Neutron imaging quantifying hydrogen diffusion and distribution in metallic materials - a review

Minxing Zhang , Nida Muzamil , Yuxiao Jia , Xiao Zhang , Lufeng Yang , Zaiqing Que , Yong Sun , Jie Chen , Weijia Gong

Microstructures ›› 2025, Vol. 5 ›› Issue (4) : 2025098

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (4) :2025098 DOI: 10.20517/microstructures.2025.74
Review

Neutron imaging quantifying hydrogen diffusion and distribution in metallic materials - a review

Author information +
History +
PDF

Abstract

Neutron imaging (NI) has emerged as a pivotal non-destructive characterization technique, leveraging its exceptional penetration through heavy metals and high sensitivity to light elements such as hydrogen and lithium. These unique properties render NI indispensable for the quantitative assessment of hydrogen in metallic materials, where hydrogen accumulation can significantly degrade mechanical performance. In this context, in-situ experimental setups capable of precise control over temperature, gas environment, and mechanical stress enable real-time monitoring of hydrogen absorption, diffusion, and spatial distribution. Recent advancements in NI have achieved hydrogen detection with concentrations as low as 5-10 wppm and spatial resolutions on the order of ~10 μm. To overcome challenges associated with ultra-low hydrogen quantification, such as the relatively low neutron flux, optimized imaging approaches, including the black body grid method, have been developed, enhancing measurement precision and enabling hydrogen concentration evolution to be resolved at the micrometer scale. This review highlights the latest developments in NI for hydrogen quantification, focusing on applications in structural metallic alloys and solid-state hydrogen storage materials, and discusses strategies to further improve spatial resolution, sensitivity, and experimental accuracy.

Keywords

Neutron imaging / hydrogen / quantitative analysis / metallic structural materials / solid-state hydrogen storage

Cite this article

Download citation ▾
Minxing Zhang, Nida Muzamil, Yuxiao Jia, Xiao Zhang, Lufeng Yang, Zaiqing Que, Yong Sun, Jie Chen, Weijia Gong. Neutron imaging quantifying hydrogen diffusion and distribution in metallic materials - a review. Microstructures, 2025, 5(4): 2025098 DOI:10.20517/microstructures.2025.74

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kardjilov N,Woracek R,Banhart J.Advances in neutron imaging.Mater Today2018;21:652-72

[2]

Kardjilov N,Hilger A,Banhart J.Neutron imaging in materials science.Mater Today2011;14:248-56

[3]

Buitrago N,Tartaglione A.Determination of very low concentrations of hydrogen in zirconium alloys by neutron imaging.J Nucl Mater2018;503:98-109

[4]

Strickland J,Sheppard G.2d single crystal bragg-dip mapping by time-of-flight energy-resolved neutron imaging on IMAT@ISIS.Sci Rep2020;10:20751

[5]

Woracek R,Fedrigo A.Diffraction in neutron imaging - A review.Nucl Instrum Methods Phys Res Sect A2018;878:141-58

[6]

Muneem A,Saito TR.Advancing neutron imaging techniques to highest resolution with fluorescent nuclear track detectors.Sci Rep2025;15:2103 PMCID:PMC11759702

[7]

Weick S.Investigating hydrogen in zirconium alloys by means of neutron imaging.Materials2024;17:781 PMCID:PMC10890486

[8]

Aswal DK,Kashyap YS.Neutron imaging: basics, techniques and applications. Springer, 2022.

[9]

Strobl M,Kardjilov N,Dawson M.Advances in neutron radiography and tomography.J Phys D Appl Phys2009;42:243001

[10]

Grosse M.Which resolution can be achieved in practice in neutron imaging experiments?.Phys Proc2017;88:266-74

[11]

Brenizer J.A review of significant advances in neutron imaging from conception to the present.Phys Proc2013;43:10-20

[12]

Wang S,Wang D.Neutron-based characterization: a rising star in illuminating rechargeable lithium metal batteries.Nano Energy2024;122:109337

[13]

Börries S. Neutron imaging of metal hydride systems; 2017. Available from: https://ediss.sub.uni-hamburg.de/handle/ediss/7425 [Last accessed on 18 Sep 2025]

[14]

Lehmann EH,Kardjilov N.Hydrogen distribution measurements by neutrons.Appl Radiat Isot2004;61:503-9

[15]

Bilheux HZ,Anderson IS.Neutron imaging and applications: a reference for the imaging community; Springer, 2009.

[16]

Banhart J.Advanced tomographic methods in materials research and engineering. OUP Oxford; 2008.

[17]

Mattes M. Thermal neutron scattering data for the moderator materials h2o, d2o and ZrHx in ENDF-6 format and as ACE library for MCNP(X) codes. Vienna: IAEA Nuclear Data Section; 2005. Available from: https://library.iaea.org/permalink/43IAEA_INST/2q130i/alma991000004629709096 [Last accessed on 18 Sep 2025]

[18]

Grammer KB,Barrón-palos L.Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission.Phys Rev B2015;91:180301

[19]

Romanelli G,Ulpiani P.Thermal neutron cross sections of amino acids from average contributions of functional groups.J Phys Condens Matter2021;33:285901

[20]

Sears VF.Neutron scattering lengths and cross sections.Neutron News1992;3:26-37

[21]

Fritzsche H,Fruchart D.Neutron scattering and other nuclear techniques for hydrogen in materials. Springer, 2016.

[22]

Dawidowski J,Santisteban JR.Neutron scattering lengths and cross sections. Neutron Scattering - Fundamentals. Elsevier; 2013. pp. 471-528.

[23]

Grosse M,Steinbrueck M,Stuckert J.Quantification of hydrogen uptake of steam-oxidized zirconium alloys by means of neutron radiography.J Phys Condens Matter2008;20:104263

[24]

Grosse M,Steinbrück M.Secondary hydriding during LOCA - Results from the QUENCH-L0 test.J Nucl Mater2012;420:575-82

[25]

Gong W,Colldeweih A.Hydrogen diffusion and precipitation in duplex zirconium nuclear fuel cladding quantified by high-resolution neutron imaging.J Nucl Mater2019;526:151757

[26]

Colldeweih AW,Trtik P,Pouchon MA.Delayed hydride cracking in Zircaloy-2 with and without liner at various temperatures investigated by high-resolution neutron radiography.J Nucl Mater2022;561:153549

[27]

Gómez AG,Grosse M.Evaluation of the delayed hydrogen cracking behavior and the hydrogen diffusion coefficient for different microstructures of the Zr-2.5%Nb alloy.J Nucl Mater2023;587:154725

[28]

Fagnoni F,Wheeler JM,Bertsch J.Hydrogen diffusion in zirconium cladding alloys with an inner liner as quantified by neutron radiography and nanoindentation.J Nucl Mater2023;584:154574

[29]

Lin J,Bilheux HZ.Azimuthally anisotropic hydride lens structures in Zircaloy 4 nuclear fuel cladding: high-resolution neutron radiography imaging and BISON finite element analysis.J Nucl Mater2017;496:129-39

[30]

Grosse M,Goulet C,Schillinger B.In-situ neutron radiography investigations of hydrogen diffusion and absorption in zirconium alloys.Nucl Instrum Methods Phys Res Sect A2011;651:253-7

[31]

Shukla S,Roy T,Shukla M.Investigation of hydrogen diffusivity in Zr-2.5%Nb alloy pressure tube material using metallography and neutron radiography.J Nucl Mater2021;544:152679

[32]

Shukla S,Kashyap Y.Anisotropy study of hydrogen diffusion along different directions of Zr-2.5%Nb alloy pressure tube using neutron imaging.J Nucl Mater2023;580:154414

[33]

Bennun L,Díaz-Valdés J,Mayer R.A neutronic method to determine low hydrogen concentrations in metals.Nucl Instrum Methods Phys Res Sect B2007;263:468-72

[34]

Granada J,Mayer R.Non-destructive determination of very low hydrogen content in metals with the use of neutron techniques.Phys B1995;213-214:1005-7

[35]

Santisteban J,Mayer R.Neutron spectrometer for the determination of very low hydrogen content in metals.J Neutron Res1998;7:1-14

[36]

Sváb E,Somogyvári Z,Körösi F.Neutron imaging of Zr-1%Nb fuel cladding material containing hydrogen.Appl Radiat Isot2004;61:471-7

[37]

Grosse MK,Steinbrück M,Hartmann S.Neutron radiography and tomography investigations of the secondary hydriding of zircaloy-4 during simulated loss of coolant nuclear accidents.Phys Proc2013;43:294-306

[38]

Grosse M,Stuckert J.Neutron imaging investigations of the hydrogen related degradation of the mechanical properties of zircaloy-4 cladding tubes.MRS Proc2013;1528:S1946427413003643

[39]

Grosse M,Goulet C.In-situ investigation of hydrogen diffusion in Zircaloy-4 by means of neutron radiography.J Phys Conf Ser2012;340:012106

[40]

Grosse M,Steinbrück M.In-situ neutron radiography investigations of the reaction of Zircaloy-4 in steam, nitrogen/steam and air/steam atmospheres.Phys B2018;551:244-8

[41]

Grosse M,Stuckert J.Neutron imaging investigations of the secondary hydriding of nuclear fuel cladding alloys during loss of coolant accidents.Phys Proc2015;69:436-44

[42]

Hong T, Brachet J, Crépin J, Le Saux M. Combined effects of temperature and of high hydrogen and oxygen contents on the mechanical behavior of a zirconium alloy upon cooling from the βZr phase temperature range.J Nucl Mater2021;554:153069

[43]

Agrawal A,Sarkar P.Study of hydride blisters in Zr-alloy using neutron tomography.J Nucl Mater2012;421:47-53

[44]

Smith T,Ray H,Yan Y.High resolution neutron radiography and tomography of hydrided zircaloy-4 cladding materials.Phys Proc2015;69:478-82

[45]

Brachet J,Le Saux M.“Study of secondary hydriding at high temperature in zirconium based nuclear fuel cladding tubes by coupling information from neutron radiography/tomography, electron probe micro analysis, micro elastic recoil detection analysis and laser induced breakdown spectroscopy microprobe.J Nucl Mater2017;488:267-86

[46]

Gong W,Valance S.Hydrogen diffusion under stress in Zircaloy: high-resolution neutron radiography and finite element modeling.J Nucl Mater2018;508:459-64

[47]

Gong W,Ma F,Li J.Hydrogen diffusion and precipitation under non-uniform stress in duplex zirconium nuclear fuel cladding investigated by high-resolution neutron imaging.J Nucl Mater2022;570:153971

[48]

Stella V,Gomez A,Schulz M.Hydrogen diffusion in Zr-2.5Nb pressure tubes specimens between 300°C-400°C by in-situ neutron imaging experiments.J Phys Conf Ser2023;2605:012037

[49]

Duarte LI,Zubler R,Trtik P.Effect of the inner liner on the hydrogen distribution of zircaloy-2 nuclear fuel claddings.J Nucl Mater2021;557:153284

[50]

Konarski P,Khvostov G.Modeling of hydrogen behavior in liner claddings.J Nucl Mater2023;573:154125

[51]

Fagnoni F,Busi M.Hydrogen enhanced localized plasticity in zirconium as observed by digital image correlation.J Nucl Mater2024;590:154873

[52]

Crha J,Lehmann E,Trtik P.Light yield enhancement of 157-gadolinium oxysulfide scintillator screens for the high-resolution neutron imaging.MethodsX2019;6:107-14 PMCID:PMC6329322

[53]

Trtik P.Progress in high-resolution neutron imaging at the paul scherrer institut - the neutron microscope project.J Phys Conf Ser2016;746:012004

[54]

Gustschin A,Losko A.Event-based high-resolution neutron image formation analysis using intensified CMOS cameras.Sci Rep2024;14:26941 PMCID:PMC11541962

[55]

Grosse M,Bertsch J.Investigations of the hydrogen diffusion and distribution in Zirconium by means of Neutron Imaging.Kerntechnik2018;83:495-501

[56]

Grosse M,Kaestner A.In situ neutron radiography investigations of hydrogen related processes in zirconium alloys.Appl Sci2021;11:5775

[57]

Soria S,Grosse M,Santisteban J.Development of in-situ delayed hydride cracking tests using neutron imaging to study the H redistribution in Zr-2.5%Nb.J Phys Conf Ser2023;2605:012036

[58]

Xue ZL,Brown CM.Neutron instruments for research in coordination chemistry.Eur J Inorg Chem2024;2019:1065-89 PMCID:PMC11071074

[59]

Weick S,Steinbrueck M.The INCHAMEL facility - a new device for in-situ neutron investigations under defined temperatures with applicable mechanical load.J Phys Conf Ser2023;2605:012035

[60]

Taylor CN.Hydrogen and its detection in fusion and fission nuclear materials - a review.J Nucl Mater2022;558:153396

[61]

Leyens C.Titanium and titanium alloys: fundamentals and applications. 2003.

[62]

Niinomi M.Mechanical biocompatibilities of titanium alloys for biomedical applications.J Mech Behav Biomed Mater2008;1:30-42

[63]

Zhang X,Luo H,Zhao Y.Corrosion resistances of metallic materials in environments containing chloride ions: a review.Trans Nonferrous Met Soc China2022;32:377-410

[64]

Oryshchenko AS,Mikhailov VI.Titanium alloys for shipbuilding and nuclear power engineering.Inorg Mater Appl Res2012;3:497-506

[65]

Wang C,Ma Y,Yang R.Hydrogen-surface interaction from first-principles calculations and its implication to hydrogen embrittlement mechanisms of titanium.Appl Surf Sci2023;621:156871

[66]

Yan H,Cem Tasan C.In-situ scanning electron microscope thermal desorption spectroscopy (SEM-TDS) analysis of thermally-induced titanium hydride decomposition and reformation.Acta Mater2022;226:117562

[67]

Tsuchiya B,Nagata S.Hydrogen analyses of titanium hydride by ERD and NRG methods.Nucl Instrum Methods Phys Res Sect B2002;190:699-703

[68]

Wang Q,Weng H.Hydrogen diffusion-induced crystallographic changes in α + β titanium alloy.Scr Mater2025;256:116410

[69]

Yang L,Huang D.Three-dimensional hydrogen distribution and quantitative determination of titanium alloys via neutron tomography.Analyst2020;145:4156-63

[70]

Kumar R,Trtik P.Characterizing effects of hydrogen ingress in Ti-Mg based hybrid implant materials.RSC Adv2025;15:4472-80 PMCID:PMC11808483

[71]

Zakalek P,Brückel T.Neutron sources for large scale user facilities: the potential of high current accelerator-driven neutron sources.Prog Part Nucl Phys2025;142:104163

[72]

Lindblom D,Woracek R,Helfen L.In-situ neutron imaging of delayed crack propagation of high strength martensitic steel under hydrogen embrittlement conditions.Mater Sci Eng A2024;895:146215

[73]

Griesche A,Kannengiesser T,Hilger A.Three-dimensional imaging of hydrogen blister in iron with neutron tomography.Acta Mater2014;78:14-22

[74]

Chen Y,Liu P.Hydrogen trapping and embrittlement in metals - A review.Int J Hydrogen Energy2025;136:789-821

[75]

Beyer K,Griesche A.Study of hydrogen effusion in austenitic stainless steel by time-resolved in-situ measurements using neutron radiography.Nucl Instrum Methods Phys Res Sect A2011;651:211-5

[76]

Griesche A,Beyer K.The advantage of using in-situ methods for studying hydrogen mass transport: Neutron radiography vs. carrier gas hot extraction.Int J Hydrogen Energy2013;38:14725-9

[77]

Griesche A,Kardjilov N,Manke I.Imaging of hydrogen in steels using neutrons.Int J Mater Res2014;105:640-4

[78]

Griesche A,Kannengiesser T.Neutron imaging of hydrogen in iron and steel.Can Metall Quart2015;54:38-42

[79]

Griesche A,Kannengiesser T.Measuring hydrogen distributions in iron and steel using neutrons.Phys Proc2015;69:445-50

[80]

Jia Y,Wang J.Inducing one-step dehydrogenation of magnesium borohydride via confinement in robust dodecahedral nitrogen-doped porous carbon scaffold.Adv Mater2024;36:e2406152

[81]

Bellosta von Colbe JM,Lozano GA.Behavior of scaled-up sodium alanate hydrogen storage tanks during sorption.Int J Hydrogen Energy2012;37:2807-11

[82]

Sakaguchi H,Hatakeyama K.Analysis of hydrogen distribution in hydrogen storage alloy using neutron radiography.J Alloys Compd2003;354:208-15

[83]

Sakaguchi H,Hatakeyama K.Visualization of hydrogen in hydrogen storage alloys using neutron radiography.Int J Hydrogen Energy2000;25:1205-8

[84]

Biasetti A,Meyer G,Aversente N.Decrepitation process of a hydride forming material observed by neutron radiography.J Phys Conf Ser2023;2605:012033

[85]

Gondek Ł,Czub J.Imaging of an operating LaNi4.8Al0.2-based hydrogen storage container.Int J Hydrogen Energy2011;36:9751-7

[86]

Jacobson D,Baltic E,Rush J.R. Neutron imaging studies of metal-hydride storage beds.Int J Hydrogen Energy2010;35:12837-45

[87]

Garlea E,Galloway E.Identification of lithium hydride and its hydrolysis products with neutron imaging.J Nucl Mater2017;485:147-53

[88]

Herbrig K,Gondek Ł.Investigations of the structural stability of metal hydride composites by in-situ neutron imaging.J Power Sources2015;293:109-18

[89]

Börries S,Pranzas P.Scattering influences in quantitative fission neutron radiography for the in situ analysis of hydrogen distribution in metal hydrides.Nucl Instrum Methods Phys Res Sect A2015;797:158-64

[90]

Karimi F,Pranzas PK.Characterization of LiBH4 - MgH2 reactive hydride composite system with scattering and imaging methods using neutron and synchrotron radiation.Adv Eng Mater2021;23:2100294

[91]

Pranzas PK,Karimi F.Characterization of hydrogen storage materials and systems with photons and neutrons.Adv Eng Mater2011;13:730-6

[92]

Baruj A,Marín J,Borzone E.Design and characterization of a hydride-based hydrogen storage container for neutron imaging studies.Phys Proc2015;69:491-5

[93]

Börries S,Pranzas P.Optimization and comprehensive characterization of metal hydride based hydrogen storage systems using in-situ Neutron Radiography.J Power Sources2016;328:567-77

[94]

Baruj A,Ardito M.Neutron radiography analysis of a hydride-based hydrogen storage system.Int J Hydrogen Energy2015;40:16913-20

[95]

Pohlmann C,Gondek Ł.In operando visualization of hydride-graphite composites during cyclic hydrogenation by high-resolution neutron imaging.J Power Sources2015;277:360-9

[96]

Heubner F,Kardjilov N.In-operando stress measurement and neutron imaging of metal hydride composites for solid-state hydrogen storage.J Power Sources2018;397:262-70

[97]

Hassanein R,Kardjilov N.Scattering correction algorithm for neutron radiography and tomography tested at facilities with different beam characteristics.Phys B2006;385-386:1194-6

[98]

Boillat P,Schmid F.Chasing quantitative biases in neutron imaging with scintillator-camera detectors: a practical method with black body grids.Opt Express2018;26:15769-84

[99]

Yetik O,Zubler R,Bertsch J.Hydrogen redistribution in non-irradiated and irradiated duplex zirconium claddings by high-resolution neutron imaging.J Nucl Mater2025;610:155780

[100]

Carminati C,Kaestner A.KipTool, a general purpose processing tool for neutron imaging data.SoftwareX2019;10:100279

[101]

Walker SM,Mokso R.In vivo time-resolved microtomography reveals the mechanics of the blowfly flight motor.PLoS Biol2014;12:e1001823 PMCID:PMC3965381

[102]

Guo S,Wang P.Flux measurement of synchrotron radiation monochromatic X-ray in (6-70) keV.Nucl Instrum Methods Phys Res Sect A2025;1077:170553

[103]

Amgarou K.State-of-the-art and challenges of non-destructive techniques for in-situ radiological characterization of nuclear facilities to be dismantled.Nucl Eng Technol2021;53:3491-504

AI Summary AI Mindmap
PDF

185

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/