From germline genome to highly fragmented somatic genome: genome-wide DNA rearrangement during the sexual process in ciliated protists

Liping Lyu, Xue Zhang, Yunyi Gao, Tengteng Zhang, Jinyu Fu, Naomi A. Stover, Feng Gao

Marine Life Science & Technology ›› 2024, Vol. 6 ›› Issue (1) : 31-49. DOI: 10.1007/s42995-023-00213-x
Research Paper

From germline genome to highly fragmented somatic genome: genome-wide DNA rearrangement during the sexual process in ciliated protists

Author information +
History +

Abstract

Genomes are incredibly dynamic within diverse eukaryotes and programmed genome rearrangements (PGR) play important roles in generating genomic diversity. However, genomes and chromosomes in metazoans are usually large in size which prevents our understanding of the origin and evolution of PGR. To expand our knowledge of genomic diversity and the evolutionary origin of complex genome rearrangements, we focus on ciliated protists (ciliates). Ciliates are single-celled eukaryotes with highly fragmented somatic chromosomes and massively scrambled germline genomes. PGR in ciliates occurs extensively by removing massive amounts of repetitive and selfish DNA elements found in the silent germline genome during development of the somatic genome. We report the partial germline genomes of two spirotrich ciliate species, namely Strombidium cf. sulcatum and Halteria grandinella, along with the most compact and highly fragmented somatic genome for S. cf. sulcatum. We provide the first insights into the genome rearrangements of these two species and compare these features with those of other ciliates. Our analyses reveal: (1) DNA sequence loss through evolution and during PGR in S. cf. sulcatum has combined to produce the most compact and efficient nanochromosomes observed to date; (2) the compact, transcriptome-like somatic genome in both species results from extensive removal of a relatively large number of shorter germline-specific DNA sequences; (3) long chromosome breakage site motifs are duplicated and retained in the somatic genome, revealing a complex model of chromosome fragmentation in spirotrichs; (4) gene scrambling and alternative processing are found throughout the core spirotrichs, offering unique opportunities to increase genetic diversity and regulation in this group.

Keywords

Alternative processing / Ciliates / Gene scrambling / Genome rearrangement / Germline genome / Somatic genome

Cite this article

Download citation ▾
Liping Lyu, Xue Zhang, Yunyi Gao, Tengteng Zhang, Jinyu Fu, Naomi A. Stover, Feng Gao. From germline genome to highly fragmented somatic genome: genome-wide DNA rearrangement during the sexual process in ciliated protists. Marine Life Science & Technology, 2024, 6(1): 31‒49 https://doi.org/10.1007/s42995-023-00213-x

References

[]
Aeschlimann SH, Jönsson F, Postberg J, Stover NA, Petera RL, Lipps H-J, Nowacki M, Swart EC. The draft assembly of the radically organized Stylonychia lemnae macronuclear genome. Genome Biol Evol, 2014, 6: 1707-1723.
CrossRef Google scholar
[]
Ardell DH, Lozupone CA, Landweber LF. Polymorphism, recombination and alternative unscrambling in the DNA polymerase alpha gene of the ciliate Stylonychia lemnae (Alveolata; class Spirotrichea). Genetics, 2003, 165: 1761-1777.
CrossRef Google scholar
[]
Arnaiz O, Mathy N, Baudry C, Malinsky S, Aury J-M, Wilkes CD, Garnier O, Labadie K, Lauderdale BE, Le Mouël A, Marmignon A, Nowacki M, Poulain J, Prajer M, Wincker P, Meyer E, Duharcourt S, Duret L, Bétermier M, Sperling L. The Paramecium germline genome provides a niche for intragenic parasitic DNA: evolutionary dynamics of internal eliminated sequences. PLoS Genet, 2012, 8.
CrossRef Google scholar
[]
Aury J-M, Jaillon O, Duret L, Noel B, Jubin C, Porcel BM, Ségurens B, Daubin V, Anthouard V, Aiach N, Arnaiz O, Billaut A, Beisson J, Blanc I, Bouhouche K, Câmara F, Duharcourt S, Guigo R, Gogendeau D, Katinka M, et al. Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature, 2006, 444: 171-178.
CrossRef Google scholar
[]
Baird SE, Klobutcher LA. Characterization of chromosome fragmentation in two protozoans and identification of a candidate fragmentation sequence in Euplotes crassus. Genes Dev, 1989, 3: 585-597.
CrossRef Google scholar
[]
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol, 2012, 19: 455-477.
CrossRef Google scholar
[]
Baroin A, Prat A, Caron F. Telomeric site position heterogeneity in macronuclear DNA of Paramecium primaurelia. Nucleic Acids Res, 1987, 15: 1717-1728.
CrossRef Google scholar
[]
Baudry C, Malinsky S, Restituito M, Kapusta A, Rosa S, Meyer E, Bétermier M. PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia. Genes Dev, 2009, 23: 2478-2483.
CrossRef Google scholar
[]
Braun J, Nabergall L, Neme R, Landweber LF, Saito M, Jonoska N. Russian doll genes and complex chromosome rearrangements in Oxytricha trifallax. G3-Genes Genomes Genet, 2018, 8: 1669-1674.
CrossRef Google scholar
[]
Brunk CF, Sadler LA. Characterizaton of the promoter region of Tetrahymena genes. Nucleic Acids Res, 1990, 18: 323-329.
CrossRef Google scholar
[]
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods, 2015, 12: 59-60.
CrossRef Google scholar
[]
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinform, 2009, 10: 421.
CrossRef Google scholar
[]
Caron F. A high degree of macronuclear chromosome polymorphism is generated by variable DNA rearrangements in Paramecium primaurelia during macronuclear differentiation. J Mol Biol, 1992, 225: 661-678.
CrossRef Google scholar
[]
Cavalcanti ARO, Dunn DM, Weiss R, Herrick G, Landweber LF, Doak TG. Sequence features of Oxytricha trifallax (class Spirotrichea) macronuclear telomeric and subtelomeric sequences. Protist, 2004, 155: 311-322.
CrossRef Google scholar
[]
Chen X, Landweber LF. Phylogenomic analysis reveals genome-wide purifying selection on TBE transposons in the ciliate Oxytricha. Mob DNA, 2016, 7: 2.
CrossRef Google scholar
[]
Chen X, Bracht JR, Goldman AD, Dolzhenko E, Clay DM, Swart EC, Perlman DH, Doak TG, Stuart A, Amemiya CT, Sebra RP, Landweber LF. The architecture of a scrambled genome reveals massive levels of genomic rearrangement during development. Cell, 2014, 158: 1187-1198.
CrossRef Google scholar
[]
Chen X, Jung S, Beh LY, Eddy SR, Landweber LF. Combinatorial DNA rearrangement facilitates the origin of new genes in ciliates. Genome Biol Evol, 2015, 7: 2859-2870.
[]
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34: 884-890.
CrossRef Google scholar
[]
Chen X, Jiang Y, Gao F, Zheng W, Krock TJ, Stover NA, Lu C, Katz LA, Song W. Genome analyses of the new model protist Euplotes vannus focusing on genome rearrangement and resistance to environmental stressors. Mol Ecol Resour, 2019, 19: 1292-1308.
CrossRef Google scholar
[]
Chen W, Zuo C, Wang C, Zhang T, Lyu L, Qiao Y, Zhao F, Miao M. The hidden genomic diversity of ciliated protists revealed by single-cell genome sequencing. BMC Biol, 2021, 19: 264.
CrossRef Google scholar
[]
Cheng C-Y, Vogt A, Mochizuki K, Yao M-C. A domesticated piggyBac transposase plays key roles in heterochromatin dynamics and DNA cleavage during programmed DNA deletion in Tetrahymena thermophila. Mol Biol Cell, 2010, 21: 1753-1762.
CrossRef Google scholar
[]
Crooks GE, Hon G, Chandonia J-M, Brenner SE. WebLogo: a sequence logo generator. Genome Res, 2004, 14: 1188-1190.
CrossRef Google scholar
[]
Ehrenfeucht A, Prescott DM, Rozenberg G. A model for the origin of internal eliminated segments (IESs) and gene rearrangement in stichotrichous ciliates. J Theor Biol, 2007, 244: 108-114.
CrossRef Google scholar
[]
Fass JN, Joshi NA, Couvillion MT, Bowen J, Gorovsky MA, Hamilton EP, Orias E, Hong K, Coyne RS, Eisen JA, Chalker DL, Lin D, Collins K. Genome-scale analysis of programmed DNA elimination sites in Tetrahymena thermophila. G3-Genes Genomes Genet, 2011, 1: 515-522.
CrossRef Google scholar
[]
Feng Y, Neme R, Beh LY, Chen X, Braun J, Lu MW, Landweber LF. Comparative genomics reveals insight into the evolutionary origin of massively scrambled genomes. Elife, 2022, 11.
CrossRef Google scholar
[]
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 2012, 28: 3150-3152.
CrossRef Google scholar
[]
Gao F, Song W, Katz LA. Genome structure drives patterns of gene family evolution in ciliates, a case study using Chilodonella uncinata (Protista, Ciliophora, Phyllopharyngea). Evolution, 2014, 68: 2287-2295.
[]
Gao F, Roy SW, Katz LA. Analyses of alternatively processed genes in ciliates provide insights into the origins of scrambled genomes and may provide a mechanism for speciation. Mbio, 2015, 6: e01998-e11914.
CrossRef Google scholar
[]
Gao F, Warren A, Zhang Q, Gong J, Miao M, Sun P, Xu D, Huang J, Yi Z, Song W. The all-data-based evolutionary hypothesis of ciliated protists with a revised classification of the phylum Ciliophora (Eukaryota, Alveolata). Sci Rep, 2016, 6: 24874.
CrossRef Google scholar
[]
Gao Y, Solberg T, Wang C, Gao F. Small RNA-mediated genome rearrangement pathways in ciliates. Trends Genet, 2023, 39: 94-97.
CrossRef Google scholar
[]
Gong R, Jiang Y, Vallesi A, Gao Y, Gao F. Conjugation in Euplotes raikovi (Protista, Ciliophora): new insights into nuclear events and macronuclear development from micronucleate and amicronucleate cells. Microorganisms, 2020, 8: 162.
CrossRef Google scholar
[]
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics, 2013, 29: 1072-1075.
CrossRef Google scholar
[]
Hamilton EP, Kapusta A, Huvos PE, Bidwell SL, Zafar N, Tang H, Hadjithomas M, Krishnakumar V, Badger JH, Caler EV, Russ C, Zeng Q, Fan L, Levin JZ, Shea T, Young SK, Hegarty R, Daza R, Gujja S, Wortman JR. Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome. Elife, 2016, 5.
CrossRef Google scholar
[]
Huang X, Madan A. CAP3: a DNA sequence assembly program. Genome Res, 1999, 9: 868-877.
CrossRef Google scholar
[]
Jahn CL, Klobutcher LA. Genome remodeling in ciliated protozoa. Annu Rev Microbiol, 2002, 56: 489-520.
CrossRef Google scholar
[]
Jiang Y, Zhang T, Vallesi A, Yang X, Gao F. Time-course analysis of nuclear events during conjugation in the marine ciliate Euplotes vannus and comparison with other ciliates (Protozoa, Ciliophora). Cell Cycle, 2019, 18: 288-298.
CrossRef Google scholar
[]
Jin D, Li C, Chen X, Byerly A, Stover NA, Zhang T, Shao C, Wang Y. Comparative genome analysis of three euplotid protists provides insights into the evolution of nanochromosomes in unicellular eukaryotic organisms. Mar Life Sci Technol, 2023, 5: 300-315.
CrossRef Google scholar
[]
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S. InterProScan 5: genome-scale protein function classification. Bioinformatics, 2014, 30: 1236-1240.
CrossRef Google scholar
[]
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol, 2013, 30: 772-780.
CrossRef Google scholar
[]
Katz LA. Evolution of nuclear dualism in ciliates: a reanalysis in light of recent molecular data. Int J Syst Evol Microbiol, 2001, 51: 1587-1592.
CrossRef Google scholar
[]
Katz LA, Kovner AM. Alternative processing of scrambled genes generates protein diversity in the ciliate Chilodonella uncinata. J Exp Zool Part B, 2010, 314: 480-488.
CrossRef Google scholar
[]
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 2015, 12: 357-360.
CrossRef Google scholar
[]
Klobutcher LA, Herrick G. Consensus inverted terminal repeat sequence of Paramecium IESs: resemblance to termini of Tc1-related and Euplotes Tec transposons. Nucleic Acids Res, 1995, 23: 2006-2013.
CrossRef Google scholar
[]
Klobutcher LA, Herrick G. Developmental genome reorganization in ciliated protozoa: the transposon link. Prog Nucleic Acid Res Mol Biol, 1997, 56: 1-62.
CrossRef Google scholar
[]
Klobutcher LA, Gygax SE, Podoloff JD, Vermeesch JR, Price CM, Tebeau CM, Jahn CL. Conserved DNA sequences adjacent to chromosome fragmentation and telomere addition sites in Euplotes crassus. Nucleic Acids Res, 1998, 26: 4230-4240.
CrossRef Google scholar
[]
Kloc M, Zagrodzinska B. Chromatin elimination—an oddity or a common mechanism in differentiation and development?. Differentiation, 2001, 68: 84-91.
CrossRef Google scholar
[]
Knight RD, Freeland SJ, Landweber LF. A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes. Genome Biol, 2001, 2: research0010.1-0010.13.
CrossRef Google scholar
[]
Kubota S, Ishibashi T, Kohno S. A germline restricted, highly repetitive DNA sequence in Paramyxine atami: an interspecifically conserved, but somatically eliminated, element. Mol Gen Genet, 1997, 256: 252-256.
CrossRef Google scholar
[]
Lee JJ, Faber WWJ, Anderson OR. Lee JJ, Anderson OR. Life cycles of foraminifera. Biology of foraminifera, 1991 1 London Academic Press 285-334.
[]
Li C, Chen X, Zheng W, Doak TG, Fan G, Song W, Yan Y. Chromosome organization and gene expansion in the highly fragmented genome of the ciliate Strombidium stylifer. J Genet Genom, 2021, 48: 908-916.
CrossRef Google scholar
[]
Lindblad KA, Pathmanathan JS, Moreira S, Bracht JR, Sebra RP, Hutton ER, Landweber LF. Capture of complete ciliate chromosomes in single sequencing reads reveals widespread chromosome isoforms. BMC Genom, 2019, 20: 1037.
CrossRef Google scholar
[]
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience, 2012, 1: 18.
CrossRef Google scholar
[]
Lyu L, Asghar U, Fu J, Gao Y, Zhang X, Al-Farraj SA, Chen Z, Gao F. Comparative analysis of single-cell genome sequencing techniques toward the characterization of germline and somatic genomes in ciliated protists. Eur J Protistol, 2023, 88.
CrossRef Google scholar
[]
Maere S, Heymans K, Kuiper M. BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 2005, 21: 3448-3449.
CrossRef Google scholar
[]
Maurer-Alcalá XX, Knight R, Katz LA. Exploration of the germline genome of the ciliate Chilodonella uncinata through single-cell omics (transcriptomics and genomics). Mbio, 2018, 9: e01836-e11817.
CrossRef Google scholar
[]
Maurer-Alcalá XX, Yan Y, Pilling OA, Knight R, Katz LA. Twisted tales: insights into genome diversity of ciliates using single-cell 'omics. Genome Biol Evol, 2018, 10: 1927-1939.
CrossRef Google scholar
[]
Morgulis A, Gertz EM, Schäffer AA, Agarwala R. WindowMasker: window-based masker for sequenced genomes. Bioinformatics, 2006, 22: 134-141.
CrossRef Google scholar
[]
Mozzicafreddo M, Pucciarelli S, Swart EC, Piersanti A, Emmerich C, Migliorelli G, Ballarini P, Miceli C. The macronuclear genome of the Antarctic psychrophilic marine ciliate Euplotes focardii reveals new insights on molecular cold adaptation. Sci Rep, 2021, 11: 18782.
CrossRef Google scholar
[]
Müller F, Tobler H. Chromatin diminution in the parasitic nematodes Ascaris suum and Parascaris univalens. Int J Parasitol, 2000, 30: 391-399.
CrossRef Google scholar
[]
Nowacki M, Higgins BP, Maquilan GM, Swart EC, Doak TG, Landweber LF. A functional role for transposases in a large eukaryotic genome. Science, 2009, 324: 935-938.
CrossRef Google scholar
[]
Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A, Lapidus A, Prjibelski AD, Pyshkin A, Sirotkin A, Sirotkin Y, Stepanauskas R, Clingenpeel SR, Woyke T, McLean JS, Lasken R, Tesler G, Alekseyev MA, Pevzner PA, et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol, 2013, 20: 714-737.
CrossRef Google scholar
[]
Papudeshi B, Haggerty JM, Doane M, Morris MM, Walsh K, Beattie DT, Pande D, Zaeri P, Silva GGZ, Thompson F, Edwards RA, Dinsdale EA. Optimizing and evaluating the reconstruction of metagenome-assembled microbial genomes. BMC Genom, 2017, 18: 915.
CrossRef Google scholar
[]
Patthy L. Exon shuffling and other ways of module exchange. Matrix Biol, 1996, 15: 301-310.
CrossRef Google scholar
[]
Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol, 2015, 33: 290-295.
CrossRef Google scholar
[]
Prescott DM. The DNA of ciliated protozoa. Microbiol Rev, 1994, 58: 233-267.
CrossRef Google scholar
[]
Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo assembler. Curr Protoc Bioinform, 2020, 70.
CrossRef Google scholar
[]
Riley JL, Katz LA. Widespread distribution of extensive chromosomal fragmentation in ciliates. Mol Biol Evol, 2001, 18: 1372-1377.
CrossRef Google scholar
[]
Rzeszutek I, Maurer-Alcalá XX, Nowacki M. Programmed genome rearrangements in ciliates. Cell Mol Life Sci, 2020, 77: 4615-4629.
CrossRef Google scholar
[]
Sellis D, Guérin F, Arnaiz O, Pett W, Lerat E, Boggetto N, Krenek S, Berendonk T, Couloux A, Aury J-M, Labadie K, Malinsky S, Bhullar S, Meyer E, Sperling L, Duret L, Duharcourt S. Massive colonization of protein-coding exons by selfish genetic elements in Paramecium germline genomes. PLoS Biol, 2021, 19.
CrossRef Google scholar
[]
Seyfert HM, Cleffmann G. Mean macronuclear DNA contents are variable in the ciliate Tetrahymena. J Cell Sci, 1982, 58: 211-223.
CrossRef Google scholar
[]
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13: 2498-2504.
CrossRef Google scholar
[]
Sheng Y, Duan L, Cheng T, Qiao Y, Stover NA, Gao S. The completed macronuclear genome of a model ciliate Tetrahymena thermophila and its application in genome scrambling and copy number analyses. Sci China Life Sci, 2020, 63: 1534-1542.
CrossRef Google scholar
[]
Smith JJ, Timoshevskaya N, Ye C, Holt C, Keinath MC, Parker HJ, Cook ME, Hess JE, Narum SR, Lamanna F, Kaessmann H, Timoshevskiy VA, Waterbury CKM, Saraceno C, Wiedemann LM, Robb SMC, Baker C, Eichler EE, Hockman D, Sauka-Spengler T, et al. The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution. Nat Genet, 2018, 50: 270-277.
CrossRef Google scholar
[]
Smith SA, Maurer-Alcalá XX, Yan Y, Katz LA, Santoferrara LF, McManus GB. Combined genome and transcriptome analyses of the ciliate Schmidingerella arcuata (Spirotrichea) reveal patterns of DNA elimination, scrambling, and inversion. Genome Biol Evol, 2020, 12: 1616-1622.
CrossRef Google scholar
[]
Song W, Pan B, El-Serehy HA, Al-Farraj SA, Liu W, Li L. Morphology and molecular phylogeny of two freshwater oligotrich ciliates (Protozoa, Ciliophora, Oligotrichia), Pelagostrombidium fallax (Zacharias, 1895) Krainer, 1991 and Limnostrombidium viride (Stein, 1867) Krainer, 1995, with brief notes on stomatogenesis. J Eukaryot Microbiol, 2020, 67: 232-244.
CrossRef Google scholar
[]
Stanke M, Diekhans M, Baertsch R, Haussler D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics, 2008, 24: 637-644.
CrossRef Google scholar
[]
Steele CJ, Barkocy-Gallagher GA, Preer LB, Preer JR. Developmentally excised sequences in micronuclear DNA of Paramecium. Proc Natl Acad Sci, 1994, 91: 2255-2259.
CrossRef Google scholar
[]
Swart EC, Bracht JR, Magrini V, Minx P, Chen X, Zhou Y, Khurana JS, Goldman AD, Nowacki M, Schotanus K, Jung S, Fulton RS, Ly A, McGrath S, Haub K, Wiggins JL, Storton D, Matese JC, Parsons L, Chang WJ, et al. The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes. PLoS Biol, 2013, 11.
CrossRef Google scholar
[]
Swart EC, Serra V, Petroni G, Nowacki M. Genetic codes with no dedicated stop codon: context-dependent translation termination. Cell, 2016, 166: 691-702.
CrossRef Google scholar
[]
Tian M, Cai X, Liu Y, Liucong M, Howard-Till R. A practical reference for studying meiosis in the model ciliate Tetrahymena thermophila. Mar Life Sci Technol, 2022, 4: 595-608.
CrossRef Google scholar
[]
Timoshevskiy VA, Herdy JR, Keinath MC, Smith JJ. Cellular and molecular features of developmentally programmed genome rearrangement in a vertebrate (sea lamprey: Petromyzon marinus). PLoS Genet, 2016, 12.
CrossRef Google scholar
[]
Vinogradov DV, Tsoĭ OV, Zaika AV, Lobanov AV, Turanov AA, Gladyshev VN, Gel'fand MS. Draft macronuclear genome of a ciliate Euplotes crassus. Mol Biol (Mosk), 2012, 46: 361-366.
CrossRef Google scholar
[]
Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. KaKs_Calculator 2.0: a toolkit Incorporating gamma-series methods and sliding window strategies. Genom Proteom Bioinform, 2010, 8: 77-80.
CrossRef Google scholar
[]
Wang R, Xiong J, Wang W, Miao W, Liang A. High frequency of +1 programmed ribosomal frameshifting in Euplotes octocarinatus. Sci Rep, 2016, 6: 21139.
CrossRef Google scholar
[]
Wang C, Yan Y, Chen X, Al-Farraj SA, El-Serehy HA, Gao F. Further analyses on the evolutionary key-protist Halteria (Protista, Ciliophora) based on transcriptomic data. Zool Scr, 2019, 48: 813-825.
CrossRef Google scholar
[]
Wang G, Wang S, Chai X, Zhang J, Yang W, Jiang C, Chen K, Miao W, Xiong J. A strategy for complete telomere-to-telomere assembly of ciliate macronuclear genome using ultra-high coverage Nanopore data. Comput Struct Biotechnol J, 2021, 19: 1928-1932.
CrossRef Google scholar
[]
Wang C, Solberg T, Maurer-Alcalá XX, Swart EC, Gao F, Nowacki M. A small RNA-guided PRC2 complex eliminates DNA as an extreme form of transposon silencing. Cell Rep, 2022, 40.
CrossRef Google scholar
[]
Xu Y, Zhao F. Single-cell metagenomics: challenges and applications. Protein Cell, 2018, 9: 501-510.
CrossRef Google scholar
[]
Xu L, Dong Z, Fang L, Luo Y, Wei Z, Guo H, Zhang G, Gu YQ, Coleman-Derr D, Xia Q, Wang Y. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res, 2019, 47: W52-W58.
CrossRef Google scholar
[]
Yao M-C, Zheng K, Yao C-H. A conserved nucleotide sequence at the sites of developmentally regulated chromosomal breakage in Tetrahymena. Cell, 1987, 48: 779-788.
CrossRef Google scholar
[]
Yao M-C, Yao C-H, Monks B. The controlling sequence for site-specific chromosome breakage in Tetrahymena. Cell, 1990, 63: 763-772.
CrossRef Google scholar
[]
Zhang X, Lu X, Chi Y, Jiang Y, Wang C, Al-Farraj SA, Vallesi A, Gao F. Timing and characteristics of nuclear events during conjugation and genomic exclusion in Paramecium multimicronucleatum. Mar Life Sci Technol, 2022, 4: 317-328.
CrossRef Google scholar
[]
Zhao L, Gao F, Gao S, Liang Y, Long H, Lv Z, Su Y, Ye N, Zhang L, Zhao C, Wang X, Song W, Zhang S, Dong B. Biodiversity-based development and evolution: the emerging research systems in model and non-model organisms. Sci China Life Sci, 2021, 64: 1236-1280.
CrossRef Google scholar
[]
Zheng W, Wang C, Yan Y, Gao F, Doak TG, Song W. Insights into an extensively fragmented eukaryotic genome: de novo genome sequencing of the multinuclear ciliate Uroleptopsis citrina. Genome Biol Evol, 2018, 10: 883-894.
CrossRef Google scholar
[]
Zheng W, Wang C, Lynch M, Gao S. The compact macronuclear genome of the ciliate Halteria grandinella: a transcriptome-like genome with 23,000 nanochromosomes. Mbio, 2021, 12: e01964-e11920.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/