PDF
Abstract
Tiny unicellular cyanobacteria or picocyanobacteria (0.5–3 µm) are important due to their ecological significance. Chesapeake Bay is a temperate estuary that contains abundant and diverse picocyanobacteria. Studies of Chesapeake Bay picocyanobacteria in the past 20 years led to the finding of new members of subcluster 5.2 Synechococcus. They laid the foundation for revealing the ecophysiology, biogeography, genomics, and molecular evolution of picocyanobacterial in the Chesapeake Bay and other coastal estuaries. The Bay picocyanobacteria are known to better tolerate the changes in temperature, salinity, and heavy metals compared to their coastal and open-ocean counterparts. Many picocyanobacteria isolated from the Bay contain rich toxin–antitoxin (TA) genes, suggesting that the TA system may provide them with a genetic advance to cope with variable estuarine environments. Distinct winter and summer picocyanobacteria are present in the Bay, suggesting a dynamic seasonal shift of the picocyanobacterial community in the temperate estuary. While the Bay contains subcluster 5.2 Synechococcus, it also contains freshwater Synechococcus, Cyanobium, and marine Synechococcus due to river influx and the ocean’s tidal influence. Some Chesapeake Bay picocyanobacterial clades were found in the Bering Sea and Chukchi Sea, showing a link between the Bay and polar picocyanobacteria. Genomic sequences of estuarine picocyanobacteria provide new insight into the taxonomy and evolution of freshwater, estuarine, and marine unicellular cyanobacteria. Estuaries connect freshwater and marine ecosystems. This overview attempts to extend what we learned from Chesapeake Bay picocyanobacteria to picocyanobacteria in freshwater and marine waters.
Keywords
Picocyanobacteria
/
Chesapeake Bay
/
Synechococcus
/
Subcluster 5.2
/
Estuary
Cite this article
Download citation ▾
Feng Chen.
Picocyanobacteria in the Chesapeake Bay: isolation, diversity, and adaptation.
Marine Life Science & Technology, 2025, 7(3): 434-449 DOI:10.1007/s42995-024-00271-9
| [1] |
Affronti LF (1990) Seasonal and diel patterns of abundance and productivity of phototrophic picoplankton in the lower Chesapeake Bay. Doctoral Dissertation Old Dominion University, Norfolk, Virginia, p 141
|
| [2] |
AffrontiLF, MarshallHG. Diel abundance and productivity patterns of autotrophic picoplankton in the lower Chesapeake Bay. J Plankton Res, 1993, 15: 1-8.
|
| [3] |
AffrontiLF, MarshallHG. Using frequency of dividing cells in estimating autotrophic picoplankton growth and productivity in the Chesapeake Bay. Hydrobiologia, 1994, 284: 193-203.
|
| [4] |
AhlgrenNA, RocapG. Culture isolation and culture-independent clone libraries reveal new marine Synechococcus ecotypes with distinctive light and N physiologies. Appl Environ Microbiol, 2006, 72: 7193-7204.
|
| [5] |
AhlgrenNA, RocapG. Diversity and distribution of marine Synechococcus: Multiple gene phylogenies for consensus classification and development of qPCR assays for sensitive measurement of clades in the ocean. Front Microbiol, 2012, 3213.
|
| [6] |
BalabanNQ. Persistence: mechanisms for triggering and enhancing phenotypic variability. Curr Opin Genet Dev, 2011, 21: 768-775.
|
| [7] |
BoyntonWR, GarberJH, SummersR, KempWM. Inputs, transformations, and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries. Estuaries, 1995, 18: 285-314.
|
| [8] |
BrahamshaB. A genetic manipulation system for oceanic cyanobacteria of the genus Synechococcus. Appl Environ Microbiol, 1996, 62: 1747-1751.
|
| [9] |
Cabello-YevesPJ, CallieriC, PicazoA, SchallenbergL, HuberP, Roda-GarciaJJ, BartosiewiczM, BelykhOI, TikhonovaIV, Torcello-RequenaA, De PradoPM, PuxtyRJ, MillardAD, CamachoA, Rodriguez-ValeraF, ScanlanSJ. Elucidating the picocyanobacteria salinity divide through ecogenomics of new freshwater isolates. BMC Biol, 2022, 20175.
|
| [10] |
Cabello-YevesPJ, Haro-MorenoJM, Martin-CuadradoA-B, GhaiR, PicazoA, CamachoA, Rodriguez-ValeraF. Novel Synechococcus genomes reconstructed from freshwater reservoirs. Front Microbiol, 2017, 81151.
|
| [11] |
CaiHY, WangK, HuangSJ, JiaoNZ, ChenF. Shift of picocyanobacterial populations between winter and summer in Chesapeake Bay. Appl Environ Microbiol, 2010, 76: 2955-2960.
|
| [12] |
CallieriC. Synechococcus plasticity under environmental changes. FEMS Microbiol Lett, 2017.
|
| [13] |
CallieriC, AmicucciE, BertoniR, VörösL. Fluorometric characterization of two picocyanobacteria strains from lakes of different underwater light quality. Int Rev Gesamten Hydrobiol, 1996, 81: 13-23.
|
| [14] |
CallieriC, CociM, CornoG, MacekM, ModenuttiB, BalseiroE, BeroniR. Phylogenetic diversity of nonmarine picocyanobacteria. FEMS Microbiol Ecol, 2013, 85: 293-301.
|
| [15] |
CampbellL, CarpenterEJ. Characterization of phycoerythrin-containing Synechococcus spp. populations by immunofluorescence. J Plankton Res, 1987, 9: 1167-1181.
|
| [16] |
ChenF, WangK, KanJ, BachoonDS, LuJR, LauS, CampbellL. Phylogenetic diversity of Synechococcus in the Chesapeake Bay revealed by ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) large subunit gene (rbcL) sequences. Aquat Microb Ecol, 2004, 36: 153-164.
|
| [17] |
ChenF, WangK, KanJ, SuzukiM, WommackE. Diverse and unique picocyanobacteria found in the Chesapeake Bay. Appl Environ Microbiol, 2006, 72: 2239-2243.
|
| [18] |
ChenY, TatonA, GoM, LondonRE, PieperLM, GoldenSS, GolderJW. Self-replicating shuttle vectors based on PANS, a small endogenous plasmid of the unicellular cyanobacterium Synechococcus elongatus PCC 7942. Microbiology, 2016, 162: 2029-2041.
|
| [19] |
ChisholmSW, OlsonRJ, ZettlerER, GoerickeR, WaterburyJB, WelschmeyerNA. A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature, 1988, 334: 340-343.
|
| [20] |
ChoiDH, NohJH. Phylogenetic diversity of Synechococcus strains isolated from the East China Sea and the East Sea. FEMS Microbiol Ecol, 2009, 69: 439-448.
|
| [21] |
CoutinhoF, TschoekeDA, ThompsonF, ThompsonC. Comparative genomics of Synechococcus and proposal of the new genus Parasynechococcus. Peer J, 2016, 144. e1522
|
| [22] |
CoutinhoF, DutilhBE, ThompsonC, ThompsonF. Proposal of fifteen new species of Parasynechococcus based on genomic, physiological and ecological features. Arch Microbiol, 2016, 198: 973-986.
|
| [23] |
CrosbieND, PocklM, WeisseT. Dispersal and phylogenetic diversity of nonmarine picocyanobacteria, inferred from 16S rRNA gene and cpcBA-intergenic spacer sequence analyses. Appl Environ Microbiol, 2003, 69: 5716-5721.
|
| [24] |
Di CesareA, Cabello-YevesPJ, ChrismasNA, Sánchez-BaracaldoP, SalcherMM, CallieriC. Genome analysis of the freshwater planktonic Vulcanococcus limneticus sp. nov. reveals horizontal transfer of nitrogenase operon and alternative pathways of nitrogen utilization. BMC Genom, 2018, 19: 1-12.
|
| [25] |
DoréH, FarrantGK, GuyetU, HaguaitJ, HumilyF, RatinM, PittFD, OstrowskiM, SixC, Brillet-GuéguenL, HoebekeM. Evolutionary mechanisms of long-term genome diversification associated with niche partitioning in marine picocyanobacteria. Front Microbiol, 2020, 11. 567431
|
| [26] |
DuJ, ShenJ. Water residence time in Chesapeake Bay for 1980–2012. J Mar Syst, 2016, 164: 101-111.
|
| [27] |
DufresneA, SalanoubatM, PartenskyF, ArtiguenaveF, AxmannIM, BarbeV, DupratS, GalperinMY, KooninEV, Le GallF, Makarova. Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc Natl Aca Sci USA, 2003, 100: 10020-10025.
|
| [28] |
DufresneA, OstrowskiM, ScanlanDJ, GarczarekL, MazardS, PalenikBP, PaulsenIT, de MarsacNT, WinckerP, DossatC, FerrieraS, JohnsonJ, PostAF, HessWR, PartenskyF. Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol, 2008, 95. R90
|
| [29] |
ErnstA, BeckerS, WollenzienUIA, PostiusC. Ecosystem-dependent adaptive radiations of picocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis. Microbiology, 2003, 149: 217-228.
|
| [30] |
ErnstA, MarschallP, PostiusC. Genetic diversity among Synechococcus spp. (cyanobacteria) isolated from the pelagic of Lake Constance. FEMS Microbiol Eco, 1995, l17: 197-204.
|
| [31] |
EverroadRC, WoodAM. Phycoerythrin evolution and diversification of spectral phenotype in marine Synechococcus and related picocyanobacteria. Mol Phylogenet Evol, 2012, 64: 381-392.
|
| [32] |
FerrisMJ, PalenikB. Niche adaptation in ocean cyanobacteria. Nature, 1998, 396: 226-228.
|
| [33] |
FlombaumP, GallegosJL, GordilloRA, RinconJ, ZabalaLL, JiaoNZ, KarlDM, LiWKW, LomasMW, VenezianoD, VeraCS, VrugtJA, MartinyAC. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA, 2013, 110: 9824-9829.
|
| [34] |
FraikinN, GoormaghtighF, Van MelderenL. Type II toxin-antitoxin systems: evolution and revolutions. J Bacteriol, 2020, 202(7): e00763-e819.
|
| [35] |
Fucich D (2020) Toxin-antitoxin and cold stress response systems in picocyanobacteria and their ecological implications. Dissertation, University of Maryland College Park
|
| [36] |
FucichD, ChenF. Presence of toxin-antitoxin systems in Synechococcus and their ecological implications. ISME J, 2020, 14: 2843-2850.
|
| [37] |
FucichD, MarsanD, SosaA, ChenF. Complete genome sequence of subcluster 5.2 Synechococcus sp. strain CB0101, isolated from the Chesapeake Bay. Microbiol Resour Announc, 2019, 8: e00484-e519.
|
| [38] |
FucichD, XuY, SosaA, JiaY, ZhangR, JiaoN, ChenF. Complete genome sequences of Chesapeake Bay Synechococcus strains CBW1002 and CBW1006 isolated in winter. Genome Biol Evol, 2021, 13evab009.
|
| [39] |
FucichD, XuY, SosaA, ZhangR, JiaoNJ, ChenF. Complete genome sequence of Chesapeake Bay winter Synechococcus strain CBW1107, a member of the subalpine cluster II. Microbiol Resour Announc, 2021, 10: e01399-e1420.
|
| [40] |
FullerNJ, WilsonWH, JointIR, MannNH. Occurrence of a sequence in marine cyanophages similar to that of T4 g20 and its application to PCR-based detection and quantification techniques. Appl Environ Microbiol, 1998, 64: 2051-2060.
|
| [41] |
Goclaw-BinderH, SenderskyE, ShimoniE, KissV, ReichZ, PerelmanA, SchwarzR. Nutrient-associated elongation and asymmetric division of the cyanobacterium Synechococcus PCC 7942. Environ Microbiol, 2012, 14: 680-690.
|
| [42] |
GoerickeR, WelschmeyerNA. The marine prochlorophyte Prochlorococcus contributes significantly to phytoplankton biomass and primary production in the Sargasso Sea. Deep Sea Res, 1993, 40: 2283-2294.
|
| [43] |
HardingJLW, MalloneeME, PerryES, MillerWD, AdolfJE, GallegosCL, PaerlHW. Variable climatic conditions dominate recent phytoplankton dynamics in Chesapeake Bay. Sci Rep, 2016, 623773.
|
| [44] |
HarmsA, BrodersenDE, MitaraiN, GerdesK. Toxins, targets, and triggers: an overview of toxin-antitoxin biology. Mol Cell, 2018, 70: 768-784.
|
| [45] |
HaverkampTH, AcinasSG, DoelemanM, StompM, HuismanJ, StalLJ. Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons. Environ Microbiol, 2008, 10: 174-188.
|
| [46] |
HaverkampTH, SchoutenD, DoelemanM, WollenzienU, HuismanJ, StalLJ. Colorful microdiversity of Synechococcus strains (picocyanobacteria) isolated from the Baltic Sea. ISME J, 2009, 3: 397-408.
|
| [47] |
HerdmanM, CastenholzRW, WaterburyJB, RippkaRBooneDR, CastenholzRW. Form-genus XIII. Synechococcus. Bergey’s manual of systematic bacteriology, 2001, New York. Springer-Verlag. 508512
|
| [48] |
HondaD, YokotaA, SugiyamaJ. Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol, 1999, 48: 723-739.
|
| [49] |
HuangS, LiuY, HuA, LiuX, ChenF, YaoT, JiaoN. Genetic diversity of picocyanobacteria in Tibetan lakes: assessing the endemic and universal distributions. Appl Environ Microbiol, 2014, 80: 7640-7650.
|
| [50] |
HuangS, WilhelmSW, HarveyHR, TaylorK, JiaoNZ, ChenF. Novel lineages of Prochlorococcus and Synechococcus in the global oceans. ISME J, 2012, 6: 285-297.
|
| [51] |
Hunter-CeveraKR, PostAF, PeacockEE, SosikHM. Diversity of Synechococcus at the Martha’s Vineyard Coastal Observatory: insights from culture isolations, clone libraries, and flow cytometry. Microb Ecol, 2016, 71: 276-289.
|
| [52] |
IvanikovaNV, PopelsLC, McKayRM, BullerjahnGS. Lake Superior supports novel clusters of cyanobacterial picoplankton. Appl Environ Microbiol, 2007, 73: 4055-4065.
|
| [53] |
JasserI, KrólickaA, Karnkowska-IshikawaA. A novel phylogenetic clade of picocyanobacteria from the Mazurian lakes (Poland) reflects the early ontogeny of glacial lakes. FEMS Microbiol Ecol, 2011, 75: 89-98.
|
| [54] |
JezberováJ, KomárkováJ. Morphological transformation in a freshwater Cyanobium sp. induced by grazers. Environ Microbiol, 2007, 9: 1858-1862.
|
| [55] |
JingH, LiuH, SuzukiK. Phylogenetic diversity of marine Synechococcus spp. in the Sea of Okhotsk. Aquat Microbial Ecol, 2009, 56: 55-63.
|
| [56] |
JohnsonPW, SieburthJM. Chroococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass. Limnol Oceanogr, 1979, 24: 928-935.
|
| [57] |
KanJ, CrumpBC, WangK, ChenF. Bacterioplankton community in Chesapeake Bay: predictable or random assemblages. Limnol Oceanogr, 2006, 51: 2157-2169.
|
| [58] |
KanJ, SuzukiMT, WangK, EvansSE, ChenF. High temporal but low spatial heterogeneity of bacterioplankton in the Chesapeake Bay. Appl Environ Microbiol, 2007, 73: 6776-6789.
|
| [59] |
KanekoT, NakamuraY, SasamotoS, WatanabeA, KoharaM, MatsumotoM, ShimpoS, YamadaM, TabataS. Structural analysis of four large plasmids harboring in a unicellular cyanobacterium, Synechocystis sp. PCC 6803. DNA Res, 2003, 10: 221-228.
|
| [60] |
KarlusichJJP, IbarbalzFM, BowlerC. Phytoplankton in the Tara ocean. Annu Rev Mar Sci, 2020, 12: 233-265.
|
| [61] |
KomárekJ, JohansenJR, ŠmardaJ, Otakar StruneckýO. Phylogeny and taxonomy of Synechococcus-like cyanobacteria. Fottea, 2020, 20: 171-191.
|
| [62] |
KumarS, StecherG, TamuraK. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
|
| [63] |
LarssonJ, CelepliN, IninbergsK, DupontCL, YoosephS, BergmanB, EkmanM. Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea. ISME J, 2014, 8: 1892-1903.
|
| [64] |
LewisK. Persister cells. Annu Rev Microbiol, 2010, 64: 357-372.
|
| [65] |
LiWKW. Primary production of prochlorophytes, cyanobacteria, and eukaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnol Oceanogr, 1994, 39: 169-175.
|
| [66] |
LiWGW, WoodM. Vertical distribution of North Atlantic ultraplankton: analysis by flow cytometry and epifluorescence microscopy. Deep Sea Res, 1988, 35: 1615-1638.
|
| [67] |
LiuHB, NollaHA, CampbellL. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat Microb Ecol, 1997, 12: 39-47.
|
| [68] |
LuJ, ChenF, HodsonRE. Distribution, isolation, host specificity, and diversity of cyanophages infecting marine Synechococcus spp. in river estuaries. Appl Environ Microbiol, 2001, 67: 3285-3290.
|
| [69] |
MackeyKRM, Hunter-CeveraK, BrittenGL, MurphyLG, SoginML, HuberJA. Seasonal succession and spatial patterns of Synechococcus microdiversity in a salt marsh estuary revealed through 16S rRNA gene oligotyping. Front Microbiol, 2017, 81496.
|
| [70] |
MaedaH, KawaiA, TilzerMM. The water bloom of cyanobacterial picoplankton in Lake Biwa, Japan. Hydrobiologia, 1992, 248: 93-103.
|
| [71] |
MakarovaKS, WolfYI, KooninEV. Comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol Direct, 2009, 419.
|
| [72] |
MaloneT, DucklowH, PeeleE, PikeS. Picoplankton carbon flux in Chesapeake Bay. Mar Ecol Prog Ser, 1991, 78: 11-22.
|
| [73] |
Marsan D (2016) Adaptive mechanisms of an estuarine Synechococcus based on genomics, transcriptomics, and proteomics. Doctoral dissertation, University of Maryland, College Park pp 29–139
|
| [74] |
MarsanD, PlaceA, FucichD, ChenF. Toxin-antitoxin systems in estuarine Synechococcus strain CB0101 and their 3 transcriptomic responses to environmental stressors. Front Microbiol, 2017, 81213.
|
| [75] |
MarsanD, WommackKE, RavelJ, ChenF. Draft genome sequence of Synechococcus sp. strain CB0101, isolated from the Chesapeake Bay estuary. Genome Announc, 2014, 2: e01111-e1113.
|
| [76] |
McCarthyJJ, TaylorWR, LoftusME. Significance of nanoplankton in the Chesapeake Bay estuary and problems associated with the measurement of nanoplankton productivity. Mar Biol, 1974, 24: 7-16.
|
| [77] |
NübelU, Garcia-PichelF, MuyzerG. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol, 1997, 63: 3327-3332.
|
| [78] |
OlsonRJ, ChisholmSW, ZettlerER, AltabetM, DusenberryJ. Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean. Deep Sea Res, 1990, 3710331051
|
| [79] |
PageR, PetiW. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nature Chem Biol, 2016, 12: 208-214.
|
| [80] |
PalenikB, BrahamshaB, LarimerFW, LandM, HauserL, ChainP, LamerdinJ, RegalaW, AllenEE, MccarrenJ. The genome of a motile marine Synechococcus. Nature, 2003, 424: 1037-1042.
|
| [81] |
PalenikB, RenQ, DupontCL, MyersGS, HeidelbergJF, BadgerJH, MadupuR, NelsonWC, BrinkacLM, DodsonRJ, DurkinAS. Genome sequence of Synechococcus CC9311: Insights into adaptation to a coastal environment. Proc Natl Acad Sci USA, 2006, 103: 13555-13559.
|
| [82] |
PandeyDP, GerdesK. Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res, 2005, 33: 966-976.
|
| [83] |
PartenskyF, HessWR, VaulotD. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev, 1999, 63: 106-127.
|
| [84] |
PlattT, RaoDVS, IrwinB. Photosynthesis of picoplankton in the oligotrophic ocean. Nature, 1983, 301: 702-704.
|
| [85] |
RayRT, HaasLH, SierackiME. Autotrophic picoplankton dynamics in a Chesapeake Bay sub-estuary. Mar Ecol Prog Ser, 1989, 52: 273-285.
|
| [86] |
RippkaR, DeruellesJ, WaterburyJB. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol, 1979, 111: 1-61
|
| [87] |
RobertsonBR, TezukaN, WatanabeMW. Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int J Syst Evol Microbiol, 2001, 51: 861-871.
|
| [88] |
RocapG, DistelDL, WaterburyJB, ChisholmSW. Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S–23S ribosomal DNA internal transcribed spacer sequences. Appl Environ Microbiol, 2002, 68: 1180-1191.
|
| [89] |
RodheJ, WinsorP. On the influence of the freshwater supply on the Baltic Sea mean salinity. Tellus, 2002, 54A: 175-186.
|
| [90] |
SalazarVW, TschoekeDA, SwingsJ, CosenzaCA, MattosoM, ThompsonCC, ThompsonFL. A new genomic taxonomy system for the Synechococcus collective. Environ Microbiol, 2020, 22: 4557-4570.
|
| [91] |
Sánchez-BaracaldoP. Origin of marine planktonic cyanobacteria. Sci Rep, 2015, 517418.
|
| [92] |
Sánchez-BaracaldoP, BianchiniG, Di CesareA, CallieriC, ChrismasNAM. Insights into the evolution of picocyanobacteria and phycoerythrin genes (mpeBA and cpeBA). Front Microbiol, 2019, 10: 1-17.
|
| [93] |
Sánchez-BaracaldoP, HandleyBA, HayesPK. Picocyanobacterial community structure of freshwater lakes and the Baltic Sea revealed by phylogenetic analyses and clade-specific quantitative PCR. Microbiology, 2008, 154: 3347-3357.
|
| [94] |
Sanchez-BaracaldoP, HayesP, BlankC. Morphological and habitat evolution in the Cyanobacteria using a compartmentalization approach. Geobiology, 2005, 3: 145-165.
|
| [95] |
ScanlanDJWhittonB. Marine picocyanobacteria. Ecology of cyanobacteria II, 2012Springer. 503533.
|
| [96] |
ScanlanDJ, OstrowskiM, MazardS, DufresneA, GarczarekL, HessWR, PostAF, HagemannM, PaulsenI, PartenskyF. Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev, 2009, 73: 249-299.
|
| [97] |
ScanlanDJ, WestNJ. Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. FEMS Microbiol Ecol, 2002, 40: 1-12.
|
| [98] |
SchopfJWWhittonBA, PottsM. The fossil record: tracing the roots of the cyanobacterial lineage. The ecology of cyanobacteria: their diversity in time and space, 2000, Dordrecht. Kluwer Academic Publishers. 1335
|
| [99] |
SchubelJR, PritchardDW. Responses of upper Chesapeake Bay to variations in discharge of the Susquehanna River. Estuaries Coasts, 1986, 9: 236-249.
|
| [100] |
SharpJH, YoshiyamaK, ParkerAE, SchwartzMC, CurlessSE, BeauregardAY, OssolinskiJE, DavisAR. A biogeochemical view of estuarine eutrophication: Seasonal and spatial trends and correlations in the Delaware Estuary. Estuaries Coasts, 2009, 32: 1023-1043.
|
| [101] |
StanierRY, KunisawaR, MandelM, Cohen-BazirgeG. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev, 1971, 35: 171-205.
|
| [102] |
TamuraK, PetersonD, PetersonN, StecherG, NeiM, KumarS. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28: 2731-2739.
|
| [103] |
ToledoG, PalenikB. Synechococcus diversity in the California Current as seen by RNA polymerase (rpoC1) gene sequences of isolated strains. Appl Environ Microbiol, 1997, 63: 4298-4303.
|
| [104] |
ToledoG, PalenikB, BrahamshaB. Swimming marine Synechococcus strains with widely different photosynthetic pigment ratios form a monophyletic group. Appl Environ Microbiol, 1999, 65: 5247-5251.
|
| [105] |
TschoekeD, SalazarVW, VidalL, CampeãoM, SwingsJ, ThompsonF, ThompsonC. Unlocking the genomic taxonomy of the Prochlorococcus collective. Microb Ecol, 2020, 80: 546-558.
|
| [106] |
UnterholznerSJ, PoppenbergerB, RozhonW. Toxin–antitoxin systems. Mob Genet Elem, 2013, 35.
|
| [107] |
UrbachE, DistelD, ScanlanDJ, WaterburyJB, ChisholmSW. Rapid diversification of marine picophytoplankton with dissimilar light harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (Cyanobacteria). J Mol Evol, 1998, 46: 188-201.
|
| [108] |
WangHL, ZhangCL, ChenF, KanJJ. Spatial and temporal variations of bacterioplankton in the Chesapeake Bay: a re-examination with high-throughput sequencing analysis. Limnol Oceanogr, 2020, 65: 3032-3045.
|
| [109] |
Wang K (2007) Biology and ecology of Synechococcus and their viruses in the Chesapeake Bay. Dissertation, University of Maryland College Park pp 26–183
|
| [110] |
WangK, ChenF. Prevalence of highly host-specific cyanophages in the estuarine environment. Environ Microbiol, 2008, 10: 300-312.
|
| [111] |
WangK, WommackKE, ChenF. Abundance and distribution of Synechococcus and cyanophages in the Chesapeake Bay. Appl Environ Microbiol, 2011, 77: 7459-7468.
|
| [112] |
WalterJM, CoutinhoFH, DutilhBE, SwingsJ, ThompsonFL, ThompsonCC. Ecogenomics and taxonomy of cyanobacteria phylum. Front Microbiol, 2017, 82132.
|
| [113] |
WaterburyJB, RippkaRKreigNR, HoltJB. The order Chroococcales. Bergey's manual of systematic bacteriology, 1989, New York. Williams and Wilkens. 172817463
|
| [114] |
WaterburyJB, WatsonSW, GuillardRL, BrandLE. Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium. Nature, 1979, 277: 293-294.
|
| [115] |
WaterburyJB, WatsonSW, ValoisFW, FranksDGPlattT, LiWKW. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Photosynthetic picoplankton, 1986, Toronto. Can Bull Fish Aquat Sci. 71120
|
| [116] |
WaterburyJB, WilleyJM. Isolation and growth of marine planktonic cyanobacteria. Methods Enzymol, 1988, 167: 100-105.
|
| [117] |
WolfeJJ, CunninghamB, WilkersonNF, BarnesJT. An investigation of the microplankton of Chesapeake Bay. J Elisha Mitchell Scient Soc, 1926, 42: 25-54
|
| [118] |
XiaX, GuoW, TanS, LiuHB. Synechococcus assemblages across the salinity gradient in a salt wedge estuary. Front Microbiol, 2017, 81254.
|
| [119] |
XiaX, VidyarathnaNK, PalenikB, LeeP, LiuH. Comparison of the seasonal variations of Synechococcus assemblage structures in Estuarine Waters and Coastal Waters of Hong Kong. Appl Environ Microbiol, 2015, 81: 7644-7655.
|
| [120] |
XuYL, JiaoNZ, ChenF. Novel psychrotolerant picocyanobacteria isolated from Chesapeake Bay in the winter. J Phycol, 2015, 51: 782-790.
|
| [121] |
ZufiaJA, LegrandC, FarnelidH. Seasonal dynamics in picocyanobacterial abundance and clade composition at coastal and offshore stations in the Baltic Sea. Sci Rep, 2022, 1214330.
|
| [122] |
ZwirglmaierK, JardillierL, OstrowskiM, MazardS, GarczarekL, VaulotD, NotF, MassanaR, UlloaO, ScanlanDJ. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol, 2008, 10: 147-161.
|
RIGHTS & PERMISSIONS
The Author(s)