Ecological diversity and metabolic strategies of widespread Marinisomatota in global oceans

Shizheng Xiang , Jianyang Li , Zhen Chen , Ruolin Cheng , Liping Wang , Libo Yu , Guangshan Wei , Xiangyu Guan , Brandon R. Briggs , Gary King , Hongchen Jiang , Zongze Shao

Marine Life Science & Technology ›› : 1 -14.

PDF
Marine Life Science & Technology ›› : 1 -14. DOI: 10.1007/s42995-025-00293-x
Research Paper

Ecological diversity and metabolic strategies of widespread Marinisomatota in global oceans

Author information +
History +
PDF

Abstract

Marinisomatota (formerly recognized as Marinimicrobia, Marine Group A, and SAR406) are ubiquitous and abundant in marine environments, traditionally characterized as heterotrophic microorganisms. However, certain members of Marinisomatota have demonstrated the capacity to harness light for carbon dioxide fixation and the synthesis of organic compounds, thriving in the translucent zone or transitioning between the translucent and aphotic layers. The metabolic strategies driving the shift in trophic behaviors, and the factors influencing these transitions, remain largely unexplored. In this study, we investigate the metabolic strategies, ecological distribution, and dietary patterns of Marinisomatota through the analysis of metagenomic and metatranscriptomic data sourced from the global open oceans. A total of 1,588 Marinisomatota genomes were retrieved, representing one class, two orders, 14 families, 31 genera, and 67 species. These organisms are predominantly found in low-latitude marine regions, with relative abundances ranging from 0.18 to 36.21%. Among the 14 families, S15-B10, TCS55, UBA1611, UBA2128, and UBA8226 exhibit potential for light-dependent processes associated with Crassulacean acid metabolism (M00169). Three distinct metabolic strategies were identified within Marinisomatota: MS0 (photoautotrophic potential), MS1 (heterotrophic with a pronounced glycolytic pathway), and MS2 (heterotrophic without glycolysis). The emergence of these metabolic strategies may be a response to nutrient limitations within the ocean. This study reveals the potential for mixotrophic strategies in Marinisomatota, underscoring the critical interplay between life history traits and metabolic strategies in the evolution of novel nutritional groups.

Keywords

Marine microorganisms / Mixotrophy / Metabolic strategy / Marinisomatota / Metagenomics / Metatranscriptomics

Cite this article

Download citation ▾
Shizheng Xiang, Jianyang Li, Zhen Chen, Ruolin Cheng, Liping Wang, Libo Yu, Guangshan Wei, Xiangyu Guan, Brandon R. Briggs, Gary King, Hongchen Jiang, Zongze Shao. Ecological diversity and metabolic strategies of widespread Marinisomatota in global oceans. Marine Life Science & Technology 1-14 DOI:10.1007/s42995-025-00293-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AbeF, HorikoshiK. Hydrostatic pressure promotes the acidification of vacuoles in Saccharomyces cerevisiae. FEMS Microbiol Lett, 1995, 130: 307-312.

[2]

AcinasSG, SánchezP, SalazarG, Cornejo-CastilloFM, SebastiánM, LogaresR, Royo-LlonchM, PaoliL, SunagawaS, HingampP, OgataH, Lima-MendezG, RouxS, GonzálezJM, ArrietaJM, AlamIS, KamauA, BowlerC, RaesJ, PesantS, et al. . Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Commun Biol, 2021, 4: 604.

[3]

AllersE, WrightJJ, KonwarKM, HowesCG, BenezeE, HallamSJ, SullivanMB. Diversity and population structure of marine group a bacteria in the northeast subarctic pacific ocean. ISME J, 2013, 7: 256-268.

[4]

Alonso-SáezL, GalandPE, CasamayorEO, Pedrós-AlióC, BertilssonS. High bicarbonate assimilation in the dark by arctic bacteria. ISME J, 2010, 4: 1581-1590.

[5]

ArísteguiJ, GasolJM, DuarteCM, HerndlGJ. Microbial oceanography of the dark ocean’s pelagic realm. Limnol Oceanogr, 2009, 54: 1501-1529.

[6]

BaltarF, ArísteguiJ, GasolJM, LekunberriI, HerndlGJ. Mesoscale eddies: hotspots of prokaryotic activity and differential community structure in the ocean. ISME J, 2010, 4: 975-988.

[7]

BanchiE, CorreE, NegroPD, CelussiM, MalfattiF. Genome-resolved metagenomics of Venice Lagoon surface sediment bacteria reveals high biosynthetic potential and metabolic plasticity as successful strategies in an impacted environment. Mar Life Sci Technol, 2024, 6: 126-142.

[8]

BertagnolliAD, PadillaC, GlassJB, ThamdrupB, StewartFJ. Metabolic potential and in situ activity of marine Marinimicrobia bacteria in an anoxic water column. Environ Microbiol, 2017, 19: 4392-4416.

[9]

BillerSJ, BerubePM, DooleyK, WilliamsM, SatinskyBM, HacklT, HogleSL, CoeA, BergauerK, BoumanHA, BrowningTJ, De CorteD, HasslerC, HulstonD, JacquotJE, MaasEW, ReinthalerT, SintesE, YokokawaT, ChisholmSW. Marine microbial metagenomes sampled across space and time. Sci Data, 2018, 5. 180176

[10]

BirchillAJ, HartnerNT, KundeK, SiemeringB, DanielsC, González-SantanaD, MilneA, UssherSJ, WorsfoldPJ, LeopoldK, PainterSC, LohanMC. The eastern extent of seasonal iron limitation in the high latitude North Atlantic Ocean. Sci Rep, 2019, 9: 1435.

[11]

BlondelVD, GuillaumeJ-L, LambiotteR, LefebvreE. Fast unfolding of communities in large networks. J Stat Mech Theory Exp, 2008, 2008: P10008.

[12]

BowersRM, KyrpidesNC, StepanauskasR, Harmon-SmithM, DoudDFR, ReddyTBK, SchulzF, JarettJK, RiversAR, Eloe-FadroshEA, TringeSG, IvanovaNN, CopelandA, ClumA, BecraftED, MalmstromRR, BirrenBW, PodarM, BorkP, WeinstockGM, et al. . Minimum information about a single amplified genome (Misag) and a metagenome-assembled genome (Mimag) of bacteria and archaea. Nat Biotechnol, 2017, 35: 725-731.

[13]

BreimanL. Random forests. Mach Learn, 2001, 45: 5-32.

[14]

BritoIL. Examining horizontal gene transfer in microbial communities. Nat Rev Microbiol, 2021, 19: 442-453.

[15]

BryantDA, FrigaardN-U. Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol, 2006, 14: 488-496.

[16]

BuchfinkB, XieC, HusonDH. Fast and sensitive protein alignment using DIAMOND. Nat Methods, 2014, 12: 59-60.

[17]

ChaumeilP-A, MussigAJ, HugenholtzP, ParksDH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics, 2019, 36: 1925-1927.

[18]

ChenS, ZhouY, ChenY, GuJ. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34: i884-i890.

[19]

DickGJ, AnantharamanK, BakerBJ, LiM, ReedDC, SheikCS. The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats. Front Microbiol, 2013, 4: 124.

[20]

DringMJ, MakarovVN, SchoschinaEV, LorenzM, LüningK. Influence of ultraviolet-radiation on chlorophyll fluorescence and growth in different life-history stages of three species of Laminaria (Phaeophyta). Mar Biol, 1996, 126: 183-191.

[21]

ErenAM, EsenÖC, QuinceC, VineisJH, MorrisonHG, SoginML, DelmontTO. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ, 2015, 3. e1319

[22]

FalkowskiPG, FenchelTM, DelongEF. The microbial engines that drive earth’s biogeochemical cycles. Science, 2008, 320: 1034-1039.

[23]

FernandesGL, ShenoyBD, DamareSR. Diversity of bacterial community in the oxygen minimum zones of Arabian Sea and Bay of Bengal as deduced by Illumina sequencing. Front Microbiol, 2020, 10. 481205

[24]

FinkelOM, BéjàO, BelkinS. Global abundance of microbial rhodopsins. ISME J, 2013, 7: 448-451.

[25]

FuL, NiuB, ZhuZ, WuS, LiW. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 2012, 28: 3150-3152.

[26]

GanapathyS, VenselaarH, ChenQ, de GrootHJ, HellingwerfKJ, de GripWJ. Retinal-based proton pumping in the near infrared. J Am Chem Soc, 2017, 139: 2338-2344.

[27]

GetzEW, TithiSS, ZhangL, AylwardFO. Parallel evolution of genome streamlining and cellular bioenergetics across the marine radiation of a bacterial phylum. Mbio, 2018.

[28]

HawleyAK, NobuMK, WrightJJ, DurnoWE, Morgan-LangC, SageB, SchwientekP, SwanBK, RinkeC, Torres-BeltránM. Diverse Marinimicrobia bacteria may mediate coupled biogeochemical cycles along eco-thermodynamic gradients. Nat Commun, 2017, 8: 1507.

[29]

Hohmann-MarriottMF, BlankenshipRE. Evolution of photosynthesis. Annu Rev Plant Biol, 2011, 62: 515-548.

[30]

HuangJ-M, WangY. Genomic differences within the phylum Marinimicrobia: from waters to sediments in the Mariana Trench. Mar Genomics, 2020, 50. 100699

[31]

Huerta-CepasJ, ForslundK, CoelhoLP, SzklarczykD, JensenLJ, von MeringC, BorkP. Fast genome-wide functional annotation through orthology assignment by EggNOG-Mapper. Mol Biol Evol, 2016, 34: 2115-2122.

[32]

Huerta-CepasJ, ForslundK, CoelhoLP, SzklarczykD, JensenLJ, Von MeringC, BorkP. Fast genome-wide functional annotation through orthology assignment by Eggnog-Mapper. Mol Biol Evol, 2017, 34: 2115-2122.

[33]

JablonkaE, LambMJEvolution in four dimensions, revised edition: genetic, epigenetic, behavioral, and symbolic variation in the history of life, 2014CambridgeMIT Press.

[34]

JebbarM, FranzettiB, GirardE, OgerP. Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles, 2015, 19: 721-740.

[35]

KatayamaT, NobuMK, ImachiH, HosogiN, MengXY, MorinagaK, YoshiokaH, TakahashiHA, KamagataY, TamakiH. A marine group a isolate relies on other growing bacteria for cell wall formation. Nat Microbiol, 2024, 9: 1954-1963.

[36]

LangmeadB, SalzbergSL. Fast gapped-read alignment with Bowtie 2. Nat Methods, 2012, 9: 357-359.

[37]

LawsonCE, WuS, BhattacharjeeAS, HamiltonJJ, McMahonKD, GoelR, NogueraDR. Metabolic network analysis reveals microbial community interactions in anammox granules. Nat Commun, 2017, 8: 15416.

[38]

LiH, DurbinR. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25: 1754-1760.

[39]

LiaoY, SmythGK, ShiW. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 2013, 30: 923-930.

[40]

LingH, LvYX, ZhangY, ZhouN-Y, XuY. Widespread and active piezotolerant microorganisms mediate phenolic compound degradation under high hydrostatic pressure in hadal trenches. Mar Life Sci Technol, 2024, 6: 331-348.

[41]

LiuR, WangL, LiuQ, WangZ, LiZ, FangJ, ZhangL, LuoM. Depth-resolved distribution of particle-attached and free-living bacterial communities in the water column of the New Britain Trench. Front Microbiol, 2018, 9: 625.

[42]

LiuM, MaW, SuX, ZhangX, LuY, ZhangS, YanJ, FengD, MaL, TaylorA, GeY, ChengQ, XuK, WangY, LiN, GuA, ZhangJ, LuoS, XuanS, ChenX, ScruttonNS, LiC, ZhaoJ, ShenS. Mutation in a chlorophyll-binding motif of Brassica ferrochelatase enhances both heme and chlorophyll biosynthesis. Cell Rep, 2022, 41. 111758

[43]

LiuJW, HuangFY, LiuJ, LiuXY, LinRY, ZhongXS, AustinB, ZhangX-H. Phylotype resolved spatial variation and association patterns of planktonic Thaumarchaeota in eastern Chinese marginal seas. Mar Life Sci Technol, 2023, 5: 257-270.

[44]

LoucaS, HawleyAK, KatsevS, Torres-BeltránM, BhatiaMP, KheirandishS, MichielsCC, CapelleD, LavikG, DoebeliM, CroweSA, HallamSJ. Integrating biogeochemistry with multiomic sequence information in a model oxygen minimum zone. Proc Natl Acad Sci USA, 2016, 113: E5925-E5933.

[45]

LoucaS, JacquesSM, PiresAP, LealJS, SrivastavaDS, ParfreyLW, FarjallaVF, DoebeliM. High taxonomic variability despite stable functional structure across microbial communities. Nat Ecol Evol, 2016, 1: 0015.

[46]

LoucaS, ParfreyLW, DoebeliM. Decoupling function and taxonomy in the global ocean microbiome. Science, 2016, 353: 1272-1277.

[47]

MaldonadoMT, PriceNM. Utilization of iron bound to strong organic ligands by plankton communities in the subarctic Pacific ocean. Deep-Sea Res Part II, 1999, 46: 2447-2473.

[48]

MalikAA, MartinyJBH, BrodieEL, MartinyAC, TresederKK, AllisonSD. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J, 2019, 14: 1-9.

[49]

Martinez-GutierrezCA, AylwardFO. Strong purifying selection is associated with genome streamlining in epipelagic Marinimicrobia. Genome Biol Evol, 2019, 11: 2887-2894.

[50]

Martinez-GutierrezCA, UyedaJC, AylwardFO. A timeline of bacterial and archaeal diversification in the ocean. Elife, 2023, 12: RP88268.

[51]

MilaneseA, MendeDR, PaoliL, SalazarG, RuscheweyhH-J, CuencaM, HingampP, AlvesR, CosteaPI, CoelhoLP, SchmidtTSB, AlmeidaA, MitchellAL, FinnRD, Huerta-CepasJ, BorkP, ZellerG, SunagawaS. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat Commun, 2019, 10: 1014.

[52]

MuckS, De CorteD, CliffordEL, BayerB, HerndlGJ, SintesE. Niche differentiation of aerobic and anaerobic ammonia oxidizers in a high latitude deep oxygen minimum zone. Front Microbiol, 2019, 10. 441939

[53]

NikradMP, CottrellMT, KirchmanDL. Uptake of dissolved organic carbon by Gammaproteobacterial subgroups in coastal waters of the West Antarctic Peninsula. Appl Environ Microbiol, 2014, 80: 3362-3368.

[54]

NunouraT, TakakiY, HiraiM, ShimamuraS, MakabeA, KoideO, KikuchiT, MiyazakiJ, KobaK, YoshidaN, SunamuraM, TakaiK. Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on earth. Proc Natl Acad Sci USA, 2015, 112: E1230-E1236.

[55]

OesterheltD, StoeckeniusW. Functions of a new photoreceptor membrane. Proc Natl Acad Sci USA, 1973, 70: 2853-2857.

[56]

OksanenJ, KindtR, LegendreP, O’HaraB, StevensMH, OksanenMJ, SuggestsM. The vegan package. Commun Ecol, 2007, 10: 719

[57]

OlmMR, BrownCT, BrooksB, BanfieldJF. DRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J, 2017, 11: 2864-2868.

[58]

OlsonDK, YoshizawaS, BoeufD, IwasakiW, DeLongEF. Proteorhodopsin variability and distribution in the North Pacific subtropical gyre. ISME J, 2018, 12: 1047-1060.

[59]

PachiadakiMG, SintesE, BergauerK, BrownJM, RecordNR, SwanBK, MathyerME, HallamSJ, López-GarcíaP, TakakiY, NunouraT, WoykeT, HerndlGJ, StepanauskasR. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science, 2017, 358: 1046-1051.

[60]

PaoliL, RuscheweyhH-J, FornerisCC, HubrichF, KautsarS, BhushanA, LottiA, ClayssenQ, SalazarG, MilaneseA, CarlströmCI, PapadopoulouC, GehrigD, KarasikovM, MustafaH, LarraldeM, CarrollLM, SánchezP, ZayedAA, CroninD, et al. . Biosynthetic potential of the global ocean microbiome. Nature, 2022, 607: 111-118.

[61]

ParksDH, ImelfortM, SkennertonCT, HugenholtzPB, TysonGW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res, 2015, 25: 1043-1055.

[62]

ParksDH, ChuvochinaM, WaiteDW, RinkeC, SkarshewskiA, ChaumeilP-A, HugenholtzP. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol, 2018, 36: 996-1004.

[63]

PengZQ, WangPD, LuoXQ, DengQQ, YangZW, WuJX, XianWD, YanWC, MouXZ, YuanY, LiWJ, LiJL. Community structure and carbon metabolism functions of bacterioplankton in the Guangdong coastal zone. Mar Life Sci Technol, 2024, 6: 547-561.

[64]

PeoplesLM, DonaldsonS, OsuntokunO, XiaQ, NelsonA, BlantonJ, AllenEE, ChurchMJ, BartlettDH. Vertically distinct microbial communities in the Mariana and Kermadec trenches. PLoS One, 2018, 13. e0195102

[65]

PeoplesLM, NorenbergM, PriceD, McGoldrickM, NovotnyM, BochdanskyA, BartlettDH. A full-ocean-depth rated modular lander and pressure-retaining sampler capable of collecting hadal-endemic microbes under in situ conditions. Deep Sea Res Part I, 2019, 143: 50-57.

[66]

ReedDC, AlgarCK, HuberJA, DickGJ. Gene-centric approach to integrating environmental genomics and biogeochemical models. Proc Natl Acad Sci USA, 2014, 111: 1879-1884.

[67]

RichardsonKH, WrightJJ, ŠimėnasM, ThiemannJ, EstevesAM, McGuireG, MyersWK, MortonJJ, HipplerM, NowaczykMM, HankeGT, RoesslerMM. Functional basis of electron transport within photosynthetic complex I. Nat Commun, 2021, 12: 5387.

[68]

Roth RosenbergD, HaberM, GoldfordJ, LalzarM, AharonovichD, Al-AshhabA, LehahnY, SegrèD, SteindlerL, SherD. Particle-associated and free-living bacterial communities in an oligotrophic sea are affected by different environmental factors. Environ Microbiol, 2021, 23: 4295-4308.

[69]

SainiR, KapoorR, KumarR, SiddiqiTO, KumarA. CO2 utilizing microbes—a comprehensive review. Biotechnol Adv, 2011, 29: 949-960.

[70]

SalazarG, PaoliL, AlbertiA, Huerta-CepasJ, RuscheweyhH-J, CuencaM, FieldCM, CoelhoLP, CruaudC, EngelenS. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell, 2019, 1791068–1083e1021

[71]

SeemannT. Prokka: rapid prokaryotic genome annotation. Bioinformatics, 2014, 30: 2068-2069.

[72]

SegataN, BörnigenD, MorganXC, HuttenhowerC. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun, 2013, 4: 2304.

[73]

ShannonCE. A mathematical theory of communication. Bell Syst Tech J, 1948, 27: 379-423.

[74]

SorokinDY. Oxidation of inorganic sulfur compounds by obligately organotrophic bacteria. Microbiology, 2003, 72: 641-653.

[75]

SowSLS, BrownMV, ClarkeLJ, BissettA, van de KampJ, TrullTW, RaesEJ, SeymourJR, BramucciAR, OstrowskiM, BoydPW, DeagleBE, PardoPC, SloyanBM, BodrossyL. Biogeography of Southern Ocean prokaryotes: a comparison of the Indian and Pacific sectors. Environ Microbiol, 2022, 24: 2449-2466.

[76]

SpangA, CaceresEF, EttemaTJ. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science, 2017, 357: eaaf3883.

[77]

SunagawaS, MendeDR, ZellerG, Izquierdo-CarrascoF, BergerSA, KultimaJR, CoelhoLP, ArumugamM, TapJ, NielsenHB, RasmussenS, BrunakS, PedersenO, GuarnerF, de VosWM, WangJ, LiJ, DoréJ, EhrlichSD, StamatakisA, BorkP. Metagenomic species profiling using universal phylogenetic marker genes. Nat Methods, 2013, 10: 1196-1199.

[78]

SunagawaS, CoelhoLP, ChaffronS, KultimaJR, LabadieK, SalazarG, DjahanschiriB, ZellerG, MendeDR, AlbertiA. Structure and function of the global ocean microbiome. Science, 2015, 348: 1261359.

[79]

SwanBK, Martinez-GarciaM, PrestonCM, SczyrbaA, WoykeT, LamyD, ReinthalerT, PoultonNJ, MaslandEDP, GomezML. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science, 2011, 333: 1296-1300.

[80]

TagliabueA, BowieAR, BoydPW, BuckKN, JohnsonKS, SaitoMA. The integral role of iron in ocean biogeochemistry. Nature, 2017, 543: 51-59.

[81]

TatusovaTA, DiCuccioM, BadretdinA, ChetverninV, NawrockiEP, ZaslavskyLY, LomsadzeA, PruittKD, BorodovskyM, OstellJ. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res, 2016, 44: 6614-6624.

[82]

TortellPD, MaldonadoMT, PriceNM. The role of heterotrophic bacteria in iron-limited ocean ecosystems. Nature, 1996, 383: 330-332.

[83]

WrightJJ, MewisK, HansonNW, KonwarKM, MaasKR, HallamSJ. Genomic properties of marine group a bacteria indicate a role in the marine sulfur cycle. ISME J, 2014, 8: 455-468.

[84]

XieJ, ChenY, CaiG, CaiR, HuZ, WangH. Tree visualization by one table (TVBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res, 2023, 51: W587-W592.

[85]

YanM, LiuR, LiY, HippAL, DengM, XiongY. Ancient events and climate adaptive capacity shaped distinct chloroplast genetic structure in the oak lineages. BMC Evol Biol, 2019, 19: 1-14.

[86]

YangY, DouY, WangB, XueZ, WangY, AnS, ChangSX. Deciphering factors driving soil microbial life-history strategies in restored grasslands. Imeta, 2023, 2. e66

[87]

ZhouZ, TranPQ, LiuY, KieftK, AnantharamanK. METABOLIC: a scalable high-throughput metabolic and biogeochemical functional trait profiler based on microbial genomes. bioRxiv, 2019.

RIGHTS & PERMISSIONS

Ocean University of China

AI Summary AI Mindmap
PDF

417

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/