Trans-4-hydroxy-L-proline catabolism by Pseudomonadota in the ocean

Yan Wang , Zhen Wang , Wen-Xiao Zhao , Xiao-Jie Yuan , Yang Yu , Peng Wang , Min Wang , Andrew McMinn , Yu-Zhong Zhang , Ming Peng , Hui-Hui Fu , Xiu-Lan Chen

Marine Life Science & Technology ›› : 1 -16.

PDF
Marine Life Science & Technology ›› : 1 -16. DOI: 10.1007/s42995-024-00272-8
Research Paper

Trans-4-hydroxy-L-proline catabolism by Pseudomonadota in the ocean

Author information +
History +
PDF

Abstract

Free trans-4-hydroxy-L-proline (T4LHyp), a non-proteinogenic amino acid, is mainly released from the degradation of collagen, hydroxyproline-rich glycoproteins, and some peptide antibiotics in nature. Although it has been known that some terrestrial bacteria utilize T4LHyp as carbon and nitrogen source via a T4LHyp gene cluster, which and how marine microorganisms catabolize T4LHyp still remains unclear. Here, five T4LHyp-utilizing marine bacterial strains, Halomonas sp. 5021, Salinicola sp. 4072, Alteromonas sp. 6022, Alteromonas sp. 5112 and Alteromonas sp. 30521, were isolated from hydrothermal vent sediment samples collected from the southwest Indian Ocean. While Halomonas sp. 5021 can utilize T4LHyp as both a nitrogen and carbon source, the other four strains can utilize T4LHyp as only a nitrogen source. Then, the T4LHyp catabolic mechanisms of Halomonas sp. 5021 and Salinicola sp. 4072, as a representative of the four strains, were further investigated by genomic, transcriptional, and biochemical analyses. Halomonas sp. 5021 adopts an intact T4LHyp gene cluster containing four enzymes to catabolize T4LHyp into NH3 and α-ketoglutarate to provide nitrogen and carbon sources for its growth. Compared to Halomonas sp. 5021, Salinicola sp. 4072 lacks an α-KGSA dehydrogenase gene in the T4LHyp gene cluster and can only catabolize T4LHyp into NH3 and α-ketoglutarate semialdehyde to provide a nitrogen source for its growth. Bioinformatic investigation showed that the 5021-like and 4072-like T4LHyp gene clusters are predominantly found in bacteria from Pseudomonadota, which are widely distributed in multiple marine habitats. Thus, Pseudomonadota bacteria are likely the dominant group to drive the recycling and mineralization of T4LHyp in the ocean.

Cite this article

Download citation ▾
Yan Wang, Zhen Wang, Wen-Xiao Zhao, Xiao-Jie Yuan, Yang Yu, Peng Wang, Min Wang, Andrew McMinn, Yu-Zhong Zhang, Ming Peng, Hui-Hui Fu, Xiu-Lan Chen. Trans-4-hydroxy-L-proline catabolism by Pseudomonadota in the ocean. Marine Life Science & Technology 1-16 DOI:10.1007/s42995-024-00272-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams E, Frank L. Metabolism of proline and the hydroxyprolines Annu Rev Biochem, 1980, 49: 1005-1061.

[2]

Backman LR, Huang YY, Andorfer MC, Gold B, Raines RT, Balskus EP, Drennan CL. Molecular basis for catabolism of the abundant metabolite trans-4-hydroxy-L-proline by a microbial glycyl radical enzyme Elife, 2020, 9. e51420

[3]

Chen YG, Xiao HD, Tang SK, Zhang YQ, Borrathybay E, Cui XL, Li WJ, Liu YQ. Alteromonas halophila sp. nov., a new moderately halophilic bacterium isolated from a sea anemone Antonie Van Leeuwenhoek, 2009, 96: 259-266.

[4]

Chen S, White CE, diCenzo GC, Zhang Y, Stogios PJ, Savchenko A, Finan TM. L-hydroxyproline and D-proline catabolism in Sinorhizobium meliloti J Bacteriol, 2016, 198: 1171-1181.

[5]

Gryder RM, Adams E. Inducible degradation of hydroxyproline in Pseudomonas putida: pathway regulation and hydroxyproline uptake J Bacteriol, 1969, 97: 292-306.

[6]

Hara R, Kino K. Enzymatic reactions and microorganisms producing the various isomers of hydroxyproline Appl Microbiol Biotechnol, 2020, 104: 4771-4779.

[7]

Haste NM, Perera VR, Maloney KN, Tran DN, Jensen P, Fenical W, Nizet V, Hensler ME. Activity of the streptogramin antibiotic etamycin against methicillin-resistant Staphylococcus aureus J Antibiot (Tokyo), 2010, 63: 219-224.

[8]

Hu S, He W, Wu G. Hydroxyproline in animal metabolism, nutrition, and cell signaling Amino Acids, 2022, 54: 513-528.

[9]

Huang YY, Martínez-Del Campo A, Balskus EP. Anaerobic 4-hydroxyproline utilization: discovery of a new glycyl radical enzyme in the human gut microbiome uncovers a widespread microbial metabolic activity Gut Microbes, 2018, 9: 437-451

[10]

Johnson KL, Cassin AM, Lonsdale A, Wong GK, Soltis DE, Miles NW, Melkonian M, Melkonian B, Deyholos MK, Leebens-Mack J, Rothfels CJ, Stevenson DW, Graham SW, Wang X, Wu S, Pires JC, Edger PP, Carpenter EJ, Bacic A, Doblin MS, Schultz CJ. Insights into the evolution of hydroxyproline-rich glycoproteins from 1000 plant transcriptomes Plant Physiol, 2017, 174: 904-921.

[11]

Jorgensen NOG, Middelboe M. Occurrence and bacterial cycling of D-amino acid isomers in an estuarine environment Biogeochemistry, 2006, 81: 77-94.

[12]

Kaiser K, Benner R. Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen Limnol Oceanogr, 2008, 53: 1192-1192.

[13]

Kim KK, Jin L, Yang HC, Lee ST. Halomonas gomseomensis sp. nov., Halomonas janggokensis sp. nov., Halomonas salaria sp. nov. and Halomonas denitrificans sp. nov., moderately halophilic bacteria isolated from saline water Int J Syst Evol Microbiol, 2007, 57: 675-681.

[14]

Kim KH, Jia B, Jeon CO. Identification of trans-4-hydroxy-L-proline as a compatible solute and its biosynthesis and molecular characterization in Halobacillus halophilus Front Microbiol, 2017, 8: 2054.

[15]

Levin BJ, Huang YY, Peck SC, Wei Y, Martínez-Del Campo A, Marks JA, Franzosa EA, Huttenhower C, Balskus EP. A prominent glycyl radical enzyme in human gut microbiomes metabolizes trans-4-hydroxy-l-proline Science, 2017, 355. eaai8386

[16]

Li G, Lu CD. Molecular characterization of LhpR in control of hydroxyproline catabolism and transport in Pseudomonas aeruginosa PAO1 Microbiology, 2016, 162: 1232-1242.

[17]

Maclean AM, White CE, Fowler JE, Finan TM. Identification of a hydroxyproline transport system in the legume endosymbiont Sinorhizobium meliloti Mol Plant Microbe Interact, 2009, 22: 1116-1127.

[18]

Moe LA. Amino acids in the rhizosphere: from plants to microbes Am J Bot, 2013, 100: 1692-1705.

[19]

Ogawa-Ohnishi M, Matsushita W, Matsubayashi Y. Identification of three hydroxyproline O-arabinosyltransferases in Arabidopsis thaliana Nat Chem Biol, 2013, 9: 726-730.

[20]

Satomura T, Ishikura M, Koyanagi T, Sakuraba H, Ohshima T, Suye S. Dye-linked D-amino acid dehydrogenase from the thermophilic bacterium Rhodothermus marinus JCM9785: characteristics and role in trans-4-hydroxy-L-proline catabolism Appl Microbiol Biotechnol, 2015, 99: 4265-4275.

[21]

Shoulders MD, Raines RT. Collagen structure and stability Annu Rev Biochem, 2009, 78: 929-958.

[22]

Singh RM, Adams E. Enzymatic deamination of delta-1-pyrroline-4-hydroxy-2-carboxylate to 2,5-dioxovalerate (alpha-ketoglutaric semialdehyde) J Biol Chem, 1965, 240: 4344-4351.

[23]

Van Trappen S, Tan TL, Yang J, Mergaert J, Swings J. Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas Int J Syst Evol Microbiol, 2004, 54: 1157-1163.

[24]

Velasquez SM, Ricardi MM, Dorosz JG, Fernandez PV, Nadra AD, Pol-Fachin L, Egelund J, Gille S, Harholt J, Ciancia M, Verli H, Pauly M, Bacic A, Olsen CE, Ulvskov P, Petersen BL, Somerville C, Iusem ND, Estevez JM. O-glycosylated cell wall proteins are essential in root hair growth Science, 2011, 332: 1401-1403.

[25]

Vinothkumar KR, Smits SH, Kühlbrandt W. pH-induced structural change in a sodium/proton antiporter from Methanococcus jannaschii EMBO J, 2005, 24: 2720-2729.

[26]

Vranova V, Rejsek K, Skene KR, Formanek P. Non-protein amino acids: plant, soil and ecosystem interactions Plant Soil, 2011, 342: 31-48.

[27]

Wang Y, Su HN, Cao HY, Liu SM, Liu SC, Zhang X, Wang P, Li CY, Zhang YZ, Zhang XY, Chen XL. Mechanistic insight into the fragmentation of type I collagen fibers into peptides and amino acids by a Vibrio collagenase Appl Environ Microbiol, 2022, 88. e0167721

[28]

Watanabe S, Yamada M, Ohtsu I, Makino K. alpha-ketoglutaric semialdehyde dehydrogenase isozymes involved in metabolic pathways of D-glucarate, D-galactarate, and hydroxy-L-proline: Molecular and metabolic convergent evolution J Biol Chem, 2007, 282: 6685-6695.

[29]

Watanabe S, Morimoto D, Fukumori F, Shinomiya H, Nishiwaki H, Kawano-Kawada M, Sasai Y, Tozawa Y, Watanabe Y. Identification and characterization of D-hydroxyproline dehydrogenase and delta-1-pyrroline-4-hydroxy-2-carboxylate deaminase involved in novel L-hydroxyproline metabolism of bacteria: metabolic convergent evolution J Biol Chem, 2012, 287: 32674-32688.

[30]

Watanabe S, Hiraoka Y, Endo S, Tanimoto Y, Tozawa Y, Watanabe Y. An enzymatic method to estimate the content of L-hydroxyproline J Biotechnol, 2015, 199: 9-16.

[31]

Watanabe S, Fukumori F, Miyazaki M, Tagami S, Watanabe Y. Characterization of a novel cis-3-hydroxy-L-proline dehydratase and a trans-3-hydroxy-L-proline dehydratase from bacteria J Bacteriol, 2017, 199: e00255-e317.

[32]

Weinbauer MG. Ecology of prokaryotic viruses FEMS Microbiol Rev, 2004, 28: 127-181.

[33]

White CE, Gavina JM, Morton R, Britz-McKibbin P, Finan TM. Control of hydroxyproline catabolism in Sinorhizobium meliloti Mol Microbiol, 2012, 85: 1133-1147.

[34]

Yoneya T, Adams E. Hydroxyproline metabolism: V. Inducible allohydroxy-D-proline oxidase of Pseudomonas J Biol Chem, 1961, 236: 3272-3279.

[35]

Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies Int J Syst Evol Microbiol, 2017, 67: 1613-1617.

[36]

Yu Y, Yang J, Teng ZJ, Zheng LY, Sheng Q, Li PY, Fu HH, Li CY, Chen Y, Zhang YZ, Ding JM, Chen XL. D-alanine metabolism via D-Ala aminotransferase by a marine Gammaproteobacterium, Pseudoalteromonas sp. strain CF6–2 Appl Environ Microbiol, 2022, 88. e0221921

[37]

Yu Y, Wang P, Cao HY, Teng ZJ, Zhu Y, Wang M, McMinn A, Chen Y, Xiang H, Zhang YZ, Chen XL, Zhang YQ. Novel D-glutamate catabolic pathway in marine Proteobacteria and halophilic archaea ISME J, 2023, 17: 537-548.

[38]

Zhao S, Sakai A, Zhang X, Vetting MW, Kumar R, Hillerich B, San Francisco B, Solbiati J, Steves A, Brown S, Akiva E, Barber A, Seidel RD, Babbitt PC, Almo SC, Gerlt JA, Jacobson MP. Prediction and characterization of enzymatic activities guided by sequence similarity and genome neighborhood networks Elife, 2014, 3. e03275

[39]

Zheng LY, Liu NH, Zhong S, Yu Y, Zhang XY, Qin QL, Song XY, Zhang YZ, Fu H, Wang M, McMinn A, Chen XL, Li PY. Diaminopimelic acid metabolism by Pseudomonadota in the ocean Microbiol Spectr, 2022, 10. e0069122

RIGHTS & PERMISSIONS

Ocean University of China

AI Summary AI Mindmap
PDF

207

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/