Picocyanobacteria in the Chesapeake Bay: isolation, diversity, and adaptation

Feng Chen

Marine Life Science & Technology ›› 2025

Marine Life Science & Technology ›› 2025 DOI: 10.1007/s42995-024-00271-9
Review

Picocyanobacteria in the Chesapeake Bay: isolation, diversity, and adaptation

Author information +
History +

Abstract

Tiny unicellular cyanobacteria or picocyanobacteria (0.5–3 µm) are important due to their ecological significance. Chesapeake Bay is a temperate estuary that contains abundant and diverse picocyanobacteria. Studies of Chesapeake Bay picocyanobacteria in the past 20 years led to the finding of new members of subcluster 5.2 Synechococcus. They laid the foundation for revealing the ecophysiology, biogeography, genomics, and molecular evolution of picocyanobacterial in the Chesapeake Bay and other coastal estuaries. The Bay picocyanobacteria are known to better tolerate the changes in temperature, salinity, and heavy metals compared to their coastal and open-ocean counterparts. Many picocyanobacteria isolated from the Bay contain rich toxin–antitoxin (TA) genes, suggesting that the TA system may provide them with a genetic advance to cope with variable estuarine environments. Distinct winter and summer picocyanobacteria are present in the Bay, suggesting a dynamic seasonal shift of the picocyanobacterial community in the temperate estuary. While the Bay contains subcluster 5.2 Synechococcus, it also contains freshwater Synechococcus, Cyanobium, and marine Synechococcus due to river influx and the ocean’s tidal influence. Some Chesapeake Bay picocyanobacterial clades were found in the Bering Sea and Chukchi Sea, showing a link between the Bay and polar picocyanobacteria. Genomic sequences of estuarine picocyanobacteria provide new insight into the taxonomy and evolution of freshwater, estuarine, and marine unicellular cyanobacteria. Estuaries connect freshwater and marine ecosystems. This overview attempts to extend what we learned from Chesapeake Bay picocyanobacteria to picocyanobacteria in freshwater and marine waters.

Cite this article

Download citation ▾
Feng Chen. Picocyanobacteria in the Chesapeake Bay: isolation, diversity, and adaptation. Marine Life Science & Technology, 2025 https://doi.org/10.1007/s42995-024-00271-9

References

Affronti LF (1990) Seasonal and diel patterns of abundance and productivity of phototrophic picoplankton in the lower Chesapeake Bay. Doctoral Dissertation Old Dominion University, Norfolk, Virginia, p 141
Affronti LF, Marshall HG. Diel abundance and productivity patterns of autotrophic picoplankton in the lower Chesapeake Bay J Plankton Res, 1993, 15: 1-8.
CrossRef Google scholar
Affronti LF, Marshall HG. Using frequency of dividing cells in estimating autotrophic picoplankton growth and productivity in the Chesapeake Bay Hydrobiologia, 1994, 284: 193-203.
CrossRef Google scholar
Ahlgren NA, Rocap G. Culture isolation and culture-independent clone libraries reveal new marine Synechococcus ecotypes with distinctive light and N physiologies Appl Environ Microbiol, 2006, 72: 7193-7204.
CrossRef Google scholar
Ahlgren NA, Rocap G. Diversity and distribution of marine Synechococcus: Multiple gene phylogenies for consensus classification and development of qPCR assays for sensitive measurement of clades in the ocean Front Microbiol, 2012, 3: 213.
CrossRef Google scholar
Balaban NQ. Persistence: mechanisms for triggering and enhancing phenotypic variability Curr Opin Genet Dev, 2011, 21: 768-775.
CrossRef Google scholar
Boynton WR, Garber JH, Summers R, Kemp WM. Inputs, transformations, and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries Estuaries, 1995, 18: 285-314.
CrossRef Google scholar
Brahamsha B. A genetic manipulation system for oceanic cyanobacteria of the genus Synechococcus Appl Environ Microbiol, 1996, 62: 1747-1751.
CrossRef Google scholar
Cabello-Yeves PJ, Callieri C, Picazo A, Schallenberg L, Huber P, Roda-Garcia JJ, Bartosiewicz M, Belykh OI, Tikhonova IV, Torcello-Requena A, De Prado PM, Puxty RJ, Millard AD, Camacho A, Rodriguez-Valera F, Scanlan SJ. Elucidating the picocyanobacteria salinity divide through ecogenomics of new freshwater isolates BMC Biol, 2022, 20: 175.
CrossRef Google scholar
Cabello-Yeves PJ, Haro-Moreno JM, Martin-Cuadrado A-B, Ghai R, Picazo A, Camacho A, Rodriguez-Valera F. Novel Synechococcus genomes reconstructed from freshwater reservoirs Front Microbiol, 2017, 8: 1151.
CrossRef Google scholar
Cai HY, Wang K, Huang SJ, Jiao NZ, Chen F. Shift of picocyanobacterial populations between winter and summer in Chesapeake Bay Appl Environ Microbiol, 2010, 76: 2955-2960.
CrossRef Google scholar
Callieri C. Synechococcus plasticity under environmental changes FEMS Microbiol Lett, 2017.
CrossRef Google scholar
Callieri C, Amicucci E, Bertoni R, Vörös L. Fluorometric characterization of two picocyanobacteria strains from lakes of different underwater light quality Int Rev Gesamten Hydrobiol, 1996, 81: 13-23.
CrossRef Google scholar
Callieri C, Coci M, Corno G, Macek M, Modenutti B, Balseiro E, Beroni R. Phylogenetic diversity of nonmarine picocyanobacteria FEMS Microbiol Ecol, 2013, 85: 293-301.
CrossRef Google scholar
Campbell L, Carpenter EJ. Characterization of phycoerythrin-containing Synechococcus spp. populations by immunofluorescence J Plankton Res, 1987, 9: 1167-1181.
CrossRef Google scholar
Chen F, Wang K, Kan J, Bachoon DS, Lu JR, Lau S, Campbell L. Phylogenetic diversity of Synechococcus in the Chesapeake Bay revealed by ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) large subunit gene (rbcL) sequences Aquat Microb Ecol, 2004, 36: 153-164.
CrossRef Google scholar
Chen F, Wang K, Kan J, Suzuki M, Wommack E. Diverse and unique picocyanobacteria found in the Chesapeake Bay Appl Environ Microbiol, 2006, 72: 2239-2243.
CrossRef Google scholar
Chen Y, Taton A, Go M, London RE, Pieper LM, Golden SS, Golder JW. Self-replicating shuttle vectors based on PANS, a small endogenous plasmid of the unicellular cyanobacterium Synechococcus elongatus PCC 7942 Microbiology, 2016, 162: 2029-2041.
CrossRef Google scholar
Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB, Welschmeyer NA. A novel free-living prochlorophyte abundant in the oceanic euphotic zone Nature, 1988, 334: 340-343.
CrossRef Google scholar
Choi DH, Noh JH. Phylogenetic diversity of Synechococcus strains isolated from the East China Sea and the East Sea FEMS Microbiol Ecol, 2009, 69: 439-448.
CrossRef Google scholar
Coutinho F, Tschoeke DA, Thompson F, Thompson C. Comparative genomics of Synechococcus and proposal of the new genus Parasynechococcus Peer J, 2016, 14(4. e1522
CrossRef Google scholar
Coutinho F, Dutilh BE, Thompson C, Thompson F. Proposal of fifteen new species of Parasynechococcus based on genomic, physiological and ecological features Arch Microbiol, 2016, 198: 973-986.
CrossRef Google scholar
Crosbie ND, Pockl M, Weisse T. Dispersal and phylogenetic diversity of nonmarine picocyanobacteria, inferred from 16S rRNA gene and cpcBA-intergenic spacer sequence analyses Appl Environ Microbiol, 2003, 69: 5716-5721.
CrossRef Google scholar
Di Cesare A, Cabello-Yeves PJ, Chrismas NA, Sánchez-Baracaldo P, Salcher MM, Callieri C. Genome analysis of the freshwater planktonic Vulcanococcus limneticus sp. nov. reveals horizontal transfer of nitrogenase operon and alternative pathways of nitrogen utilization BMC Genom, 2018, 19: 1-12.
CrossRef Google scholar
Doré H, Farrant GK, Guyet U, Haguait J, Humily F, Ratin M, Pitt FD, Ostrowski M, Six C, Brillet-Guéguen L, Hoebeke M. Evolutionary mechanisms of long-term genome diversification associated with niche partitioning in marine picocyanobacteria Front Microbiol, 2020, 11. 567431
CrossRef Google scholar
Du J, Shen J. Water residence time in Chesapeake Bay for 1980–2012 J Mar Syst, 2016, 164: 101-111.
CrossRef Google scholar
Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann IM, Barbe V, Duprat S, Galperin MY, Koonin EV, Le Gall F, Makarova. Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome Proc Natl Aca Sci USA, 2003, 100: 10020-10025.
CrossRef Google scholar
Dufresne A, Ostrowski M, Scanlan DJ, Garczarek L, Mazard S, Palenik BP, Paulsen IT, de Marsac NT, Wincker P, Dossat C, Ferriera S, Johnson J, Post AF, Hess WR, Partensky F. Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria Genome Biol, 2008, 9 5. R90
CrossRef Google scholar
Ernst A, Becker S, Wollenzien UIA, Postius C. Ecosystem-dependent adaptive radiations of picocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis Microbiology, 2003, 149: 217-228.
CrossRef Google scholar
Ernst A, Marschall P, Postius C. Genetic diversity among Synechococcus spp. (cyanobacteria) isolated from the pelagic of Lake Constance FEMS Microbiol Eco, 1995, l17: 197-204.
CrossRef Google scholar
Everroad RC, Wood AM. Phycoerythrin evolution and diversification of spectral phenotype in marine Synechococcus and related picocyanobacteria Mol Phylogenet Evol, 2012, 64: 381-392.
CrossRef Google scholar
Ferris MJ, Palenik B. Niche adaptation in ocean cyanobacteria Nature, 1998, 396: 226-228.
CrossRef Google scholar
Flombaum P, Gallegos JL, Gordillo RA, Rincon J, Zabala LL, Jiao NZ, Karl DM, Li WKW, Lomas MW, Veneziano D, Vera CS, Vrugt JA, Martiny AC. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus Proc Natl Acad Sci USA, 2013, 110: 9824-9829.
CrossRef Google scholar
Fraikin N, Goormaghtigh F, Van Melderen L. Type II toxin-antitoxin systems: evolution and revolutions J Bacteriol, 2020, 202 7): e00763-e819.
CrossRef Google scholar
Fucich D (2020) Toxin-antitoxin and cold stress response systems in picocyanobacteria and their ecological implications. Dissertation, University of Maryland College Park
Fucich D, Chen F. Presence of toxin-antitoxin systems in Synechococcus and their ecological implications ISME J, 2020, 14: 2843-2850.
CrossRef Google scholar
Fucich D, Marsan D, Sosa A, Chen F. Complete genome sequence of subcluster 5.2 Synechococcus sp. strain CB0101, isolated from the Chesapeake Bay Microbiol Resour Announc, 2019, 8: e00484-e519.
CrossRef Google scholar
Fucich D, Xu Y, Sosa A, Jia Y, Zhang R, Jiao N, Chen F. Complete genome sequences of Chesapeake Bay Synechococcus strains CBW1002 and CBW1006 isolated in winter Genome Biol Evol, 2021, 13: evab009.
CrossRef Google scholar
Fucich D, Xu Y, Sosa A, Zhang R, Jiao NJ, Chen F. Complete genome sequence of Chesapeake Bay winter Synechococcus strain CBW1107, a member of the subalpine cluster II Microbiol Resour Announc, 2021, 10: e01399-e1420.
CrossRef Google scholar
Fuller NJ, Wilson WH, Joint IR, Mann NH. Occurrence of a sequence in marine cyanophages similar to that of T4 g20 and its application to PCR-based detection and quantification techniques Appl Environ Microbiol, 1998, 64: 2051-2060.
CrossRef Google scholar
Goclaw-Binder H, Sendersky E, Shimoni E, Kiss V, Reich Z, Perelman A, Schwarz R. Nutrient-associated elongation and asymmetric division of the cyanobacterium Synechococcus PCC 7942 Environ Microbiol, 2012, 14: 680-690.
CrossRef Google scholar
Goericke R, Welschmeyer NA. The marine prochlorophyte Prochlorococcus contributes significantly to phytoplankton biomass and primary production in the Sargasso Sea Deep Sea Res, 1993, 40: 2283-2294.
CrossRef Google scholar
Harding JLW, Mallonee ME, Perry ES, Miller WD, Adolf JE, Gallegos CL, Paerl HW. Variable climatic conditions dominate recent phytoplankton dynamics in Chesapeake Bay Sci Rep, 2016, 6: 23773.
CrossRef Google scholar
Harms A, Brodersen DE, Mitarai N, Gerdes K. Toxins, targets, and triggers: an overview of toxin-antitoxin biology Mol Cell, 2018, 70: 768-784.
CrossRef Google scholar
Haverkamp TH, Acinas SG, Doeleman M, Stomp M, Huisman J, Stal LJ. Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons Environ Microbiol, 2008, 10: 174-188.
CrossRef Google scholar
Haverkamp TH, Schouten D, Doeleman M, Wollenzien U, Huisman J, Stal LJ. Colorful microdiversity of Synechococcus strains (picocyanobacteria) isolated from the Baltic Sea ISME J, 2009, 3: 397-408.
CrossRef Google scholar
Herdman M, Castenholz RW, Waterbury JB, Rippka R Boone DR, Castenholz RW. Form-genus XIII. Synechococcus Bergey’s manual of systematic bacteriology, 2001 New York Springer-Verlag 508-512
Honda D, Yokota A, Sugiyama J. Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains J Mol Evol, 1999, 48: 723-739.
CrossRef Google scholar
Huang S, Liu Y, Hu A, Liu X, Chen F, Yao T, Jiao N. Genetic diversity of picocyanobacteria in Tibetan lakes: assessing the endemic and universal distributions Appl Environ Microbiol, 2014, 80: 7640-7650.
CrossRef Google scholar
Huang S, Wilhelm SW, Harvey HR, Taylor K, Jiao NZ, Chen F. Novel lineages of Prochlorococcus and Synechococcus in the global oceans ISME J, 2012, 6: 285-297.
CrossRef Google scholar
Hunter-Cevera KR, Post AF, Peacock EE, Sosik HM. Diversity of Synechococcus at the Martha’s Vineyard Coastal Observatory: insights from culture isolations, clone libraries, and flow cytometry Microb Ecol, 2016, 71: 276-289.
CrossRef Google scholar
Ivanikova NV, Popels LC, McKay RM, Bullerjahn GS. Lake Superior supports novel clusters of cyanobacterial picoplankton Appl Environ Microbiol, 2007, 73: 4055-4065.
CrossRef Google scholar
Jasser I, Królicka A, Karnkowska-Ishikawa A. A novel phylogenetic clade of picocyanobacteria from the Mazurian lakes (Poland) reflects the early ontogeny of glacial lakes FEMS Microbiol Ecol, 2011, 75: 89-98.
CrossRef Google scholar
Jezberová J, Komárková J. Morphological transformation in a freshwater Cyanobium sp. induced by grazers Environ Microbiol, 2007, 9: 1858-1862.
CrossRef Google scholar
Jing H, Liu H, Suzuki K. Phylogenetic diversity of marine Synechococcus spp. in the Sea of Okhotsk Aquat Microbial Ecol, 2009, 56: 55-63.
CrossRef Google scholar
Johnson PW, Sieburth JM. Chroococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass Limnol Oceanogr, 1979, 24: 928-935.
CrossRef Google scholar
Kan J, Crump BC, Wang K, Chen F. Bacterioplankton community in Chesapeake Bay: predictable or random assemblages Limnol Oceanogr, 2006, 51: 2157-2169.
CrossRef Google scholar
Kan J, Suzuki MT, Wang K, Evans SE, Chen F. High temporal but low spatial heterogeneity of bacterioplankton in the Chesapeake Bay Appl Environ Microbiol, 2007, 73: 6776-6789.
CrossRef Google scholar
Kaneko T, Nakamura Y, Sasamoto S, Watanabe A, Kohara M, Matsumoto M, Shimpo S, Yamada M, Tabata S. Structural analysis of four large plasmids harboring in a unicellular cyanobacterium, Synechocystis sp. PCC 6803 DNA Res, 2003, 10: 221-228.
CrossRef Google scholar
Karlusich JJP, Ibarbalz FM, Bowler C. Phytoplankton in the Tara ocean Annu Rev Mar Sci, 2020, 12: 233-265.
CrossRef Google scholar
Komárek J, Johansen JR, Šmarda J, Otakar Strunecký O. Phylogeny and taxonomy of Synechococcus-like cyanobacteria Fottea, 2020, 20: 171-191.
CrossRef Google scholar
Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets Mol Biol Evol, 2016, 33: 1870-1874.
CrossRef Google scholar
Larsson J, Celepli N, Ininbergs K, Dupont CL, Yooseph S, Bergman B, Ekman M. Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea ISME J, 2014, 8: 1892-1903.
CrossRef Google scholar
Lewis K. Persister cells Annu Rev Microbiol, 2010, 64: 357-372.
CrossRef Google scholar
Li WKW. Primary production of prochlorophytes, cyanobacteria, and eukaryotic ultraphytoplankton: measurements from flow cytometric sorting Limnol Oceanogr, 1994, 39: 169-175.
CrossRef Google scholar
Li WGW, Wood M. Vertical distribution of North Atlantic ultraplankton: analysis by flow cytometry and epifluorescence microscopy Deep Sea Res, 1988, 35: 1615-1638.
CrossRef Google scholar
Liu HB, Nolla HA, Campbell L. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean Aquat Microb Ecol, 1997, 12: 39-47.
CrossRef Google scholar
Lu J, Chen F, Hodson RE. Distribution, isolation, host specificity, and diversity of cyanophages infecting marine Synechococcus spp. in river estuaries Appl Environ Microbiol, 2001, 67: 3285-3290.
CrossRef Google scholar
Mackey KRM, Hunter-Cevera K, Britten GL, Murphy LG, Sogin ML, Huber JA. Seasonal succession and spatial patterns of Synechococcus microdiversity in a salt marsh estuary revealed through 16S rRNA gene oligotyping Front Microbiol, 2017, 8: 1496.
CrossRef Google scholar
Maeda H, Kawai A, Tilzer MM. The water bloom of cyanobacterial picoplankton in Lake Biwa, Japan Hydrobiologia, 1992, 248: 93-103.
CrossRef Google scholar
Makarova KS, Wolf YI, Koonin EV. Comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes Biol Direct, 2009, 4: 19.
CrossRef Google scholar
Malone T, Ducklow H, Peele E, Pike S. Picoplankton carbon flux in Chesapeake Bay Mar Ecol Prog Ser, 1991, 78: 11-22.
CrossRef Google scholar
Marsan D (2016) Adaptive mechanisms of an estuarine Synechococcus based on genomics, transcriptomics, and proteomics. Doctoral dissertation, University of Maryland, College Park pp 29–139
Marsan D, Place A, Fucich D, Chen F. Toxin-antitoxin systems in estuarine Synechococcus strain CB0101 and their 3 transcriptomic responses to environmental stressors Front Microbiol, 2017, 8: 1213.
CrossRef Google scholar
Marsan D, Wommack KE, Ravel J, Chen F. Draft genome sequence of Synechococcus sp. strain CB0101, isolated from the Chesapeake Bay estuary Genome Announc, 2014, 2: e01111-e1113.
CrossRef Google scholar
McCarthy JJ, Taylor WR, Loftus ME. Significance of nanoplankton in the Chesapeake Bay estuary and problems associated with the measurement of nanoplankton productivity Mar Biol, 1974, 24: 7-16.
CrossRef Google scholar
Nübel U, Garcia-Pichel F, Muyzer G. PCR primers to amplify 16S rRNA genes from cyanobacteria Appl Environ Microbiol, 1997, 63: 3327-3332.
CrossRef Google scholar
Olson RJ, Chisholm SW, Zettler ER, Altabet M, Dusenberry J. Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean Deep Sea Res, 1990, 37(1033): 1051
Page R, Peti W. Toxin-antitoxin systems in bacterial growth arrest and persistence Nature Chem Biol, 2016, 12: 208-214.
CrossRef Google scholar
Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, Mccarren J. The genome of a motile marine Synechococcus Nature, 2003, 424: 1037-1042.
CrossRef Google scholar
Palenik B, Ren Q, Dupont CL, Myers GS, Heidelberg JF, Badger JH, Madupu R, Nelson WC, Brinkac LM, Dodson RJ, Durkin AS. Genome sequence of Synechococcus CC9311: Insights into adaptation to a coastal environment Proc Natl Acad Sci USA, 2006, 103: 13555-13559.
CrossRef Google scholar
Pandey DP, Gerdes K. Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes Nucleic Acids Res, 2005, 33: 966-976.
CrossRef Google scholar
Partensky F, Hess WR, Vaulot D. Prochlorococcus, a marine photosynthetic prokaryote of global significance Microbiol Mol Biol Rev, 1999, 63: 106-127.
CrossRef Google scholar
Platt T, Rao DVS, Irwin B. Photosynthesis of picoplankton in the oligotrophic ocean Nature, 1983, 301: 702-704.
CrossRef Google scholar
Ray RT, Haas LH, Sieracki ME. Autotrophic picoplankton dynamics in a Chesapeake Bay sub-estuary Mar Ecol Prog Ser, 1989, 52: 273-285.
CrossRef Google scholar
Rippka R, Deruelles J, Waterbury JB. Generic assignments, strain histories and properties of pure cultures of cyanobacteria J Gen Microbiol, 1979, 111: 1-61
Robertson BR, Tezuka N, Watanabe MW. Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content Int J Syst Evol Microbiol, 2001, 51: 861-871.
CrossRef Google scholar
Rocap G, Distel DL, Waterbury JB, Chisholm SW. Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S–23S ribosomal DNA internal transcribed spacer sequences Appl Environ Microbiol, 2002, 68: 1180-1191.
CrossRef Google scholar
Rodhe J, Winsor P. On the influence of the freshwater supply on the Baltic Sea mean salinity Tellus, 2002, 54A: 175-186.
CrossRef Google scholar
Salazar VW, Tschoeke DA, Swings J, Cosenza CA, Mattoso M, Thompson CC, Thompson FL. A new genomic taxonomy system for the Synechococcus collective Environ Microbiol, 2020, 22: 4557-4570.
CrossRef Google scholar
Sánchez-Baracaldo P. Origin of marine planktonic cyanobacteria Sci Rep, 2015, 5: 17418.
CrossRef Google scholar
Sánchez-Baracaldo P, Bianchini G, Di Cesare A, Callieri C, Chrismas NAM. Insights into the evolution of picocyanobacteria and phycoerythrin genes (mpeBA and cpeBA) Front Microbiol, 2019, 10: 1-17.
CrossRef Google scholar
Sánchez-Baracaldo P, Handley BA, Hayes PK. Picocyanobacterial community structure of freshwater lakes and the Baltic Sea revealed by phylogenetic analyses and clade-specific quantitative PCR Microbiology, 2008, 154: 3347-3357.
CrossRef Google scholar
Sanchez-Baracaldo P, Hayes P, Blank C. Morphological and habitat evolution in the Cyanobacteria using a compartmentalization approach Geobiology, 2005, 3: 145-165.
CrossRef Google scholar
Scanlan DJ Whitton B. Marine picocyanobacteria Ecology of cyanobacteria II, 2012 Springer 503-533.
CrossRef Google scholar
Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky F. Ecological genomics of marine picocyanobacteria Microbiol Mol Biol Rev, 2009, 73: 249-299.
CrossRef Google scholar
Scanlan DJ, West NJ. Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus FEMS Microbiol Ecol, 2002, 40: 1-12.
CrossRef Google scholar
Schopf JW Whitton BA, Potts M. The fossil record: tracing the roots of the cyanobacterial lineage The ecology of cyanobacteria: their diversity in time and space, 2000 Dordrecht Kluwer Academic Publishers 13-35
Schubel JR, Pritchard DW. Responses of upper Chesapeake Bay to variations in discharge of the Susquehanna River Estuaries Coasts, 1986, 9: 236-249.
CrossRef Google scholar
Sharp JH, Yoshiyama K, Parker AE, Schwartz MC, Curless SE, Beauregard AY, Ossolinski JE, Davis AR. A biogeochemical view of estuarine eutrophication: Seasonal and spatial trends and correlations in the Delaware Estuary Estuaries Coasts, 2009, 32: 1023-1043.
CrossRef Google scholar
Stanier RY, Kunisawa R, Mandel M, Cohen-Bazirge G. Purification and properties of unicellular blue-green algae (order Chroococcales) Bacteriol Rev, 1971, 35: 171-205.
CrossRef Google scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods Mol Biol Evol, 2011, 28: 2731-2739.
CrossRef Google scholar
Toledo G, Palenik B. Synechococcus diversity in the California Current as seen by RNA polymerase (rpoC1) gene sequences of isolated strains Appl Environ Microbiol, 1997, 63: 4298-4303.
CrossRef Google scholar
Toledo G, Palenik B, Brahamsha B. Swimming marine Synechococcus strains with widely different photosynthetic pigment ratios form a monophyletic group Appl Environ Microbiol, 1999, 65: 5247-5251.
CrossRef Google scholar
Tschoeke D, Salazar VW, Vidal L, Campeão M, Swings J, Thompson F, Thompson C. Unlocking the genomic taxonomy of the Prochlorococcus collective Microb Ecol, 2020, 80: 546-558.
CrossRef Google scholar
Unterholzner SJ, Poppenberger B, Rozhon W. Toxin–antitoxin systems Mob Genet Elem, 2013, 3: 5.
CrossRef Google scholar
Urbach E, Distel D, Scanlan DJ, Waterbury JB, Chisholm SW. Rapid diversification of marine picophytoplankton with dissimilar light harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (Cyanobacteria) J Mol Evol, 1998, 46: 188-201.
CrossRef Google scholar
Wang HL, Zhang CL, Chen F, Kan JJ. Spatial and temporal variations of bacterioplankton in the Chesapeake Bay: a re-examination with high-throughput sequencing analysis Limnol Oceanogr, 2020, 65: 3032-3045.
CrossRef Google scholar
Wang K (2007) Biology and ecology of Synechococcus and their viruses in the Chesapeake Bay. Dissertation, University of Maryland College Park pp 26–183
Wang K, Chen F. Prevalence of highly host-specific cyanophages in the estuarine environment Environ Microbiol, 2008, 10: 300-312.
CrossRef Google scholar
Wang K, Wommack KE, Chen F. Abundance and distribution of Synechococcus and cyanophages in the Chesapeake Bay Appl Environ Microbiol, 2011, 77: 7459-7468.
CrossRef Google scholar
Walter JM, Coutinho FH, Dutilh BE, Swings J, Thompson FL, Thompson CC. Ecogenomics and taxonomy of cyanobacteria phylum Front Microbiol, 2017, 8: 2132.
CrossRef Google scholar
Waterbury JB, Rippka R Kreig NR, Holt JB. The order Chroococcales Bergey's manual of systematic bacteriology, 1989 New York Williams and Wilkens 1728-1746 3
Waterbury JB, Watson SW, Guillard RL, Brand LE. Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium Nature, 1979, 277: 293-294.
CrossRef Google scholar
Waterbury JB, Watson SW, Valois FW, Franks DG Platt T, Li WKW. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus Photosynthetic picoplankton, 1986 Toronto Can Bull Fish Aquat Sci 71-120
Waterbury JB, Willey JM. Isolation and growth of marine planktonic cyanobacteria Methods Enzymol, 1988, 167: 100-105.
CrossRef Google scholar
Wolfe JJ, Cunningham B, Wilkerson NF, Barnes JT. An investigation of the microplankton of Chesapeake Bay J Elisha Mitchell Scient Soc, 1926, 42: 25-54
Xia X, Guo W, Tan S, Liu HB. Synechococcus assemblages across the salinity gradient in a salt wedge estuary Front Microbiol, 2017, 8: 1254.
CrossRef Google scholar
Xia X, Vidyarathna NK, Palenik B, Lee P, Liu H. Comparison of the seasonal variations of Synechococcus assemblage structures in Estuarine Waters and Coastal Waters of Hong Kong Appl Environ Microbiol, 2015, 81: 7644-7655.
CrossRef Google scholar
Xu YL, Jiao NZ, Chen F. Novel psychrotolerant picocyanobacteria isolated from Chesapeake Bay in the winter J Phycol, 2015, 51: 782-790.
CrossRef Google scholar
Zufia JA, Legrand C, Farnelid H. Seasonal dynamics in picocyanobacterial abundance and clade composition at coastal and offshore stations in the Baltic Sea Sci Rep, 2022, 12: 14330.
CrossRef Google scholar
Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L, Vaulot D, Not F, Massana R, Ulloa O, Scanlan DJ. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes Environ Microbiol, 2008, 10: 147-161.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/