Microstructure-informed analytical modeling of composite cathode for solid-state batteries

Bo Wang , Oskar K. Garcia , Marissa Wood , Jianchao Ye , Brandon C. Wood , Tae Wook Heo , Nicole Adelstein

Microstructures ›› 2026, Vol. 6 ›› Issue (1) : 2026004

PDF
Microstructures ›› 2026, Vol. 6 ›› Issue (1) :2026004 DOI: 10.20517/microstructures.2025.76
Research Article

Microstructure-informed analytical modeling of composite cathode for solid-state batteries

Author information +
History +
PDF

Abstract

All-solid-state batteries (ASSBs) promise high energy density and enhanced safety for electrochemical energy storage. The performance of dense composite cathodes relies on optimizing the phase fractions of cathode active material (CAM) and solid electrolyte (SE) to ensure effective electronic and ionic conduction, as well as sufficient interfacial contact. However, unavoidable porosity introduced during synthesis can compromise mass transport and interfacial kinetics, making it critical to predict optimal phase fractions in the presence of pores. Here, we present a computational framework for constructing an analytical surrogate model that captures complex microstructural effects, informed by numerical simulations of effective transport properties using over 250 virtual 3D microstructures. We systematically investigate the impact of phase fractions and porosity on effective diffusivity and the CAM-SE interfacial area. We report trends due to the differences in the diffusivities of widely studied CAM and SE materials. Our results indicate a tradeoff between achieving high effective ion diffusivity and maximizing specific interfacial area. The percolation threshold for lithium transport in the solid phase depends on the ratio of the diffusivity of the CAM phase to that of the SE phase. These simulation results are accurately described by analytical expressions derived from a nested generalized effective medium theory, offering a robust and practical predictive tool for optimizing composite cathode design in ASSBs.

Keywords

Microstructure / solid-state batteries / solid-electrolyte / composite cathode / computational modeling / effective property

Cite this article

Download citation ▾
Bo Wang, Oskar K. Garcia, Marissa Wood, Jianchao Ye, Brandon C. Wood, Tae Wook Heo, Nicole Adelstein. Microstructure-informed analytical modeling of composite cathode for solid-state batteries. Microstructures, 2026, 6(1): 2026004 DOI:10.20517/microstructures.2025.76

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pasta M,Brown ZL.2020 roadmap on solid-state batteries.J Phys Energy2020;2:032008

[2]

Janek J.A solid future for battery development.Nat Energy2016;1:BFnenergy2016141

[3]

Cheng EJ,Wang MJ.Li-stuffed garnet solid electrolytes: current status, challenges, and perspectives for practical Li-metal batteries.Energy Storage Mater2025;75:103970

[4]

Ren Y,Moy A.Oxide-based solid-state batteries: a perspective on composite cathode architecture.Adv Energy Mater2023;13:2201939

[5]

Minnmann P,Bielefeld A.Designing cathodes and cathode active materials for solid-state batteries.Adv Energy Mater2022;12:2201425

[6]

Naik KG,Mukherjee PP.Kinetics or transport: whither goes the solid-state battery cathode?.ACS Appl Mater Interfaces2022;14:29754-65

[7]

Zhao H,Mao P,Zhou W.Tape-casting fabrication techniques for garnet-based membranes in solid-state lithium-metal batteries: a comprehensive review.ACS Appl Mater Interfaces2024;16:68772-93

[8]

Ye R,Figgemeier E,Finsterbusch M.Aqueous Processing of LiCoO2-Li6.6La3Zr1.6Ta0.4O12 composite cathode for high-capacity solid-state lithium batteries.ACS Sustainable Chem Eng2023;11:5184-94

[9]

Cha J,Nakate UT.Highly conductive composite cathode prepared by dry process using Nafion-Li ionomer for sulfide-based all-solid-state lithium batteries.J Power Sources2024;613:234914

[10]

Shin D,Linh Nguyen CT.Design of densified nickel-rich layered composite cathode via the dry-film process for sulfide-based solid-state batteries.J Mater Chem A2022;10:23222-31

[11]

Mun J,Park MS.Paving the way for next-generation all-solid-state batteries: dry electrode technology.Adv Mater2025;2506123

[12]

Schumm B,Lux M.Dry battery electrode technology: from early concepts to industrial applications.Adv Energy Mater2025;15:2406011

[13]

Hammons JA,Ramos E.Pore and grain chemistry during sintering of garnet-type Li6.4La3Zr1.4Ta0.6O12 solid-state electrolytes.J Mater Chem A2022;10-9080-90

[14]

Wood M,Shi R.Exploring the relationship between solvent-assisted ball milling, particle size, and sintering temperature in garnet-type solid electrolytes.J Power Sources2021;484:229252

[15]

Zhang W,Weigand H.Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries.ACS Appl Mater Interfaces2017;9:17835-45

[16]

Strauss F,de Biasi L.Impact of cathode material particle size on the capacity of bulk-type all-solid-state batteries.ACS Energy Lett2018;3:992-6

[17]

Zhou K,Mish C.Tailored cathode composite microstructure enables long cycle life at low pressure for all-solid-state batteries.ACS Energy Lett2025;10:966-74

[18]

Bielefeld A,Rueß R,Janek J.Influence of lithium ion kinetics, particle morphology and voids on the electrochemical performance of composite cathodes for all-solid-state batteries.J Electrochem Soc2022;169:020539

[19]

Bielefeld A,Janek J.Microstructural modeling of composite cathodes for all-solid-state batteries.J Phys Chem C2019;123:1626-34

[20]

Bielefeld A,Janek J.Modeling effective ionic conductivity and binder influence in composite cathodes for all-solid-state batteries.ACS Appl Mater Interfaces2020;12:12821-33

[21]

Park J,Appiah WA.Electrode design methodology for all-solid-state batteries: 3D structural analysis and performance prediction.Energy Storage Mater2019;19:124-9

[22]

Park J,Oh DY.Digital Twin-driven all-solid-state battery: unraveling the physical and electrochemical behaviors.Adv Energy Mater2020;10:2001563

[23]

Minnmann P,Kremer S.Editors’ choice-visualizing the impact of the composite cathode microstructure and porosity on solid-state battery performance.J Electrochem Soc2024;171:060514

[24]

Minnmann P,Burkhardt S,Janek J.Editors’ choice-quantifying the impact of charge transport bottlenecks in composite cathodes of all-solid-state batteries.J Electrochem Soc2021;168:040537

[25]

Schlautmann E,Maus O.Impact of the solid electrolyte particle size distribution in sulfide-based solid-state battery composites.Adv Energy Mater2023;13:2302309

[26]

Shi T,Tian Y.High active material loading in all-solid-state battery electrode via particle size optimization.Adv Energy Mater2020;10:1902881

[27]

Finsterbusch M,Tsai CL,Latz A.High capacity garnet-based all-solid-state lithium batteries: fabrication and 3D-microstructure resolved modeling.ACS Appl Mater Interfaces2018;10:22329-39

[28]

Clausnitzer M,Al-jaljouli F.Optimizing the composite cathode microstructure in all-solid-state batteries by structure-resolved simulations.Batteries Supercaps2023;6:e202300167

[29]

Feng L,Kim K,Wood BC.Machine-learning-assisted deciphering of microstructural effects on ionic transport in composite materials: a case study of Li7La3Zr2O12-LiCoO2.Energy Storage Mater2024;73:103776

[30]

Heo TW,Wang B.Microstructural impacts on ionic conductivity of oxide solid electrolytes from a combined atomistic-mesoscale approach.npj Comput Mater2021;7:214

[31]

Lagadec MF,Müller S.Topological and network analysis of lithium ion battery components: the importance of pore space connectivity for cell operation.Energy Environ Sci2018;11:3194-200

[32]

Ebner M,García RE.Tortuosity anisotropy in lithium-ion battery electrodes.Adv Energy Mater2014;4:1301278

[33]

Hu JM,Ji Y.Phase-field based multiscale modeling of heterogeneous solid electrolytes: applications to nanoporous Li3PS4.ACS Appl Mater Interfaces2017;9:33341-50

[34]

Ebner M.Tool for tortuosity estimation in lithium ion battery porous electrodes.J Electrochem Soc2015;162:A3064-70

[35]

Nakashima Y.Steady-state local diffusive fluxes in porous geo-materials obtained by pore-scale simulations.Transp Porous Med2012;93:657-73

[36]

Zahn R,Wood V.Transport in lithium ion batteries: reconciling impedance and structural analysis.ACS Energy Lett2017;2:2452-3

[37]

Zhu J,Shen J.Computing the effective diffusivity using a spectral method.Mater Sci Eng A2001;311:135-41

[38]

Ashton TE,Sotelo-vazquez C.Stoichiometrically driven disorder and local diffusion in NMC cathodes.J Mater Chem A2021;9:10477-86

[39]

Weiss M,Kasnatscheew J.Fast charging of lithium-ion batteries: a review of materials aspects.Adv Energy Mater2021;11:2101126

[40]

Yuan M,Ran F.Fast-charging cathode materials for lithium & sodium ion batteries.Mater Today2023;63:360-79

[41]

Bachman JC,Grimaud A.Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction.Chem Rev2016;116:140-62

[42]

Grieder AC,Wan LF,Wood BC.Effects of nonequilibrium atomic structure on ionic diffusivity in LLZO: a classical and machine learning molecular dynamics study.J Phys Chem C2024;128:8560-70

[43]

Dive A,Kang S,Wood BC.First-principles evaluation of dopant impact on structural deformability and processability of Li7La3Zr2O12.Phys Chem Chem Phys2024;26:13762-72

[44]

Kim K,Dive A.Probing degradation at solid-state battery interfaces using machine-learning interatomic potential.Energy Storage Mater2024;73:103842

[45]

Kozinsky B,Hirel P.Effects of sublattice symmetry and frustration on ionic transport in garnet solid electrolytes.Phys Rev Lett2016;116:055901

[46]

Abbas I,Tran TTN.GITT Limitations and EIS Insights into Kinetics of NMC622.Batteries2025;11:234

[47]

Jaberi A,Song J.Study of lithium transport in NMC Layered oxide cathode material using multiscale computational approach.ACS Appl Energy Mater2024;7:7724-36

[48]

Wu L,Jung Y.Three-dimensional phase field based finite element study on Li intercalation-induced stress in polycrystalline LiCoO2.J Power Sources2015;299:57-65

[49]

Kalnaus S,Tenhaeff WE,Daniel C.Design of composite polymer electrolytes for Li ion batteries based on mechanical stability criteria.J Power Sources2012;201:280-7

[50]

Nan C.A.c. electrical properties of composite solid electrolytes.Mater Sci Eng B1991;10:99-106

[51]

Kim KJ.All ceramic cathode composite design and manufacturing towards low interfacial resistance for garnet-based solid-state lithium batteries.Energy Environ Sci2020;13:4930-45

[52]

Chakrabarti BK.Statistical physics of fracture and breakdown in disordered systems. Oxford University Press, 1997.

[53]

Balberg II.Universal percolation-threshold limits in the continuum.Phys Rev B Condens Matter1985;31:4053-5

[54]

Nguyen T,Fleutot B,Delacourt C.The electrode tortuosity factor: why the conventional tortuosity factor is not well suited for quantifying transport in porous Li-ion battery electrodes and what to use instead.npj Comput Mater2020;6:386

[55]

Song Y.Mesoscale modeling and semi-analytical approach for the microstructure-aware effective thermal conductivity of porous polygranular materials.Comput Mater Sci2024;235:112808

[56]

Demuth T,Walther F.Influence of the sintering temperature on LLZO-NCM cathode composites for solid-state batteries studied by transmission electron microscopy.Matter2023;6:2324-39

[57]

Wood BC,Kweon KE.Paradigms of frustration in superionic solid electrolytes.Philos Trans A Math Phys Eng Sci2021;379:20190467 PMCID:PMC8529417

[58]

Kiyek V,Scheld WS.Direct precursor route for the fabrication of LLZO composite cathodes for solid-state batteries.Adv Sci2024;11:e2404682 PMCID:PMC11558113

[59]

Yu H,Thompson T.Deformation and stresses in solid-state composite battery cathodes.J Power Sources2019;440:227116

[60]

Heo TW,Wood BC.Mesoscale modeling approach for quantifying microstructure-aware micromechanical responses in metal hydrides.ACS Appl Energy Mater2025;8:2103-18

[61]

Tjaden B,Brett DJ,Shearing PR.On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems.Curr Opin Chem Eng2016;12:44-51

[62]

Brosa Planella F,Boyce AM.A continuum of physics-based lithium-ion battery models reviewed.Prog Energy2022;4:042003

AI Summary AI Mindmap
PDF

5

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/