Diverse marine Vibrio species convert methylphosphonate to methane

Shu-Xian Yu , Xiaolei Wang , Yan Wang , Haonan Wang , Jiwen Liu , Wen Hong , Yunhui Zhang , Min Yu , Gui-Ling Zhang , Fabiano Thompson , Xiao-Hua Zhang

Marine Life Science & Technology ›› 2025, Vol. 7 ›› Issue (3) : 492 -506.

PDF
Marine Life Science & Technology ›› 2025, Vol. 7 ›› Issue (3) : 492 -506. DOI: 10.1007/s42995-025-00278-w
Research Paper
research-article

Diverse marine Vibrio species convert methylphosphonate to methane

Author information +
History +
PDF

Abstract

Microbial degradation of methylphosphonate (MPn) is an important pathway contributing to the ‘methane paradox’ in the oxic ocean. Vibrio spp. are suggested to participate in this process. However, little is known about the molecular basis, phylogenetic breadth and catabolic efficiency of methane production in Vibrio species. Here, 18 Vibrionales strains known to be effective in MPn demethylation were obtained. The most effective strains, i.e., Vibrio gallaecicus HW2-07 and HW2-08, can convert 70%–80% of amended MPn into methane in 5 days. Estimations based on quantitative PCR determination indicated that Vibrio spp. were influential contributors to marine methane production. Genes flanking the common phn genes suggested a divergent gene arrangement and grouped the phn operons into nine types. This was consistent with the phylogeny of phnJ and phnL. The phn operons of cluster I and II were identified frequently in Vibrio isolates and were common in coastal seas and the open ocean. Addition of MPn increased expression of the phn genes, as well as an unexpected gene that encodes an acyltransferase (act), which frequently occurred in cluster I–IV operons. This study provided experimental evidence and theoretical support for a further understanding that Vibrio spp. may play important roles in aerobic marine methane production.

Special Topic: Ecology & Environmental Biology.

The online version contains supplementary material available at https://doi.org/10.1007/s42995-025-00278-w.

Keywords

Methylphosphonate demethylation / Aerobic methane production / Marine Vibrio strains / Phn operon

Cite this article

Download citation ▾
Shu-Xian Yu, Xiaolei Wang, Yan Wang, Haonan Wang, Jiwen Liu, Wen Hong, Yunhui Zhang, Min Yu, Gui-Ling Zhang, Fabiano Thompson, Xiao-Hua Zhang. Diverse marine Vibrio species convert methylphosphonate to methane. Marine Life Science & Technology, 2025, 7(3): 492-506 DOI:10.1007/s42995-025-00278-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AmstrupS, OngS, SofosN, KarlsenJ, SkjerningR, BoesenT, EnghildJJ, Hove-JensenB, BrodersenDE. Structural remodelling of the carbon–phosphorus lyase machinery by a dual ABC ATPase. Nat Commun, 2023, 14: 1001-1013.

[2]

ArndtD, GrantJR, MarcuA, SajedT, PonA, LiangY, WishartDS. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res, 2016, 44: W16-W21.

[3]

AshburnerM, BallCA, BlakeJA, BotsteinD, ButlerH, CherryJM, DavisAP, DolinskiK, DwightSS, EppigJT, HarrisMA, HillDP, Issel-TarverL, KasarskisA, LewisS, MateseJC, RichardsonJE, RingwaldM, RubinGM, SherlockG. Gene Ontology: tool for the unification of biology. Nat Genet, 2000, 25: 25-29.

[4]

AzizRK, BartelsD, BestAA, DeJonghM, DiszT, EdwardsRA, FormsmaK, GerdesS, GlassEM, KubalM, MeyerF, OlsenGJ, OlsonR, OstermanAL, OverbeekRA, McNeilLK, PaarmannD, PaczianT, ParrelloB, PuschGD, et al.. The RAST Server: rapid annotations using subsystems technology. BMC Genomics, 2008, 975.

[5]

BertelliC, LairdMR, WilliamsKPSimon Fraser University Research Computing GroupLauBY, HoadG, WinsorGL, BrinkmanFSL. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res, 2017, 45: W30-W35.

[6]

BeversdorfLJ, WhiteAE, BjörkmanKM, LetelierRM, KarlDM. Phosphonate metabolism by Trichodesmium IMS101 and the production of greenhouse gases. Limnol Oceanogr, 2010, 55: 1768-1778.

[7]

BornDA, UlrichEC, JuKS, PeckSC, van der DonkWA, DrennanCL. Structural basis for methylphosphonate biosynthesis. Science, 2017, 358: 1336-1339.

[8]

CariniP, WhiteAE, CampbellEO, GiovannoniSJ. Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria. Nat Commun, 2014, 54346.

[9]

ChenCM, YeQZ, ZhuZM, WannerBL, WalshCT. Molecular biology of carbon-phosphorus bond cleavage. J Biol Chem, 1990, 265: 4461-4471.

[10]

Consortium TU. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res, 2020, 49: D480-D489.

[11]

DrakeH, AstromME, HeimC, BromanC, AstromJ, WhitehouseM, IvarssonM, SiljeströmS, SjövallP. Extreme 13C depletion of carbonates formed during oxidation of biogenic methane in fractured granite. Nat Commun, 2015, 67020.

[12]

FarmerJJ, JandaJM, BrennerFW, CameronDN, BirkheadKMBrennerDJ, KreigNR, StaleyJT. Genus I. Vibrio Pacini 1854. Bergey’s manual of systematic bacteriology, 2005, New York. Springer Science Business Media. 494546

[13]

FillgroveKL, PakhomovaS, SchaabMR, NewcomerME, ArmstrongRN. Structure and mechanism of the genomically encoded fosfomycin resistance protein, FosX, from Listeria monocytogenes. Biochemistry, 2007, 46: 8110-8120.

[14]

GiegerichR, MeyerF, SchleiermacherC. GeneFisher–software support for the detection of postulated genes. Proc Int Conf Intell Syst Mol Biol, 1996, 4: 68-77

[15]

GunthelM, DonisD, KirillinG, IonescuD, BizicM, McGinnisDF, GrossartH-P, TangKW. Reply to 'Oxic methanogenesis is only a minor source of lake-wide diffusive CH4 emissions from lakes'. Nat Commun, 2021, 121205.

[16]

HiltS, GrossartHP, McGinnisDF, KepplerF. Potential role of submerged macrophytes for oxic methane production in aquatic ecosystems. Limnol Oceanogr, 2022, 67: S76-S88.

[17]

HuangJ, SuZ, XuY. The evolution of microbial phosphonate degradative pathways. J Mol Evol, 2005, 61: 682-690.

[18]

JiangC, TanakaM, NishikawaS, MinoS, RomaldeJL, ThompsonFL, Gomez-GilB, SawabeT. Vibrio Clade 3.0: New Vibrionaceae evolutionary units using genome-based approach. Curr Microbiol, 2022, 79: 1-15.

[19]

KamatSS, WilliamsHJ, DangottLJ, ChakrabartiM, RaushelFM. The catalytic mechanism for aerobic formation of methane by bacteria. Nature, 2013, 497: 132-136.

[20]

KanehisaM, SatoY, KawashimaM, FurumichiM, TanabeM. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res, 2015, 44: D457-D462.

[21]

KarlDM, BeversdorfL, BjörkmanKM, ChurchMJ, MartinezA, DelongEF. Aerobic production of methane in the sea. Nat Geosci, 2008, 1: 473-478.

[22]

KieneRPRogersJE, WhitmanWB. Production and consumption of methane in aquatic systems. Microbial production and consumption of greenhouse gases: methane, nitrogen oxides and halomethanes, 1991, Washington, DC. American Society for Microbiology. 111146

[23]

KumarS, StecherG, LiM, KnyazC, TamuraK. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35: 1547-1549.

[24]

LangmeadB, TrapnellC, PopM, SalzbergSL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 2009, 10R25.

[25]

Le RouxF, BlokeschM. Eco-evolutionary dynamics linked to horizontal gene transfer in vibrios. Annu Rev Microbiol, 2018, 72: 89-110.

[26]

LiB, DeweyCN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform, 2011, 12323.

[27]

LiangJC, LiuJW, ZhanYC, ZhouS, XueCX, SunC, LinY, LuoC, WangX, ZhangX-H. Succession of marine bacteria in response to Ulva prolifera-derived dissolved organic matter. Environ Int, 2021, 155. 106687

[28]

LinH, YuM, WangX, ZhangX-H. Comparative genomic analysis reveals the evolution and environmental adaptation strategies of vibrios. BMC Genomics, 2018, 19135.

[29]

LiuY, WhitmanW. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann NY Acad Sci, 2008, 1125: 171-189.

[30]

LiuD, BaiJ, SongS, ZhangJ, SunP, LiY, HanG. The impact of sewage discharge on the macroalgae community in the Yellow Sea coastal area around Qingdao, China. Water Air Soil Pollut Focus, 2007, 7683.

[31]

MartinezA, VentourasLA, WilsonST, KarlDM, DelongEF. Metatranscriptomic and functional metagenomic analysis of methylphosphonate utilization by marine bacteria. Front Microbiol, 2013, 4340.

[32]

Meier-KolthoffJP, AuchAF, KlenkH-P, GökerM. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform, 2013, 1460.

[33]

MetcalfWW, WannerBL. Evidence for a fourteen-gene, phnC to phnP locus for phosphonate metabolism in Escherichia coli. Gene, 1993, 129: 27-32.

[34]

MetcalfWW, WannerBL. Mutational analysis of an Escherichia coli fourteen-gene operon for phosphonate degradation, using TnphoA' elements. J Bacteriol, 1993, 175: 3430-3442.

[35]

MetcalfWW, GriffinBM, CicchilloRM, GaoJ, JangaSC, CookeHA, CircelloBT, EvvansBS, Martens-HabbenaW, StahlDA, Van Der DonkWA. Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean. Science, 2012, 337: 1104-1107.

[36]

MooreCM, MillsMM, ArrigoKR, Berman-FrankI, BoppL, BoydPW, GalbraithED, GeiderRJ, GuieuC, JaccardSL, JickellsTD, RocheJL, LentonTM, MahowaldNM, MarañónE, MarinovI, MooreJK, NakatsukaT, OschliesA, SaitoMA, et al.. Processes and patterns of oceanic nutrient limitation. Nat Geosci, 2013, 6: 701-710.

[37]

PruittKD, TatusovaT, MaglottDR. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res, 2005, 33: D501-D504.

[38]

ReeburghWS. Oceanic methane biogeochemistry. Chem Rev, 2007, 107: 486-513.

[39]

RepetaDJ, FerrónS, SosaOA, JohnsonCG, RepetaLD, AckerM, DeLongEF, KarlDM. Marine methane paradox explained by bacterial degradation of dissolved organic matter. Nat Geosci, 2016, 9: 884-887.

[40]

RuppelCD, KesslerJD. The interaction of climate change and methane hydrates. Rev Geophys, 2017, 55: 126-168.

[41]

SosaOA, RepetaDJ, FerronS, BryantJA, MendeDR, KarlDM, DeLongEF. Isolation and characterization of bacteria that degrade phosphonates in marine dissolved organic matter. Front Microbiol, 2017, 81786.

[42]

SosaOA, RepetaDJ, DeLongEF, AshkezariMD, KarlDM. Phosphate-limited ocean regions select for bacterial populations enriched in the carbon-phosphorus lyase pathway for phosphonate degradation. Environ Microbiol, 2019, 21: 2402-2414.

[43]

StosiekN, TalmaM, Klimek-OchabM. Carbon-phosphorus lyase-the state of the art. Appl Biochem Biotechnol, 2020, 190: 1525-1552.

[44]

SunMS, ZhangGL, MaX, CaoXP, MaoXY, LiJ, YeWW, LiuSM. Dissolved methane in the East China Sea: distribution, seasonal variation and emission. Mar Chem, 2018, 202: 12-26.

[45]

SunagawaS, CoelhoLP, ChaffronS, KultimaJR, LabadieK, SalazarG, DjahanschiriB, ZellerG, MendeDR, AlbertiA, Cornejo-CastilloFM, CosteaPI, CruaudC, D'ovidioF, EngelenS, FerreraI, GasolJM, GuidiL, HildebrandF, KokoszkaF, et al.. Structure and function of the global ocean microbiome. Science, 2015, 3481261359.

[46]

TanakaM, KumakuraD, MinoS, DoiH, OguraY, HayashiT, YumotoI, CaiM, ZhouY-G, Gomez-GilB, ArakiT, SawabeT. Genomic characterization of closely related species in the Rumoiensis clade infers ecogenomic signatures to non-marine environments. Environ Microbiol, 2020, 22: 3205-3217.

[47]

TatusovRL, GalperinMY, NataleDA, KooninEV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res, 2000, 28: 33-36.

[48]

ThompsonJR, PolzMFThompsonFL, AustinB, SwingsJ. Dynamics of Vibrio populations and their role in environmental nutrient cycling. The biology of vibrios, 2006, Washington D C. American Society of Microbiology. 190203.

[49]

ThompsonJD, HigginsDG, GibsonTJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994, 22: 4673-4680.

[50]

ThompsonFL, AustinB, SwingsJThe biology of vibrios, 2006, Washington DC. American Society of Microbiology. .

[51]

TjadenB. A computational system for identifying operons based on RNA-seq data. Methods, 2020, 176: 62-70.

[52]

TrapnellC, WilliamsBA, PerteaG, MortazaviA, KwanG, Van BarenMJ, SalzbergSL, WoldBJ, PachterL. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010, 28: 511-515.

[53]

UlrichEC, KamatSS, Hove-JensenB, ZechelDL. Methylphosphonic acid biosynthesis and catabolism in pelagic Archaea and Bacteria. Methods Enzymol, 2018, 605: 351-426.

[54]

VezzulliL, BrettarI, PezzatiE, ReidPC, ColwellRR, HofleMG, PruzzoC. Long-term effects of ocean warming on the prokaryotic community: evidence from the vibrios. ISME J, 2012, 6: 21-30.

[55]

WangQ, DoreJE, McDermottTR. Methylphosphonate metabolism by Pseudomonas sp. populations contributes to the methane oversaturation paradox in an oxic freshwater lake. Environ Microbiol, 2017, 19: 2366-2378.

[56]

WangS, ZhangY, HeJ, JiaX, LinJ, LiM, WangQ. Molecular analyses of bacterioplankton communities with highly abundant Vibrio clades: a case study in Bohai Sea coastal waters. J Oceanol Limnol, 2019, 37: 1638-1648.

[57]

WangX, LiuJ, LiangJ, SunH, ZhangX-H. Spatiotemporal dynamics of the total and active Vibrio spp. populations throughout the Changjiang estuary in China. Environ Microbiol, 2020, 22: 4438-4455.

[58]

WhiteAK, MetcalfWW. Microbial metabolism of reduced phosphorus compounds. Annu Rev Microbiol, 2007, 61: 379-400.

[59]

WickRR, JuddLM, GorrieCL, HoltKE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol, 2017, 13. e1005595

[60]

YeW, ZhangG, ZhuZ, HuangD, HanY, WangL, SunM. Methane distribution and sea-to-air flux in the East China Sea during the summer of 2013: impact of hypoxia. Deep-Sea Res II Top Stud Oceanogr, 2016, 124: 74-83.

[61]

YeW, WangX, ZhangX-H, ZhangG. Methane production in oxic seawater of the western North Pacific and its marginal seas. Limnol Oceanogr, 2020, 65: 2352-2365.

[62]

YoonSH, HaSM, LimJ, KwonS, ChunJ. A large-scale evaluation of algorithms to calculate average nucleotide identity. Ant Leeuwenhoek, 2017, 110: 1281-1286.

[63]

YoonSH, HaSM, KwonS, LimJ, KimY, SeoH, ChunJ. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol, 2017, 67: 1613-1617.

[64]

ZhangG, ZhangJ, XuJ, RenJ, LiuS. Distributions, land-source input and atmospheric fluxes of methane in Jiaozhou Bay. Water Air Soil Pollut Focus, 2007, 7: 645-654.

[65]

ZhangX-H, LinH, WangX, AustinB. Significance of Vibrio species in the marine organic carbon cycle - a review. Sci China Earth Sci, 2018, 61: 1357-1368.

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/