Marine eukaryote bioluminescence: a review of species and their functional biology

Laurent Duchatelet , Sam Dupont

Marine Life Science & Technology ›› 2024, Vol. 7 ›› Issue (2) : 366 -381.

PDF
Marine Life Science & Technology ›› 2024, Vol. 7 ›› Issue (2) : 366 -381. DOI: 10.1007/s42995-024-00250-0
Review

Marine eukaryote bioluminescence: a review of species and their functional biology

Author information +
History +
PDF

Abstract

Bioluminescence, the ability of organisms to produce visible light, has intrigued scientists for centuries. Studies have examined bioluminescence, using a wide range of approaches and organisms, from its ecological role to its underlying molecular mechanisms, leading to various applications and even a Nobel prize. Over the last ten years, an increasing amount of data has been collected leading to a growing number of recognized marine bioluminescent species. This review provides and describes a referenced listing of the eukaryotic luminous marine species, including information related to: (i) intrinsic versus extrinsic source of the bioluminescence, (ii) the color and maximum wavelength of emission, (iii) the bioluminescent system (substrate and enzyme) and the associated molecules, (iv) the availability of light organ/cell(s) pattern and histological structure, (v) the physiological control of the light production, and (vi) the demonstrated or suggested bioluminescent function(s). This listing provides basic information and references for researchers in or entering in the field of marine bioluminescence. Using a semi-quantitative approach, we then highlight major research gaps and opportunities and reflect on the future of the field.

Keywords

Luminescence / Diversity / Taxonomy / Wavelength / Bioluminescence system / Bioluminescence functions / Biological Sciences / Biochemistry and Cell Biology

Cite this article

Download citation ▾
Laurent Duchatelet, Sam Dupont. Marine eukaryote bioluminescence: a review of species and their functional biology. Marine Life Science & Technology, 2024, 7(2): 366-381 DOI:10.1007/s42995-024-00250-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AnctilM. Physiological control of bioluminescence. Photochem Photobiol, 1979, 30: 777-780.

[2]

AnctilMAliMA. Neural control mechanisms in bioluminescence. Nervous systems in invertebrates, 1987USASpringer, Boston, MA573-602.

[3]

AnctilMLuminous creatures: the history and science of light production in living organisms, 2018MontrealMcGill-Queen’s University Press.

[4]

AnctilM, CaseJF. Pharmacomorphological study of denervation induced by 6-hydroxydopamine in Porichthys photophores. Cell Tiss Res, 1976, 166: 365-388.

[5]

AnctilM, BoulayD, LarivièreL. Monoaminergic mechanisms associated with control of luminescence and contractile activities in the coelenterate, Renilla köllikeri. J Exp Zool, 1982, 223: 11-24.

[6]

AndersonJM, CormierMJ. Lumisomes, the cellular site of bioluminescence in coelenterates. J Biol Chem, 1973, 248: 2937-2943.

[7]

BaguetF. Excitation and control of isolated photophores of luminous fishes. Prog Neurobiol, 1975, 5: 97-100.

[8]

BaguetF, CaseJF. Luminescence control in Porichthys (Teleostei): excitation of isolated photophores. Biol Bull, 1971, 140: 15-27.

[9]

BassotJM, BilbautA. Bioluminescence des élytres Acholoë IV. Luminescence et fluorescence des photosomes. Biol Cellul, 1977, 28: 155-162

[10]

BelkinS, Yagur-KrollS, KabessaY, KoroumaV, SeptonT, AnatiY, Zohar-PerezC, RabinovitzZ, NussinovitchA, AgranatAJ. Remote detection of buried landmines using a bacterial sensor. Nat Biotechnol, 2017, 35: 308-310.

[11]

Bessho-UeharaM, MallefetJ, HaddockSHDMercierA, HamelJF, SuhrbierAD, PearceCM. Glowing sea cucumbers: Bioluminescence in the Holothuroidea. The world of sea cucumbers, 2024London, UKAcademic Press361-375.

[12]

BiggleyWH, SwiftE, BuchananRJ, SeligerHH. Stimulable and spontaneous bioluminescence in the marine dinoflagellates, Pyrodinium bahamense, Gonyaulax polyedra, and Pyrocystis lunula. J Gen Physiol, 1969, 54: 96-122.

[13]

BowlbyMR, CaseJF. Flash kinetics and spatial patterns of bioluminescence in the copepod Gaussia princeps. Mar Biol, 1991, 110: 329-336.

[14]

Bracken-GrissomHD, DeLeoDM, PorterML, IwanickiT, SicklesJ, FrankTM. Light organ photosensitivity in deep-sea shrimp may suggest a novel role in counterillumination. Sci Rep, 2020, 10: 4485.

[15]

BuckJBHerringPJ. Functions and evolutions of bioluminescence. Bioluminescence in action, 1978London, UKAcademic Press419-460

[16]

CampbellAK. Living light: biochemistry, applications. Essays Biochem, 1989, 24: 41-81

[17]

CampbellDLM, WeinerSA, StarksPT, HauberME. Context and control: behavioural ecology experiments in the laboratory. Ann Zool Fenn, 2009, 46: 112-123.

[18]

CaseJF, StrauseLGHerringPJ. Neurally controlled luminescent systems. Bioluminescence in action, 1978London, UKAcademic Press331-345

[19]

CeveniniL, CalabrettaMM, CalabriaD, RodaA, MicheliniEThouandG, MarksR. Luciferase genes as reporter reactions: How to use them in molecular biology?. Bioluminescence: Fundamantals and Applications in Biotechnology , 2015Cham, Edinburgh, UKSpringer3-173

[20]

ChenAK, LatzMI, SobolewskiP, FrangosJA. Evidence for the role of G-proteins in flow stimulationof dinoflagellate bioluminescence. Comp Evol Physiol, 2007, 292: R2020-R2027

[21]

ChristopheB, BaguetF. Luminescence of isolated photocytes from Porichthys photophores: adrenergic stimulation. J Exp Biol, 1983, 104: 183-192.

[22]

ClaesJM, MallefetJ. Hormonal control of luminescence from lantern shark (Etmopterus spinax) photophores. J Exp Biol, 2009, 212: 3684-3692.

[23]

ClaesJM, MallefetJ. Ecological functions of shark luminescence. Luminescence, 2014, 29: 13-15

[24]

ClarkeGL, ConoverRJ, DavidCN, NicolJAC. Comparative studies of luminescence in copepods and other pelagic marine animals. J Mar Biol Ass UK, 1962, 42: 541-564.

[25]

CormierMJ, HoriK, AndersonJM. Bioluminescence in coelenterates. Biochim Biophys Acta, 1974, 346: 137-164.

[26]

CoubrisC, DuchateletL, DelroisseJ, BayaertWS, PariseL, EloyMC, PelsC, MallefetJ. Maintain the light, long-term seasonal monitoring of luminous capabilities in the brittle star Amphiura filiformis. Sci Rep, 2024, 14: 13238.

[27]

CoubrisC, DuchateletL, DupontS, MallefetJ. A brittle star is born: Ontogeny of luminous capabilities in Amphiura filiformis. PLoS ONE, 2024, 19. e0298185

[28]

DavenportD, NicolJAC. Luminescence in Hydromedusae. Proc R Soc Lond B, 1955, 144: 399-411.

[29]

DavidCN, ConoverRJ. Preliminary investigation on the physiology and ecology of luminescence in the copepod, Metridia lucens. Biol Bull, 1961, 121: 92-107.

[30]

DavisMP, SparksJS, SmithWL. Repeated and widespread evolution of bioluminescence in marine fishes. PLoS ONE, 2016, 11. e0155154

[31]

De SaR, HastingsJW. The characterization of scintillons: Bioluminescent particles from the marine dinoflagellate, Gonyaulax polyedra. J Gen Physiol, 1968, 51: 105-122.

[32]

De BremaekerN, MallefetJ, BaguetF. Luminescence control in the brittlestar Amphipholis squamata: Effect of cholinergic drugs. Comp Biochem Physiol C, 1996, 115: 75-82

[33]

De BremaekerN, BaguetF, MallefetJ. Characterization of acetylcholine-induced luminescence in Amphipholis squamata (Echinodermata: Ophiuroidea). Belg J Zool, 1999, 129: 353-362

[34]

De BremaekerN, DewaelY, BaguetF, MallefetJ. Involvement of cyclic nucleotides and IP3 in the regulation of luminescence in the brittlestar Amphipholis squamata (Echinodermata). Luminescence, 2000, 15: 159-163.

[35]

De SaR, HastingsJW, VatterAE. Luminescent « crystalline » particles: an organized subcellular bioluminescent system. Science, 1963, 141: 1259-1270

[36]

DeheynD, MallefetJ, JangouxM. Cytological changes during bioluminescence in a polychromatic population of Amphipholis squamata (Echinodermata: Ophiuroidea). Cell Tiss Res, 2000, 299: 115-128.

[37]

DentonEJ, Gilpin-BrownJB, WrightPG. The angular distribution of the light produced by some mesopelagic fish in relation to their camouflage. Proc R Soc Lond B, 1972, 182: 145-158.

[38]

DentonEJ, HerringPJ, WidderEA, LatzMF, CaseJF. The roles of filters in the photophores of oceanic animals and their relation to vision in the oceanic environment. Proc R Soc Lond B, 1985, 225: 63-97.

[39]

DewaelY, MallefetJ. Luminescence in ophiuroids (Echinodermata) does not share a common nervous control in all species. J Exp Biol, 2002, 205: 799-806.

[40]

DouglasRH, MullineauxCW, PartridgeJC. Long-wave sensitivity in deep-sea stomiid dragonfish with far-red bioluminescence: evidence for a dietary origin of the chlorophyll-derived retinal photosensitizer of Malacosteus niger. Phil Trans R Soc Lond B, 2000, 355: 1269-1272.

[41]

DouglasRH, BowmakerJK, MullineauxCW. A possible retinal longwave detecting system in a myctophid fish without far-red bioluminescence: Evidence for a sensory arms-race in the deep-sea. Biolum Chemilum, 2002, 2002: 391-394

[42]

DoyleJD. The effect of an anti-serotonin on the bioluminescence of Meganyctiphanes norvegica. J Physiol, 1966, 186: 92P-93P

[43]

DuchateletL, PinteN, TomitaT, SatoK, MallefetJ. Etmopteridae bioluminescence: dorsal pattern specificity and aposematic use. Zool Lett, 2019, 5: 9.

[44]

DuchateletL, DelroisseJ, MallefetJ. Bioluminescence in lanternsharks: insight from hormone receptor localization. Gen Comp Endocrinol, 2020, 294. 113488

[45]

DuchateletL, DelroisseJ, PinteN, SatoK, HoH-C, MallefetJ. Adrenocorticotropic hormone and cyclic adenosine monophosphate are involved in the control of shark bioluminescence. Photochem Photobiol, 2020, 96: 37-45.

[46]

DuchateletL, SugiharaT, DelroisseJ, KoyanagiM, RezsohazyR, TerakitaA, MallefetJ. From extraocular photoreception to pigment movement regulation: a new control mechanism of the lanternshark luminescence. Sci Rep, 2020, 10: 10195.

[47]

DuchateletL, ClaesJM, DelroisseJ, FlammangP, MallefetJ. Glow on sharks: state of the art on bioluminescence research. Oceans, 2021, 2: 822-842.

[48]

DuchateletL, CoubrisC, PelsC, DupontS, MallefetJ. Catecholamine involvement in the bioluminescence control of two species of anthozoans. Life, 2023, 13: 1798.

[49]

DuchateletL, NyutC, PuozzoN, MallefetJ, DelroisseJ. Evolutionary conservation of photophore ultrastructure in sharks: the case of a dalatiid squalomorph. Fishes, 2023, 8: 87.

[50]

Duchatelet L, Hermans C, Duhamel G, Cherel Y, Guinet C, Mallefet J (2019a) Coelenterazine detection in five myctophid species from the Kerguelen Plateau. In: Welsford D, Dell J, Duhamel G (eds), The Kerguelen Plateau: marine ecosystem and fisheries. Proceedings of the Second Symposium, Kingston, Tasmania, Australia: Australian Antartic Division, pp 31–41

[51]

DunlapPV, Kita-TsukamotoKDworkinM, FalkowS, RosenbergE, SchleiferE, StackebrandtE. Luminous bacteria. The prokaryotes, 2006New York, USASpringer863-892.

[52]

DupontS, MallefetJ, VanderlindenC. Effect of b-adrenergic antagonists on bioluminescence control in three species of brittlestars (Echinodermata: Ophiuroidea). Comp Biochem Physiol C, 2004, 138: 59-66

[53]

EckertR. Bioelectric control of bioluminescence in the dinoflagellate Noctiluca. I specific nature of triggering events. Science, 1965, 147: 1140-1142.

[54]

EsaiasWE, CurlHCJr, SeligerHH. Action spectrum for a low intensity, rapid photoinhibition of mechanically stimulable bioluminescence in the marine dinoflagellates Gonyaulax catenella, G. acatenella, and G. tamarensis. J Cell Physiol, 1973, 82: 363-372.

[55]

FrankTM, WidderEA, LatzMI, CaseJF. Dietary maintenance of bioluminescence in a deep-sea mysid. J Exp Biol, 1984, 109: 385-389.

[56]

FritzL, MorseD, HastingsJW. The circadian bioluminescence rhythm of Gonyaulax is related to daily variations in the number of light-emitting organelles. J Cell Sci, 1990, 95: 321-328.

[57]

GageJD, TylerPADeep-sea biology: a natural history of organisms at the deep-sea floor, 1991UKCambridge University Press.

[58]

GerrishGA, MorinJG. Living in sympatry via differentiation in time, space and display characters of courtship behaviors of bioluminescent marine ostracods. Mar Biol, 2016, 163: 1-14.

[59]

GouveneauxA, MallefetJ. Physiological control of bioluminescence in a deep-sea planktonic worm, Tomopteris helgolandica. J Exp Biol, 2013, 216: 4285-4289

[60]

GreeneHW. Organisms in nature as a central focus for biology. Trends Ecol Evol, 2005, 20: 23-27.

[61]

GruberDF, PhillipsBT, O’BrienR, BoominathanV, VeeraraghavanA, VasanG, O’BrienP, PieriboneVA, SparksJS. Bioluminescent flashes drive nighttime schooling behavior and synchronized swimming dynamics in flashlight fish. PLoS ONE, 2019, 14. e0219852

[62]

HaddockSHD, RiversTJ, RobisonBH. Can coelenterates make coelenterazine? Dietary requirement for luciferin in cnidarian bioluminescence. Proc Natl Acad Sci USA, 2001, 98: 11151.

[63]

HaddockSHD, DunnCW, PughPR, SchnitzlerCE. Bioluminescent and red-fluorescent lures in a deep-sea siphonophore. Science, 2005, 309: 263.

[64]

HaddockSHD, MolineMA, CaseJF. Bioluminescence in the sea. Ann Rev Mar Sci, 2010, 2: 443-493.

[65]

HansenK, HerringPJ. Dual bioluminescent systems in the anglerfish genus Linophryne (Pisces: Ceratioidea). J Zool, 1977, 182: 103-124.

[66]

HarveyEN. Studies on bioluminescence. XIII Luminescence in the Coelenterates. Biol Bull, 1921, 41: 280-287.

[67]

HarveyEN. Review of bioluminescence. Ann Rev Biochem , 1941, 10: 531-552.

[68]

HarveyENBioluminescence, 1952New York, USAAcademic Press

[69]

HarveyEN. Evolution and bioluminescence. Q Rev Biol, 1956, 31: 270-287.

[70]

HarveyENA history of luminescence: From the earliest times until 1900, 1957Philadelphia, USAAmerican Philosophical Society

[71]

HastingsJW. Bioluminescence. Ann Rev Biochem , 1968, 37: 597-630.

[72]

HastingsJWHerringPJ. Bacterial and dinoflagellate luminescent systems. Bioluminescence in action, 1978London, UKAcademic Press129-170

[73]

HastingsJW. Chemistry and control of luminescence in marine organisms. Bull Mar Sci, 1983, 33: 818-828

[74]

HastingsJW. Bioluminescence. Cell Physiol Source Book, 1995, 1995: 665-681.

[75]

HastingsJW. Chemistries and colors of bioluminescent reactions: a review. Gene, 1996, 173: 5-11.

[76]

HaygoodMG. Light a organ symbiosis in fishes. Crit Rev Microbiol, 1993, 19: 191-216.

[77]

HellingerJ, JägersP, DonnerM, SuttF, MarkMD, SenenB, TollrianR, HerlitzeS. The flashlight fish Anomalops katoptron uses bioluminescent light to detect prey in the dark. PLoS ONE, 2017, 12. e0170489

[78]

HellingerJ, JägersP, SpoidaK, WeissLC, MarkMD, HerlitzeS. Analysis of the territorial aggressive behavior of the bioluminescent flashlight fish Photoblepharon steinitzi in the Red Sea. Front Mar Sci, 2020, 7: 78.

[79]

HerringPJ. Bioluminescence in marine organisms. Nature, 1977, 267: 788-793.

[80]

HerringPJ. Studies on bioluminescent marine amphipods. J Mar Biol Ass UK, 1981, 61: 161-176.

[81]

HerringPJBarnesH, BarnesM. Aspects of the bioluminescence of fishes. Oceanography and Marine Biology, an annual review, 1982UKAberdeen480-54120

[82]

HerringPJ. The spectral characteristics of luminous marine organisms. Proc R Soc Lond B, 1983, 220: 183-217.

[83]

HerringPJ. How to survive in the dark: bioluminescence in the deep sea. Symp Soc Exp Biol, 1985, 39: 323-350

[84]

HerringPJ. Bioluminescence in Crustacea. J Crustac Biol, 1985, 5: 557-573.

[85]

HerringPJ. Bioluminescent signals and the role of reflectors. J Opt a: Pure Appl Opt, 2000, 2: R29.

[86]

HerringPJ. Review. Sex with the lights on? A review of bioluminescent sexual dimorphism in the sea. J Mar Biol Assoc UK, 2007, 87: 829-842.

[87]

HerringPJ, CopeC. Red bioluminescence in fishes: on the suborbital photophores of Malacosteus, Pachystomias and Aristotomias. Mar Biol, 2005, 148: 383-394.

[88]

HerringPJ, LocketNA. The luminescence and photophores of euphausiid crustaceans. J Zool Lond, 1978, 186: 431-462.

[89]

HerringPJ, MorinJGHerringPJ. Bioluminescence in fishes. Bioluminescence in action, 1978London, UKAcademic Press273-329

[90]

Herring PJ (1991) Observations on bioluminescence in some deep-water anthozoans. In: Williams RB, Cornelius PFS, Hughes RG, Robson EA (eds), Coelenterates Biology: Recent research on Cnidaria and Ctenophora. Developments in hydrobiology, Vol. 66, Springer, Dordrecht, The Netherlands, pp. 573–579

[91]

HighWL, EllisIE, SchroederWW, LoverichG. Evaluation of the undersea habitats: Tektite II, hydro-lab, and edalhab—for scientific saturation diving programs. Helgol Mar Res, 1973, 24: 16-44

[92]

HowlandHC, MurphyCJ, McCoskerJE. Detection of eyeshine by flashlight fishes of the family Anomalopidae. Vis Res, 1992, 32: 765-769.

[93]

HuangY, RyderheimF, KiørboeT. Revisiting the burglar alarm hypothesis: a behavioural cascade mediated by dinoflagellate bioluminescence. Funct Ecol, 2023, 38: 306-314.

[94]

Hurtado-GallegoJ, Redondo-LópezA, LeganésF, RosalR, Fernández-PiñasF. Peroxiredoxin (2-cys-prx) and catalase (katA) cyanobacterial-based bioluminescent bioreporters to detect oxidative stress in the aquatic environment. Chemosphere, 2019, 236. 124395

[95]

JägersP, WagnerL, SchützR, MuckeM, SenenB, LimmonGV, HerlitzeS, HellingerJ. Social signaling via bioluminescent blinks determines nearest neighbor distance in schools of flashlight fish Anomalops katoptron. Sci Rep, 2021, 11: 6431.

[96]

JohnsonGD, RosenblattRH. Mechanisms of light organ occlusion in flashlight fishes, family Anomalopidae (Teleostei: Beryciformes), and the evolution of the group. Zool J Linnean Soc, 1988, 94: 65-96.

[97]

Karplus I (2014) The associations between fishes and luminescent bacteria. In: Karplus I (ed), Symbiosis in fishes: The biology of interspecific partnerships, John Wiley & Sons, Oxford, UK, pp. 6–57

[98]

KaskovaZM, TsarkovaAS, YampolskyIV. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem Soc Rev, 2016, 45: 6048-6077.

[99]

KassemII, SplitterGA, MillerS, RajashekaraGThouandG, MarksR. Let there be light! Bioluminescent imaging to study bacterial pathogenesis in live animals and plants. Bioluminescence: Fundamentals and Applications in Biotechnology, 2014Cham, Edinburgh, UKSpringer119-145.

[100]

KimSB, OzawaT, WatanabeS, UmezawaY. High-throughput sensing and noninvasive imaging of protein nuclear transport by using reconstitution of split Renilla luciferase. Proc Natl Acad Sci, 2004, 101: 11542-11547.

[101]

KrönströmJ, MallefetJ. Evidence for a widespread involvement of NO in control of photogenesis in bioluminescent fish. Acta Zool, 2010, 91: 474-483.

[102]

KrönströmJ, HolmgrenS, BaguetF, SalpietroL, MallefetJ. Nitric oxide in control of luminescence from hatchetfish (Argyropelecus hemigymnus) photophores. J Exp Biol, 2005, 208: 2951-2961.

[103]

KrönströmJ, DupontS, MallefetJ, ThorndykeM, HolmgrenS. Serotonin and nitric oxide interaction in the control of bioluminescence in northern krill, Meganyctiphanes norvegica (M. Sars). J Exp Biol, 2007, 210: 3179-3187.

[104]

KuboderaT, KoyamaY, MoriK. Observations of wild hunting behaviour and bioluminescence of a large deep-sea eight-armed squid, Taningia danae. Proc R Soc Lond B, 2007, 274: 1029-1034

[105]

LariviéreL, AnctilM. A comparative analysis of noradrenaline and adrenaline uptake in the photophores of the midshipman fish, Porichthys notatus: kinetics and pharmacology. Comp Biochem Physiol C, 1986, 85: 335-339.

[106]

LatzMI, LeeAO. Spontaneous and stimulated bioluminescence of the dinoflagellate Ceratocorys horrida (Peridiniales). J Phycol, 1995, 31: 120-132.

[107]

LatzMI, RohrJ. Luminescent response of the red tide dinoflagellate Lingulodinium polyedrum to laminar and turbulent flow. Limnol Oceanogr, 1999, 44: 1423-1435.

[108]

LatzMI, FrankTM, CaseJF. Spectral composition of bioluminescence of epipelagic organisms from the Sargasso Sea. Mar Biol, 1988, 98: 441-446.

[109]

LatzMI, JuhlAR, AhmedAM, ElghobashiSE, RohrJ. Hydrodynamic stimulation of dinoflagellate bioluminescence: a computational and experimental study. J Exp Biol, 2004, 207: 1941-1951.

[110]

LauES, OakleyTH. Multi-level convergence of complex traits and the evolution of bioluminescence. Biol Rev, 2021, 96: 673-691.

[111]

LeeJ. Bioluminescence: the first 3000 years. J Siber Fed Univ, 2008, 3: 194-205.

[112]

LindströmJ, GrebnerW, RigbyK, SelanderE. Effects of predator lipids on dinoflagellate defence mechanisms: increased bioluminescence capacity. Sci Rep, 2017, 7: 13104.

[113]

LoeningAM, FennTD, GambhirSS. Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J Mol Biol, 2007, 374: 1017-1028.

[114]

LoveAC, PrescherJA. Seeing (and using) the light: recent developments in bioluminescence technology. Cell Chem Biol, 2020, 27: 904-920.

[115]

MaienscheinJ100 years exploring life, 1888–1988: The Marine Biological Laboratory at Woods Hole, 1989Boston, USAJones and Bartlett Publishers189-192.

[116]

MallefetJMeyer-RochowVB. Echinoderm bioluminescence: Where, how and why do so many ophiuroids glow?. Bioluminescence in focus: a collection of illuminating essays, 2009IndiaResearch Signpost, Kerala67-83

[117]

MallefetJ, ShimomuraO. Presence of coelenterazine in mesopelagic fishes from the Strait of Messina. Mar Biol, 1995, 124: 381-385.

[118]

MallefetJ, DuchateletL, HermansC, BaguetF. Luminescence control of Stomiidae photophores. Acta Histochem, 2019, 121: 7-15.

[119]

MallefetJ, DuchateletL, CoubrisC. Bioluminescence induction in the ophiuroid Amphiura filiformis (Echinodermata). J Exp Biol, 2020, 223: 218719.

[120]

MallefetJ, StevensDW, DuchateletL. Bioluminescence of the largest luminous vertebrate, the kitefin shark, Dalatias licha: first insights and comparative aspects. Front Mar Sci, 2021, 8. 633582

[121]

MarcinkoCL, PainterSC, MartinAP, AllenJT. A review of the measurement and modelling of dinoflagellate bioluminescence. Prog Oceanography, 2013, 109: 117-129.

[122]

MartiniS, HaddockSHD. Quantification of bioluminescence from the surface to the deep sea demonstrates its predominance as an ecological trait. Sci Rep, 2017, 7: 45750.

[123]

MartiniS, KuhnzL, MallefetJ, HaddockSHD. Distribution and quantification of bioluminescence as an ecological trait in the deep sea benthos. Sci Rep, 2019, 9: 14654.

[124]

MashukovaO, SilakovM, TemnykhA. Ecological role of bioluminescence of Black sea ctenophores. Biophys Rev, 2023, 15: 947-954.

[125]

McAllisterDE. The significance of ventral bioluminescence in fishes. J Fish Res Board Can, 1967, 24: 537-554.

[126]

McCapraF. Chemiluminescence and bioluminescence. J Photochem Photobiol A, 1990, 51: 21-28.

[127]

McFall-NgaiMJ, DunlapPV. Three new modes of luminescence in the leiognathid fish Gazza minuta: Discrete projected luminescence, ventral body flash, and buccal luminescence. Mar Biol, 1983, 73: 227-237.

[128]

MeighenEA. Bacterial bioluminescence: organization, regulation, and application of the lux genes. FASEB J, 1993, 7: 1016-1022.

[129]

MillerJW. Tektite: expectations and costs. Science, 1970, 169: 1264-1265.

[130]

MillerSD, HaddockSHD, ElvidgeCD, LeeTF. Twenty thousand leagues over the seas: the first satellite perspective on bioluminescence ‘milky seas’. Int J Remote Sens, 2005, 27: 5131-5143.

[131]

MooreAR. Galvanic stimulation of luminescence in Pelagia noctiluca. J Gen Physiol, 1926, 9: 375-379.

[132]

MorinJG. Coastal bioluminescence: patterns and functions. Bull Mar Sci, 1983, 33: 787-817

[133]

MunkO. The escal photophore of ceratioids (Pisces; Ceratioidei): a review of structure and function. Acta Zool, 1999, 80: 265-284.

[134]

NakajimaY, OhmiyaY. Bioluminescence assays: multicolor luciferase assay, secreted luciferase assay and imaging luciferase assay. Expert Opin Drug Discov, 2010, 5: 835-849.

[135]

Nicholls DG (1994) Protein transmitters and synapses. Blackwell Science Ltd, London, UK

[136]

NicolJAC. Studies on Chaetopterus variopedatus (Renier). II. Nervous control of light production. J Mar Biol Assoc UK, 1952, 30: 433-452.

[137]

NicolJAC. The nervous control of luminescent responses in polynoid worms. J Mar Biol Ass UK, 1954, 33: 225-255.

[138]

NicolJAC. Observations on photophores and luminescence in the teleost Porichthys. Q J Microsc Sci, 1957, 98: 179-188

[139]

NicolJAC. Observations on luminescence in pelagic animals. J Mar Biol Assoc UK, 1958, 37: 705-752.

[140]

NicolasM-T, MoreauM, GuerrierP. Indirect nervous control of luminescence in the polynoid worm Harmothoe lunulata. J Exp Zool, 1978, 206: 427-433.

[141]

ObaY, BranhamMA, FukatsuT. The terrestrial bioluminescent animals of Japan. Zool Sci, 2011, 28: 771-789.

[142]

PaitioJ, ObaYHashimotoH, GodaM, FutahashiR, KelshR, AkiyamaT. Bioluminescence and pigments. Pigments, pigment cells and pigment patterns, 2021SingaporeSpringer149-181.

[143]

PaitioJ, ObaY. Luminous fishes: endocrine and neuronal regulation of bioluminescence. Aquacult Fisher, 2024, 9: 486-500.

[144]

Palani G, Kannan K, Perumal V, Leo AL, Dharmalingam P (2022) Bioluminescence sensors for environmental monitoring. In: Singh RP, Ukhurebor KE, Singh J, Adetunji CO, Singh KR (eds), Nanobiosensors for Environmental Monitoring, Springer, Cham, Edinburgh, UK, pp. 149–174

[145]

PhillipsBT, GruberDF, VasanG, RomanCN, PieriboneVA, SparksJS. Observations of in situ deep-sea marine bioluminescence with a high-spedd, high-resolution sCMOS camera. Deep Sea Res I, 2016, 111: 102-109.

[146]

PrevettA, LindströmJ, XuJ, KarlsonB, SelanderE. Grazer-induced bioluminescence gives dinoflagellates a competitive edge. Curr Biol, 2019, 29: R564-R565.

[147]

ReesJF, WergifosseBD, NoisetO, DubuissonM, JanssensB, ThompsonEM. The origins of marine bioluminescence: turning oxygen defence mechanisms into deep-sea communication tools. J Exp Biol, 1998, 201: 1211-1221.

[148]

ReinhardCT, PlanavskyNJ. The history of ocean oxygenation. Annu Rev Mar Sci, 2022, 14: 331-353.

[149]

RenwartM, DelroisseJ, FlammangP, ClaesJM, MallefetJ. Cytological changes during luminescence production in lanternshark (Etmopterus spinax Linnaeus, 1758) photophores. Zoomorphology, 2015, 134: 107-116.

[150]

RiversTJ, MorinJG. Plasticity of male mating behaviour in a marine bioluminescent ostracod in both time and space. Animal Behav, 2009, 78: 723-734.

[151]

RiversTJ, MorinJG. The relative cost of using luminescence for sex and defense: light budgets in cypridinid ostracods. J Exp Biol, 2012, 215: 2860-2868.

[152]

RobisonBH. Bioluminescence in the benthopelagic holothurian Enypniastes eximia. J Mar Biol Assoc UK, 1992, 72: 463-472.

[153]

RodaA, PasiniP, MirasoliM, Michelini GuardigliE. Biotechnological applications of bioluminescence and chemiluminescence. Trends Biotechnol, 2004, 22: 295-303.

[154]

RodriguezJD, HaqS, BachvaroffT, NowakKF, NowakSJ, MorganD, ChernyVV, SappMM, BernsteinS, BoltA, DeCourseyTE, PlaceAR, SmithSME. Identification of a vacuolar proton channel that triggers the bioluminescent flash in dinoflagellates. PLoS ONE, 2017, 12. e0171594

[155]

RozwadowskiHMFathoming the ocean: The discovery and exploration of the deep sea, 2005USAHarvard University Press.

[156]

SanthanamRBioluminescent marine plankton, 2022Singapore, SingaporeBentham Science Publishers.

[157]

SatterlieRA, AndersonPAV, CaseJF. Colonial coordination in anthozoans: Pennatulacea. Mar Behav Physiol, 1980, 7: 25-46.

[158]

SharifianS, HomaeiA, HemmatiR, KhajehK. Light emission miracle in the sea and preeminent applications of bioluminescence in recent new biotechnology. J Photochem Photobiol B, 2017, 172: 115-128.

[159]

SharifianS, HomaeiA, HemmatiR, LuworRB, KhajehK. The emerging use of bioluminescence in medical research. Biomed Pharmacother, 2018, 101: 74-86.

[160]

ShimomuraO. Bioluminescence. Photochem Photobiol, 1983, 38: 773-779.

[161]

ShimomuraO. A short story of aequorin. Biol Bull, 1995, 189: 1-5.

[162]

ShimomuraOBioluminescence: chemical principles and methods, 2012Singapore, SingaporeWorld Scientific.

[163]

ShimomuraO, MasugiT, JohnsonFH, HanedaY. Properties and reaction mechanism of the bioluminescence system of the deep-sea shrimp Oplophorus gracilirostris. Biochemistry, 1978, 17: 994-998.

[164]

SweeneyBM. Intracellular source of bioluminescence. Int Rev Cytol, 1980, 68: 173-195.

[165]

SweeneyBM, HastingsJW. Characteristics of the diurnal rhythm of luminescence in Gonyaulax polyedra. J Cell Comp Physiol, 1957, 49: 115-128.

[166]

TakenakaY, YamaguchiA, ShigeriY. A light in the dark: Ecology, evolution and molecular basis of copepod bioluminescence. J Plankton Res, 2017, 39: 369-378.

[167]

TanetL, MartiniS, CasalotL, TamburiniC. Reviews and syntheses: Bacterial bioluminescence: ecology and impact in the biological carbon pump. Biogeosciences, 2020, 17: 3757-3778.

[168]

ThomsonCM, HerringPJ, CampbellAK. The widespread occurrence and tissue distribution of the imidazolopyrazine luciferins. J Biol Chem, 1997, 2: 87-91

[169]

TongD, RozasNS, OakleyTH, MitchellJ, ColleyNJ, McFall-NgaiM. Evidence for light perception in a bioluminescent organ. Proc Natl Acad Sci USA, 2009, 106: 9836-9841.

[170]

TsujiFI. Early history, discovery, and expression of Aequorea green fluorescent protein, with a note on an unfinished experiment. Microsc Res Tech, 2010, 73: 785-796.

[171]

ValiadiM, Iglesias-RodriguezMD, AmorimA. Distribution and genetic diversity of the luciferase gene within marine dinoflagellates. J Phycol, 2012, 48: 826-836.

[172]

Vanderlinden C, Mallefet J, Gailly P (2010) How do brittle stars control their light emission? In: Harris LG, Boetger A, Walker CW, Lesser MP (eds), Echinoderms: Durham, Taylor & Francis Group, London, UK, pp. 419–422

[173]

VishalCR, ParvathiA, AnilP, IqbalPMM, MuraleedharanKR, AzeezSA, FurtadoCM. In situ measurements of bioluminescence response of Gonyaulax spinifera to various mechanical stimuli. Aquat Ecol, 2021, 55: 437-451.

[174]

von LendenfeldR. Report on the structure of the phosphorescent organs of fishes. Chall Rep Zool, 1887, 22: 277-329

[175]

von DassowP, LatzMI. The role of Ca2+ in stimulated bioluminescence of the dinoflagellate Lingulodinium polyedrum. J Exp Biol, 2002, 205: 2971-2986.

[176]

Walsh DLT (1962) The bathyscaph TRIESTE: Technological and operational aspects, 1958–1961. Research Report 1096, US Navy Electronics Laboratory, San Diego, California, USA

[177]

WardWW, CormierMJ. Energy transfer protein in coelenterate bioluminescence. Characterization of the Renilla green-fluorescent protein. J Biol Chem, 1979, 254: 781-788.

[178]

WernerEE. Individual behavior and higher-order species interactions. Am Natur, 1992, 140: 5-32.

[179]

WidderEA. A predatory use of counterillumination by the squaloid shark, Isistius brasiliensis. Environ Biol Fishes, 1998, 53: 267-273.

[180]

WidderEA. Marine bioluminescence. Why do so many animals in the open ocean make light?. Bioscience, 2001, 1: 1-9

[181]

WidderEA. Bioluminescence in the ocean: Origins of biological, chemical, and ecological diversity. Science, 2010, 328: 704-708.

[182]

WidderEA, LatzMI, CaseJF. Marine bioluminescence spectra measured with an optical multichannel detection system. Biol Bull, 1983, 165: 791-810.

[183]

WidderEA, LatzMI, HerringPJ, CaseJF. Far red bioluminescence from two deep-sea fishes. Science, 1984, 225: 512-514.

[184]

YoungRE. Oceanic bioluminescence: An overview of general functions. Bull Mar Sci, 1983, 33: 829-845

[185]

YoungRE, RoperCFE, WaltersJF. Eyes and extraocular photoreceptors in midwater cephalopods and fishes: their roles in detecting downwelling light for counterillumination. Mar Biol, 1979, 51: 371-380.

[186]

ZörnerSA, FischerA. The spatial pattern of bioluminescent flashes in the polychaete Eusyllis blomstrandi (Annelida). Helgol Mar Res, 2007, 61: 55-66.

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

325

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/