857-12861.

[32]

LesotP, GilRR, BerdaguéP, Navarro-VázquezA. Deuterium residual quadrupolar couplings: crossing the current frontiers in the relative configuration analysis of natural products. J Nat Prod, 2020, 83: 3141-3148.

[33]

LiXL, ChiLP, Navarro-VázquezA, HwangS, SchmiederP, LiXM, LiX, YangSQ, LeiX, WangBG, SunH. Stereochemical elucidation of natural products from residual chemical shift anisotropies in a liquid crystalline phase. J Am Chem Soc, 2020, 142: 2301-2309.

[34]

LiX, YangX, SunHCassQB, TiritanMB, Batista JuniorJM, BarreiroJC. NMR for stereochemical elucidation. Chiral separations and stereochemical elucidation: Fundamentals, methods, and applications, 20231OxfordWiley505-549.

[35]

LiYH, MándiA, LiHL, LiXM, LiX, MengLH, YangSQ, ShiXS, KurtánT, WangBG. Isolation and characterization of three pairs of verrucosidin epimers from the marine sediment-derived fungus Penicillium cyclopium and configuration revision of penicyrone A and related analogues. Mar Life Sci Tech, 2023, 5: 223-231.

[36]

LiuY, SauríJ, MeversE, PeczuhMW, HiemstraH, ClardyJ, MartinGE, WilliamsonRT. Unequivocal determination of complex molecular structures using anisotropic NMR measurements. Science, 2017, 356: eaam5349.

[37]

LiuY, Navarro-VázquezA, GilRR, GriesingerC, MartinGE, WilliamsonRT. Application of anisotropic NMR parameters to the confirmation of molecular structure. Nat Protoc, 2019, 14: 217-247.

[38]

MarcarinoMO, CicettiS, ZanardiMM, SarottiAM. A critical review on the use of DP4+ in the structural elucidation of natural products: the good, the bad and the ugly. A practical guide. Nat Prod Rep, 2022, 39: 58-76.

[39]

MarenichAV, CramerCJ, TruhlarDG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B, 2009, 113: 6378-6396.

[40]

MayerAMS, GuerreroAJ, RodríguezAD, Taglialatela-ScafatiO, NakamuraF, FusetaniN. Marine pharmacology in 2016–2017: marine compounds with antibacterial, antidiabetic, antifungal, anti-Inflammatory, antiprotozoal, antituberculosis and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs, 2021, 19: 49.

[41]

MorrisGA. Modern NMR techniques for structure elucidation. Magn Reson Chem, 1986, 24: 371-403.

[42]

NathN, Fuentes-MonteverdeJC, Pech-PuchD, RodríguezJ, JiménezC, NollM, KreiterA, ReggelinM, Navarro-VázquezA, GriesingerC. Relative configuration of micrograms of natural compounds using proton residual chemical shift anisotropy. Nat Commun, 2020, 11: 4372.

[43]

Navarro-VázquezA. When not to rely on Boltzmann populations. Automated CASE-3D structure elucidation of hyacinthacines through chemical shift differences. Magn Reson Chem, 2020, 58: 139-144.

[44]

Navarro-VázquezA, GilRR, BlinovK. Computer-assisted 3D structure elucidation (CASE-3D) of natural products combining isotropic and anisotropic NMR parameters. J Nat Prod, 2018, 81: 203-210.

[45]

NiuS, LiuD, ShaoZ, ProkschP, LinW. Eutypellazines A-M, thiodiketopiperazine-type alkaloids from deep sea derived fungus Eutypella sp. MCCC 3A00281. RSC Adv, 2017, 7: 33580-33590.

[46]

PescitelliG, BruhnT. Good computational practice in the assignment of absolute configurations by TDDFT calculations of ECD spectra. Chirality, 2016, 28: 466-474.

[47]

ReggelinM, ImmelS. Configurational analysis by residual dipolar couplings: critical assessment of “Structural Noise” from thermal vibrations. Angew Chem Int Ed, 2021, 60: 3412-3416.

[48]

Rettig J, Brauser M, Thiele CM (2024) In: Yao L, Vogeli B (eds) Residual dipolar couplings: principles and applications. Royal Society of Chemistry

[49]

ŘezáčJ. Non-Covalent Interactions Atlas benchmark data set 5: London dispersion in an extended chemical space. Phys Chem Chem Phys, 2022, 24: 14780-14793.

[50]

ŘezáčJ, BímD, GuttenO, RulíšekL. Toward accurate conformational energies of smaller peptides and medium-sized macrocycles: MPCONF196 Benchmark Energy Data Set. J Chem Theory Comput, 2018, 14: 1254-1266.

[51]

SagerE, TzvetkovaP, GossertAD, PiechonP, LuyB. Determination of configuration and conformation of a reserpine derivative with seven stereogenic centers using molecular dynamics with RDC-derived tensorial constraints. Chem Eur J, 2020, 26: 14435-14444.

[52]

Schrödinger L (2020) MacroModel. New York

[53]

SongZ, HouY, YangQ, LiX, WuS. Structures and biological activities of diketopiperazines from marine organisms: a review. Mar Drugs, 2021, 19: 403.

[54]

SternbergU, TzvetkovaP, Muhle-GollC. The simulation of NMR data of flexible molecules: sagittamide A as an example for MD simulations with orientational constraints. Phys Chem Chem Phys, 2020, 22: 17375-17384.

[55]

SunH, ReinscheidUM, WhitsonEL, d’AuvergneEJ, IrelandCM, Navarro-VázquezA, GriesingerC. Challenge of large-scale motion for residual dipolar coupling based analysis of configuration: the case of fibrosterol sulfate A. J Am Chem Soc, 2011, 133: 14629-14636.

[56]

TakahashiH, TsuboyamaS, UmezawaY, HondaK, NishioM. CH/π Interactions as demonstrated in the crystal structure of Host/Guest compounds. A database study. Tetrahedron, 2000, 56: 6185-6191.

[57]

ThieleCM, SchmidtsV, BöttcherB, LouzaoI, BergerR, MaliniakA, StevenssonB. On the treatment of conformational flexibility when using residual dipolar couplings for structure determination. Angew Chem Int Ed, 2009, 48: 6708-6712.

[58]

TzvetkovaP, SternbergU, GlogeT, Navarro-VázquezA, LuyB. Configuration determination by residual dipolar couplings: accessing the full conformational space by molecular dynamics with tensorial constraints. Chem Sci, 2019, 10: 8774-8791.

[59]

UmezawaY, NishioM. CH/π interactions in the crystal structure of class I MHC antigens and their complexes with peptides. Bioorg Med Chem, 1998, 6: 2507-2515.

[60]

WeigendF, AhlrichsR. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys, 2005, 7: 3297-3305.

[61]

WilloughbyPH, JansmaMJ, HoyeTR. A guide to small-molecule structure assignment through computation of (1H and 13C) NMR chemical shifts. Nat Protoc, 2014, 9: 643-660.

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

167

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/