Bench-to-bedside translation of podophyllotoxin-based nanomedicines for cancer treatment: utopias and reality?

Zhonglei Wang , Xianqing Song , Mingyu Sun , Ruixin Zhang , Liyan Yang

Microstructures ›› 2025, Vol. 5 ›› Issue (4) : 2025094

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (4) :2025094 DOI: 10.20517/microstructures.2025.71
Review

Bench-to-bedside translation of podophyllotoxin-based nanomedicines for cancer treatment: utopias and reality?

Author information +
History +
PDF

Abstract

Cancers represent a complex and multifaceted health challenge, marked by elevated disease burden and fatality rates stemming from both genetic alterations and epigenetic modifications. Nanomedicine, as an emerging field in oncological investigation, optimizes the site-specific delivery of chemotherapeutic compounds through innovative engineering approaches. This technological advancement enables the development of revolutionary strategies for designing precision-targeted treatments that maximize safety and effectiveness. Podophyllotoxin (PPT), a potent aryltetralin-class cytotoxic agent isolated from Podophyllum plants, has become a focal point in anticancer pharmaceutical development. Early research efforts focused on direct PPT administration for tumor management, yet clinical implementation through conventional delivery methods has been constrained by multiple factors including pronounced toxicity profiles, limited aqueous solubility, and narrow therapeutic windows. Advances in nanotechnology and biomaterials effectively enhance PPT therapy's potential for cancer treatment in clinical settings. Various PPT-based nanomedicines have been explored in recent years (2022-2025), including carrier-free nanodrugs, liposomes, polymeric micelles, polymer-drug conjugates, host-guest drug delivery systems, and peptide-based nanoparticles, which utilize passive targeting, active targeting, and stimulus-responsive targeting mechanisms to improve tumor-directed drug delivery. Nevertheless, due to the complexity of the tumor microenvironment, single PPT nanomedicine has suboptimal therapeutic efficacy. PPT-based "combo" drug delivery system facilitates innovative multi-dimensional therapies - such as chemotherapy combined with photodynamic therapy, photothermal therapy, immunotherapy, and chemodynamic therapy - to deliver superior therapeutic benefits and jump the “valley of death”. This review explores delivery strategies of PPT-based nanomedicines and may spark new ideas for multimodal treatment protocols, providing an entry point for professionals to thrive in this exciting field.

Keywords

Cancers / podophyllotoxin / PPT-based nanomedicines / tumor-directed drug delivery / "Combo" drug delivery system

Cite this article

Download citation ▾
Zhonglei Wang, Xianqing Song, Mingyu Sun, Ruixin Zhang, Liyan Yang. Bench-to-bedside translation of podophyllotoxin-based nanomedicines for cancer treatment: utopias and reality?. Microstructures, 2025, 5(4): 2025094 DOI:10.20517/microstructures.2025.71

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bray F,Sung H.Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin2024;74:229-63

[2]

Roerden M.Cancer immune evasion, immunoediting and intratumour heterogeneity.Nat Rev Immunol2025;25:353-69

[3]

Fyfe I.CNS drug delivery improves chemotherapy.Nat Rev Neurol2025;21:125

[4]

Wang J.Research progress of microrobots in tumor drug delivery.Food Med Homol2024;1:9420025

[5]

May M.Targeted radiation adds precision to cancer therapy.Nat Med2025;31:702-3

[6]

Zhang Y,Liu R.Artificial intelligence in clinical trials of lung cancer: Current and future prospects.Intell Oncol2025;1:34-51

[7]

Crosby D,Brindle KM.Early detection of cancer.Science2022;375:eaay9040

[8]

Zhen Z,Feng C,Ma J.From data to decisions: big data and AI are shaping the future of radiotherapy and individualized treatment of nasopharyngeal carcinoma.Intell Oncol2025;1:52-60

[9]

Timofeev O,Lawo S,Noeparast M.ERK pathway agonism for cancer therapy: evidence, insights, and a target discovery framework.NPJ Precis Oncol2024;8:70 PMCID:PMC10940698

[10]

Beretta GL,Rossi G.Novel insights into taxane pharmacology: an update on drug resistance mechanisms, immunomodulation and drug delivery strategies.Drug Resist Updat2025;81:101223

[11]

Zhang M,Zhao C.Fine-tuning the activation behaviors of ternary modular cabazitaxel prodrugs for efficient and on-target oral anti-cancer therapy.Asian J Pharm Sci2024;19:100908 PMCID:PMC11017284

[12]

Cavalli F.We need intelligent oncology everywhere.Intell Oncol2025;1:1-3

[13]

Zheng L,Liang B.Overcoming drug resistance through extracellular vesicle-based drug delivery system in cancer treatment.Cancer Drug Resist2024;7:50 PMCID:PMC11724354

[14]

Zhu L,Liu X.Acid and phosphatase-triggered release and trapping of a prodrug on cancer cell enhance its chemotherapy.Biomaterials2025;320:123254

[15]

Zhang Z,Guo N.A nanodrug loading indocyanine green and metformin dually alleviating tumor hypoxia for enhanced chemodynamic/sonodynamic therapy.J Colloid Interface Sci2025;680:341-55

[16]

Wang Z,Li Y.An activatable, carrier-free, triple-combination nanomedicine for ALK/EGFR-mutant non-small cell lung cancer highly permeable targeted chemotherapy.New J Chem2022;46:17673-7

[17]

Wang Z,Xu W,Zhang H.Stand up to stand out: natural dietary polyphenols curcumin, resveratrol, and gossypol as potential therapeutic candidates against severe acute respiratory syndrome coronavirus 2 infection.Nutrients2023;15:3885 PMCID:PMC10535599

[18]

Wang Z.The therapeutic potential of natural dietary flavonoids against SARS-CoV-2 infection.Nutrients2023;15:3443

[19]

Takemoto M,Abo M.Covalent plant natural product that potentiates antitumor immunity.J Am Chem Soc2025;147:2902-12

[20]

Wang Z,Yang L.Bioactive natural products in COVID-19 therapy.Front Pharmacol2022;13:926507 PMCID:PMC9438897

[21]

Wang Z,Zhao XE.Co-crystallization and structure determination: an effective direction for anti-SARS-CoV-2 drug discovery.Comput Struct Biotechnol J2021;19:4684-701 PMCID:PMC8373586

[22]

Feng T,Ahmed T.Nanoparticles derived from herbal preparations May represent a novel nucleic acid therapy.Interdiscip Med2024;2:e20230029

[23]

Wang Z.Advances in the asymmetric total synthesis of natural products using chiral secondary amine catalyzed reactions of α,β-unsaturated aldehydes.Molecules2019;24:3412 PMCID:PMC6767148

[24]

Wang Z.Chinese herbal medicine: fighting SARS-CoV-2 infection on all fronts.J Ethnopharmacol2021;270:113869 PMCID:PMC7825841

[25]

Wang Z.Turning the tide: natural products and natural-product-inspired chemicals as potential counters to SARS-CoV-2 infection.Front Pharmacol2020;11:1013

[26]

Anand U,Kumar V.Podophyllum hexandrum and its active constituents: novel radioprotectants.Biomed Pharmacother2022;146:112555

[27]

Liu W,Yin D,Wang Z.Plant origin source, content profile and bioactivity of podophyllotoxin as an important natural anticancer agent.Chem Biodivers2025;22:e202402375

[28]

Guo Y,He J.Research progress and quality markers prediction analysis of Dysosma versipellis.Tradit Med Res2023;8:16

[29]

Hao M.Chemistry and biology of podophyllotoxins: an update.Chemistry2024;30:e202302595

[30]

Peer LA.Phytochemistry, pharmacological activities, and ethnomedicina l importance of the highly valuable endangered plant, Podophyllum hexandrum; A comprehensive review.Inter J Biol Pharm Allied Sci2024;13:951-64

[31]

Plotzker RE,Pokharel U.Sexually transmitted human papillomavirus: update in epidemiology, prevention, and management.Infect Dis Clin North Am2023;37:289-310

[32]

Yang C,Zeng X.Novel hybrids of podophyllotoxin and formononetin inhibit the growth, migration and invasion of lung cancer cells.Bioorg Chem2019;85:445-54

[33]

Zhang W,Li J.Target analysis and mechanism of podophyllotoxin in the treatment of triple-negative breast cancer.Front Pharmacol2020;11:1211 PMCID:PMC7427588

[34]

Xu Y,Liu Y.Dual-modified albumin-polymer nanocomplexes with enhanced in vivo stability for hepatocellular carcinoma therapy.Colloids Surf B Biointerfaces2021;201:111642

[35]

Zhang L,Chen F,Lin Y.Aromatic heterocyclic esters of podophyllotoxin exert anti-MDR activity in human leukemia K562/ADR cells via ROS/MAPK signaling pathways.Eur J Med Chem2016;123:226-35

[36]

Lee SO,Kwak AW.Podophyllotoxin induces ROS-mediated apoptosis and cell cycle arrest in human colorectal cancer cells via p38 MAPK signaling.Biomol Ther2021;29:658-66 PMCID:PMC8551740

[37]

Zhao W,Li HM,Tang YJ.Podophyllotoxin derivatives-tubulin complex reveals a potential binding site of tubulin polymerization inhibitors in α-tubulin adjacent to colchicine site.Int J Biol Macromol2024;276:133678

[38]

Shah Z,Jamshed I.Podophyllotoxin: history, recent advances and future prospects.Biomolecules2021;11:603 PMCID:PMC8073934

[39]

Ma Y,Deng L.Redox-responsive self-assembled podophyllotoxin twin drug nanoparticles for enhanced intracellular drug delivery.Biomed Mater2023;18:045019

[40]

Qu Y,Ma X,Liu J.Synthesis and biological evaluation of NQO1-activated prodrugs of podophyllotoxin as antitumor agents.Bioorg Med Chem2020;28:115821

[41]

Shi RJ,Yu XH,Jiang J.Advances of podophyllotoxin and its derivatives: patterns and mechanisms.Biochem Pharmacol2022;200:115039

[42]

Xu Y,Chen L.Podophyllotoxin derivatives targeting tubulin: an update (2017-2022).Drug Discov Today2023;28:103640

[43]

Zhang W,Michail C.Human CREBBP acetyltransferase is impaired by etoposide quinone, an oxidative and leukemogenic metabolite of the anticancer drug etoposide through modification of redox-sensitive zinc-finger cysteine residues.Free Radic Biol Med2021;162:27-37

[44]

Motyka S,Ekiert H.Podophyllotoxin and its derivatives: potential anticancer agents of natural origin in cancer chemotherapy.Biomed Pharmacother2023;158:114145

[45]

Luo Z,Wang X.Progress in approved drugs from natural product resources.Chin J Nat Med2024;22:195-211

[46]

Sinkule JA.Etoposide: a semisynthetic epipodophyllotoxin. Chemistry, pharmacology, pharmacokinetics, adverse effects and use as an antineoplastic agent.Pharmacotherapy1984;4:61-73

[47]

Mosijczuk AD,Mease AD.Anthracycline cardiomyopathy in childrenReport of two cases.Cancer1979;44:1582-7

[48]

Chauhan AS,Parashar T.Lipid-based nanoparticles: strategy for targeted cancer therapy.BIOI2025;6

[49]

Liao S,Lu Y.Nanomedicine in immunotherapy for non-small cell lung cancer: applications and perspectives.Small Methods2025;9:e2401783

[50]

Kalayil N,Dave RK.Nanofibers for drug delivery: design and fabrication strategies.BIOI2024;5

[51]

Prasad R,Patel V.Voices of nanomedicine: blueprint guidelines for collaboration in addressing global unmet medical needs.ACS Nano2025;19:2979-91 PMCID:PMC12412050

[52]

Hadi MK,Pantrangi M,Ran F.Biocompatible polyethersulfone membrane modified by hydrophilic polymer decorated magnetic nanoparticles gilded by facile external magnetic field.Interdiscip Med2024;2:e20240004

[53]

Hu C,Gao H.DELIVER: the core principles for the clinic translation of nanomedicines.Acta Pharm Sin B2025;15:1196-8 PMCID:PMC11959886

[54]

Liang X,Ma J.Enhanced mechanical strength and sustained drug release in carrier-free silver-coordinated anthraquinone natural antibacterial anti-inflammatory hydrogel for infectious wound healing.Adv Healthc Mater2024;13:e2400841

[55]

Miao Y,Zhao X,Liu X.Co-assembly strategies of natural plant compounds for improving their bioavailability.Food Med Homol2025;2:9420022

[56]

Huang J,Yang Y.Mitigating doxorubicin-induced cardiotoxicity and enhancing anti-tumor efficacy with a metformin-integrated self-assembled nanomedicine.Adv Sci2025;12:e2415227 PMCID:PMC12061326

[57]

Sun X,Lin J,Shen J.Recent advances in access to overcome cancer drug resistance by nanocarrier drug delivery system.Cancer Drug Resist2023;6:390-415 PMCID:PMC10344729

[58]

Wang X,Wang J.A mitochondria-targeted biomimetic nanomedicine capable of reversing drug resistance in colorectal cancer through mitochondrial dysfunction.Adv Sci2025;12:e2410630 PMCID:PMC11967798

[59]

Liu R,Yu Z,Liu C.Metal-organic coordinated self-assembled nanomedicine for enhanced cuproptosis-mediated chemo-photo-chemodynamic synergistic therapy of non-small cell lung cancer.Chem Eng J2025;509:161305

[60]

Tao J,Lu W.Smart self-transforming nano-systems for overcoming biological barrier and enhancing tumor treatment efficacy.J Control Release2025;380:85-107

[61]

Germain M,Metcalfe S.Delivering the power of nanomedicine to patients today.J Control Release2020;326:164-71 PMCID:PMC7362824

[62]

Jarrett TR,Bell CA,Thurecht KJ.Material trends and clinical costings in systematically identified CDER-approved nanomedicines.Adv Ther2024;7:2400124

[63]

Reddy KTK.Recent breakthroughs in drug delivery systems for targeted cancer therapy: an overview.Cell Mol Biomed Rep2025;5:13-27

[64]

Wu Z,Wang B,Fu S.Nanoparticle-based drug delivery strategies for targeted therapy to hypoxic solid tumors.Chem Eng J2024;502:158081

[65]

Thomas MR,Pai V.Navigating tumor microenvironment barriers with nanotherapeutic strategies for targeting metastasis.Adv Healthc Mater2025;14:e2403107

[66]

Miranda-Vera C,García-García P,García PA.Bioconjugation of podophyllotoxin and nanosystems: approaches for boosting its biopharmaceutical and antitumoral profile.Pharmaceuticals2025;18:169 PMCID:PMC11859694

[67]

Roy A,Yang Y,Klassen T.Selective targeting and therapy of metastatic and multidrug resistant tumors using a long circulating podophyllotoxin nanoparticle.Biomaterials2017;137:11-22 PMCID:PMC5516947

[68]

Zhang C,Zhang T.Advances in nanoscale carrier-based approaches to reduce toxicity and enhance efficacy of podophyllotoxin.Acta Mater Med2023;2:430-48

[69]

Yadav R,Dubey G.Herbal based nanoparticles as a possible and potential treatment of cancer: a review.Explor Target Antitumor Ther2025;6:1002285 PMCID:PMC11885881

[70]

Florczak A,Deptuch T,Kaminska A.Silk particles as carriers of therapeutic molecules for cancer treatment.Materials2020;13:4946 PMCID:PMC7663281

[71]

Appidi T,Ștefan GR.Engineered multifunctional nanoparticles for enhanced radiation therapy: three-in-one approach for cancer treatment.Mol Cancer2025;24:68 PMCID:PMC11883980

[72]

Liu H,Li X,He W.Drug delivery for platinum therapeutics.J Control Release2025;380:503-23

[73]

Tenchov R,Ganesan M.Transforming medicine: cutting-edge applications of nanoscale materials in drug delivery.ACS Nano2025;19:4011-38 PMCID:PMC11803921

[74]

Dechbumroong P,Keaswejjareansuk W,Liang XJ.Recent advanced lipid-based nanomedicines for overcoming cancer resistance.Cancer Drug Resist2024;7:24 PMCID:PMC11267154

[75]

Aalhate M,Dhuri A.Biohybrid nano-platforms manifesting effective cancer therapy: fabrication, characterization, challenges and clinical perspective.Adv Colloid Interface Sci2025;335:103331

[76]

Yang Y,Chu Y,Wang W.Photoresponsive drug delivery systems: challenges and progress.Adv Funct Mater2024;34:2402975

[77]

Puccetti M,Schoubben A,Ricci M.Biologics, theranostics, and personalized medicine in drug delivery systems.Pharmacol Res2024;201:107086

[78]

Hu S,Shen Y.Revolutionizing drug delivery: the power of stimulus-responsive nanoscale systems.Chem Eng J2024;496:154265

[79]

Wang Z.Natural-product-based, carrier-free, noncovalent nanoparticles for tumor chemo-photodynamic combination therapy.Pharmacol Res2024;203:107150

[80]

Beach MA,Gao Y.Polymeric nanoparticles for drug delivery.Chem Rev2024;124:5505-616 PMCID:PMC11086401

[81]

Zhou H,Jin G.Polymeric nanoparticles simultaneously delivering paclitaxel prodrug and combretastatin A4 with exceptionally high drug loading for cancer combination therapy.Nano Lett2025;25:3479-88

[82]

Meng F,Zhao J.Timely administration of drug combination improves chemoimmunotherapy of an immune-cold tumor.J Control Release2025;381:113579 PMCID:PMC12002645

[83]

Sharma R,Jha S,Jain S.Unveiling the potential of ursolic acid modified hyaluronate nanoparticles for combination drug therapy in triple negative breast cancer.Carbohydr Polym2024;338:122196

[84]

Chen H,Lei H.ROS-driven supramolecular nanoparticles exhibiting efficient drug delivery for chemo/Chemodynamic combination therapy for Cancer treatment.J Control Release2024;368:637-49

[85]

Li K,Li Z,Zuo H.Cisplatin-based combination therapies: Their efficacy with a focus on ginsenosides co-administration.Pharmacol Res2024;203:107175

[86]

Zhang X,Qiao H.Supramolecular self-sensitized dual-drug nanoassemblies potentiating chemo-photodynamic therapy for effective cancer treatment.Int J Pharm2024;662:124496

[87]

Wang Q,Li C.A computer-aided chem-photodynamic drugs self-delivery system for synergistically enhanced cancer therapy.Asian J Pharm Sci2021;16:203-12 PMCID:PMC8105418

[88]

Xiong H,Ye J.Therapeutic co-assemblies for synergistic NSCLC treatment through dual topoisomerase I and tubulin inhibitors.J Control Release2025;377:485-94

[89]

Wang X,Yu J.Reduction-hypersensitive podophyllotoxin prodrug self-assembled nanoparticles for cancer treatment.Pharmaceutics2023;15:784 PMCID:PMC10058384

[90]

Lin Z,Li W.A natural compound-empowered podophyllotoxin prodrug nanoassembly magnifies efficacy-toxicity benefits in cancer chemotherapy.Asian J Pharm Sci2024;19:100892 PMCID:PMC11374962

[91]

Liu T,Zheng Y.Steric hindrance-engineered redox-responsive disulfide-bridged homodimeric prodrug nanoassemblies for spatiotemporally balanced cancer chemotherapy.J Med Chem2025;68:11916-27

[92]

Yu J,Li J.“Transforming enemy into friend” strategy-based stimuli responsive dual-drug liposomes for synergistic chemo-photodynamic therapy.Chem Eng J2024;487:150526

[93]

Cheng X,Zhou X.Enhanced tumor homing of pathogen-mimicking liposomes driven by R848 stimulation: A new platform for synergistic oncology therapy.Acta Pharm Sin B2022;12:924-38 PMCID:PMC8897206

[94]

Wang R,Huang Z.Self-assembly of podophyllotoxin-loaded lipid bilayer nanoparticles for highly effective chemotherapy and immunotherapy via downregulation of programmed cell death ligand 1 production.ACS Nano2022;16:3943-54

[95]

Wang R,Zhao Y.Cationic nanoparticulate system for codelivery of MicroRNA-424 and podophyllotoxin as a multimodal anticancer therapy.Mol Pharm2022;19:2092-104

[96]

Ling X,Li Y.Sequential treatment of bioresponsive nanoparticles elicits antiangiogenesis and apoptosis and synergizes with a CD40 agonist for antitumor immunity.ACS Nano2021;15:765-80 PMCID:PMC8216770

[97]

Zhang L,Zhang H,Guo B.DSPE-mPEG2000-modified podophyllotoxin long-circulating liposomes for targeted delivery: their preparation, characterization, and evaluation.Curr Drug Deliv2025;22:1481-92

[98]

Li M,Sun J.pH/reduction dual-responsive hyaluronic acid-podophyllotoxin prodrug micelles for tumor targeted delivery.Carbohydr Polym2022;288:119402

[99]

Li M,Xuan Y.pH-sensitive hyaluronic acid-targeted prodrug micelles constructed via a one-step reaction for enhanced chemotherapy.Int J Biol Macromol2022;206:489-500

[100]

Zhang C,Zuo Y.Dual targeting of FR+CD44 overexpressing tumors by self-assembled nanoparticles quantitatively conjugating folic acid-hyaluronic acid to the GSH-sensitively modified podophyllotoxin.Chem Eng J2025;505:159276

[101]

Liu M,Wang JH.Immunomodulatory and anti-ovarian cancer effects of novel astragalus polysaccharide micelles loaded with podophyllotoxin.Int J Biol Macromol2025;290:138960

[102]

Xiang Y,Yang W.Mitocytosis mediated by an enzyme-activable mitochondrion-disturbing polymer-drug conjugate enhances active penetration in glioblastoma therapy.Adv Mater2024;36:e2311500

[103]

Xiang C,Hao T.Podophyllotoxin-loaded PEGylated E-selectin peptide conjugate targeted cancer site to enhance tumor inhibition and reduce side effect.Eur J Med Chem2023;260:115780

[104]

Zhang W,Hou Y.Functional nanoplatform for modulating cellular forces to enhance antitumor immunity via mechanotransduction.J Control Release2025;379:850-65

[105]

Li Y,Xiao F,Chu Z.Targeted cancer cell supramolecular nanoparticles self-assembled from acyclic cucurbit[n]urils for combined chemo/chemodynamic/photothermal therapy.Colloid Surface A2025;709:136124

[106]

Jia Y,Chen T.Recent advance in phytonanomedicine and mineral nanomedicine delivery system of the treatment for acute myeloid leukemia.J Nanobiotechnol2023;21:240 PMCID:PMC10369765

[107]

Fu Z,Liu Z.GSH-responsive nanomedicine for disease smart imaging and therapy.Coordin Chem Rev2025;533:216554

[108]

Zhang X,Zhuang J.Synthetic biology-based strategy for nanomedicine design.Small Methods2025;9:e2401969

[109]

Zhu L,Meng X.Polymeric nanocarriers delivery systems in ischemic stroke for targeted therapeutic strategies.J Nanobiotechnol2024;22:424 PMCID:PMC11256638

[110]

Song K,Tao B.Emerging glucose oxidase-delivering nanomedicines for enhanced tumor therapy.J Control Release2025;381:113580

[111]

Fan M,Cheng W.Reinforcing carrier-free photothermal nanodrugs through flavonol-driven assembly.Adv Funct Mater2024;34:2402455

[112]

Ren S,Cai C.A carrier-free ultrasound-responsive polyphenol nanonetworks with enhanced sonodynamic-immunotherapy for synergistic therapy of breast cancer.Biomaterials2025;317:123109

[113]

Seo M,Seo B.Lenalidomide-utilizing self-assembled immunogenic cell death-inducing heparin/doxorubicin nanocomplex for anticancer immunotherapy.Nano Today2025;62:102677

[114]

Wang Z,Lei S.A computer-aided, carrier-free drug delivery system with enhanced cytotoxicity and biocompatibility: a universal model for multifunctional lung cancer therapy.Colloids Surf B Biointerfaces2025;250:114557

[115]

Wang H,Fan J.A carrier-free DNA nanoplatform for efficient three-in-one tumor therapy in vivo.Nano Today2025;62:102734

[116]

Fang F.Carrier-free nanodrugs: from bench to bedside.ACS Nano2024;18:23827-41

[117]

Sun Y,Liu J.Tailoring modification modules of paclitaxel prodrug nanoassemblies to manipulate efficacy and tolerance.Nano Today2024;56:102275

[118]

Cao Y,Miao Y,Deng D.How the versatile self-assembly in drug delivery system to afford multimodal cancer therapy?.Adv Healthc Mater2025;14:e2403715

[119]

Li S,Rahman MSU.Pre-induced ICD membrane-coated carrier-free nanoparticles for the personalized lung cancer immunotherapy.Small Methods2023;7:e2201569

[120]

Hao Y,Zang W.Self-assembled doxorubicin prodrug riding on the albumin express train enable tumor targeting and bio-activation.J Colloid Interface Sci2025;684:97-108

[121]

Kuang Y,Chen H,Wen Y.Advances in self-assembled nanotechnology in tumor therapy.Colloids Surf B Biointerfaces2024;237:113838

[122]

Liu L.Carrier-free nanomedicines for cancer treatment.Prog Mater Sci2022;125:100919

[123]

An J,Zhang J,Liang G.Research progress in tumor therapy of carrier-free nanodrug.Biomed Pharmacother2024;178:117258

[124]

Ji H,Qiao O.Review of carrier-free self-assembly of anticancer nanodrugs.ACS Appl Nano Mater2024;7:4564-87

[125]

Behera A.Passive and active targeting strategies for the delivery of the camptothecin anticancer drug: a review.Environ Chem Lett2020;18:1557-67

[126]

Zhang X,Li X.Carrier-free self-assembled nanomedicine based on celastrol and galactose for targeting therapy of hepatocellular carcinoma via inducing ferroptosis.Eur J Med Chem2024;267:116183

[127]

Jia W,Zhang W,Zhang Y.Carrier-free self-assembled nanomedicines for promoting apoptosis and inhibiting proliferation in hepatocellular carcinoma.ACS Biomater Sci Eng2024;10:4347-58

[128]

Pei Z,Wei H.Multifunctional carrier-free nanodrugs for enhanced delivery and efficacy of hydrophobic antitumor drugs.Chin Chem Lett2025;110981

[129]

Karaosmanoglu S,Shi B,Williams GR.Carrier-free nanodrugs for safe and effective cancer treatment.J Control Release2021;329:805-32

[130]

Huang L,Fang F,Lan M.Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy.Biomaterials2021;268:120557

[131]

Li H,Mi Z.Tailoring carrier-free nanocombo of small-molecule prodrug for combinational cancer therapy.J Control Release2022;352:256-75

[132]

Yang L,Lai Y.A computer-aided, heterodimer-based "triadic" carrier-free drug delivery platform to mitigate multidrug resistance in lung cancer and enhance efficiency.J Colloid Interface Sci2025;677:523-40

[133]

Tong LW,Song XH.Synergistic anti-tumor effect of dual drug co-assembled nanoparticles based on ursolic acid and sorafenib.Colloids Surf B Biointerfaces2024;234:113724

[134]

Feng X,Wang H.Carrier-free chemo-phototherapeutic nanomedicines with endo/lysosomal escape function enhance the therapeutic effect of drug molecules in tumors.J Mater Chem B2024;12:6703-15

[135]

Cheng G,Zhang C.Multifunctional nano-photosensitizer: a carrier-free aggregation-induced emission nanoparticle with efficient photosensitization and pH-responsibility.Chem Eng J2020;390:124447

[136]

Liu Y,Wang T,Wang W.Carrier-free nanodrugs for stemness inhibition-enhanced photodynamic therapy.Aggregate2023;4:e284

[137]

Xue Y,Chen Y.Engineering diselenide-IR780 homodimeric nanoassemblies with enhanced photodynamic and immunotherapeutic effects for triple-negative breast cancer treatment.ACS Nano2023;17:22553-70

[138]

Du X,Huang J.Cytosolic delivery of the immunological adjuvant Poly I:C and cytotoxic drug crystals via a carrier-free strategy significantly amplifies immune response.Acta Pharm Sin B2021;11:3272-85 PMCID:PMC8546930

[139]

Kong L,Yuan F.A metal-free bionic nanozyme for efficient inhibition of cancer recurrence and metastasis following photothermal therapy.Chin Chem Lett2025;36:111030

[140]

Wang Z,Sun M,Yang L.Game changers: blockbuster small-molecule drugs approved by the FDA in 2024.Pharmaceuticals2025;18:729 PMCID:PMC12114780

[141]

Fan W,Huang P.Nanotechnology for multimodal synergistic cancer therapy.Chem Rev2017;117:13566-638

[142]

Wang Y,Mo Z,Nie K.Therapeutic potential of the citrus flavonoid hesperidin and its aglycone hesperetin against chemotherapy-induced toxicity.Tradit Med Res2025;10:22

[143]

Danovi S.Optimizing combination immunotherapy in lung cancer.Nat Genet2024;56:2296

[144]

Besse B,Park K.Biomarker-directed targeted therapy plus durvalumab in advanced non-small-cell lung cancer: a phase 2 umbrella trial.Nat Med2024;30:716-29 PMCID:PMC10957481

[145]

Chong LM,Tan LLY,Zhang Y.Recent advances in radiation therapy and photodynamic therapy.Appl Phys Rev2021;8:041322

[146]

Yang H,Xu Y,Dai Z.Photosensitizer nanoparticles boost photodynamic therapy for pancreatic cancer treatment.Nanomicro Lett2021;13:35 PMCID:PMC8187547

[147]

Chen J,Wang K.Hypoxia-activated liposomes enable synergistic photodynamic therapy for oral cancer.Adv Healthc Mater2025;14:e2404395

[148]

Dong P,Yu S.A Mitochondrial oxidative stress amplifier to overcome hypoxia resistance for enhanced photodynamic therapy.Small Methods2021;5:e2100581

[149]

Xiong J,Kim J.Tumor-activated prodrug with synergistic anti-stemness chemical and photodynamic therapies.Adv Funct Mater2024;34:2312590

[150]

Zhang H,Li Y.Modified oxygen metabolism toward “sunlight-friendly” photodynamic therapy.Adv Funct Mater2025;35:2414817

[151]

Pham TC,Choi Y,Yoon J.Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy.Chem Rev2021;121:13454-619

[152]

Kolarikova M,Dilenko H.Photodynamic therapy: innovative approaches for antibacterial and anticancer treatments.Med Res Rev2023;43:717-74

[153]

Mishchenko TA,Vedunova MV.Ferroptosis and photodynamic therapy synergism: enhancing anticancer treatment.Trends Cancer2021;7:484-7

[154]

Zhang X,Chen S.Glutathione-depleting polyprodrug nanoparticle for enhanced photodynamic therapy and cascaded locoregional chemotherapy.J Colloid Interface Sci2024;670:279-87

[155]

Shen H,Wang P.2,3,5,4’-tetrahydroxystilbene-2-O-b-D-glucoside modulates CHEK2 and CCND1 alternative splicing to inhibit MCF-7 cells proliferation.Tradit Med Res2024;9:4

[156]

Andreeva OE,Vinokurova SV.Breast cancer cell resistance to hormonal and targeted therapeutics is correlated with the inactivation of the NR6A1 axis.Cancer Drug Resist2024;7:48 PMCID:PMC11609143

[157]

Xu M,Liu G,Jiang X.Size-dependent in vivo transport of nanoparticles: implications for delivery, targeting, and clearance.ACS Nano2023;17:20825-49

[158]

Li Z,Ma L.Combining multiple photosensitizer modules into one supramolecular system for synergetic enhanced photodynamic therapy.Angew Chem Int Ed2024;63:e202400049

[159]

Han L,Mu W.Amphiphilic small molecular mates match hydrophobic drugs to form nanoassemblies based on drug-mate strategy.Asian J Pharm Sci2022;17:129-38 PMCID:PMC8888179

[160]

Shan X,Zhu B.Computer-aided design of self-assembled nanoparticles to enhance cancer chemoimmunotherapy via dual-modulation strategy.Adv Healthc Mater2025;14:e2404261

[161]

Yang Y,Zhang J.Prodrug nanoassemblies bridged by Mono-/Di-/Tri-sulfide bonds: exploration is for going further.Nano Today2022;44:101480

[162]

Xu X,Liu S.Application of molecular dynamics simulation in self-assembled cancer nanomedicine.Biomater Res2023;27:39 PMCID:PMC10161522

[163]

Zheng N,Wang C.Water-soluble, zwitterionic poly-photosensitizers as carrier-free, photosensitizer-self-delivery system for in vivo photodynamic therapy.ACS Appl Mater Interfaces2019;11:44007-17

[164]

Wei W,Chen X,Xu R.Smart surface coating of drug nanoparticles with cross-linkable polyethylene glycol for bio-responsive and highly efficient drug delivery.Nanoscale2016;8:8118-25

[165]

Li Y,Cai Z.Tumor microenvironment-activated self-recognizing nanodrug through directly tailored assembly of small-molecules for targeted synergistic chemotherapy.J Control Release2020;321:222-35

[166]

Xue K,Lin J.Tumor acidity-responsive carrier-free nanodrugs based on targeting activation via ICG-templated assembly for NIR-II imaging-guided photothermal-chemotherapy.Biomater Sci2021;9:1008-19

[167]

Xu H,Pan D.Puerarin modulation of CENPA affects downstream PLK1 and CCNB1 expression to inhibit bladder cancer cell proliferation.Tradit Med Res2024;9:52

[168]

Yang L,Xu W.Rising above: exploring the therapeutic potential of natural product-based compounds in human cancer treatment.Tradit Med Res2025;10:18

[169]

Chen Y,Chen K,Cui S.Magnolol and 5-fluorouracil synergy inhibition of metastasis of cervical cancer cells by targeting PI3K/AKT/mTOR and EMT pathways.Chin Herb Med2024;16:94-105 PMCID:PMC10874772

[170]

Wang X,Zhao X,Hu Y.Perspectives on organ-on-a-chip technology for natural products evaluation.Food Med Homol2024;1:9420013

[171]

Liu T,Dong C,Ji B.Spectrum-effect relationship between components and antitumor activity of Lonicerae Japonicae Flos based on orthogonal partial least squares regression.Sci Tradit Chin Med2024;2:138-47

[172]

Cheng Y,Tang Y.Xiaoyaosan inhibits liver metastases of colorectal cancer in vivo by regulating neutrophil extracellular traps formation.Tradit Med Res2025;10:46

[173]

Zhang J,Wang W.Quercetin exerts anti-breast cancer effect by inducing cellular senescence.Tradit Med Res2025;10:62

[174]

Teng C,Shen LS,Chen GQ.Research advances in natural sesquiterpene lactones: overcoming cancer drug resistance through modulation of key signaling pathways.Cancer Drug Resist2025;8:13 PMCID:PMC11977367

[175]

Wang S,Dong Q,Dong M.Natural product-induced oxidative stress-synergistic anti-tumor effects of chemotherapeutic agents.Tradit Med Res2024;9:14

[176]

Park J,Yeo Y.Albumin-coated nanocrystals for carrier-free delivery of paclitaxel.J Control Release2017;263:90-101 PMCID:PMC5494017

[177]

Mohankumar M,Cavalieri F,Caruso F.Ultrasound-driven coassembly of anticancer drugs into carrier-free particles.ACS Nano2025;19:13366-80

[178]

Wang H,Guan Q,Li Z.Nanoparticle-mediated synergistic anticancer effect of ferroptosis and photodynamic therapy: novel insights and perspectives.Asian J Pharm Sci2023;18:100829 PMCID:PMC10425855

[179]

Yang SB,Lee JH.Design and evaluation of a carrier-free prodrug-based palmitic-DEVD-doxorubicin conjugate for targeted cancer therapy.Bioconjug Chem2023;34:333-44

[180]

Meng F,Wang G.Carrier-free nanoparticles via coassembly of paclitaxel and gambogic acid with folate-functionalized albumin for targeted tumor treatment.ACS Appl Nano Mater2024;7:26941-51

[181]

Liu Y,Gao Y.Carrier-free biomimetic organic nanoparticles with super-high drug loading for targeted NIR-II excitable triple-modal bioimaging and phototheranostics.Small2024;20:e2406003

[182]

Yang L,Xie Z,Wang X.Carrier-free prodrug nanoparticles based on dasatinib and cisplatin for efficient antitumor in vivo.Asian J Pharm Sci2021;16:762-71 PMCID:PMC8737405

[183]

Fan Z,Xiang S.Dual-self-recognizing, stimulus-responsive and carrier-free methotrexate-mannose conjugate nanoparticles with highly synergistic chemotherapeutic effects.J Mater Chem B2020;8:1922-34

[184]

Hu L,Li X,Lv Y.A free-radical initiator-based carrier-free smart nanobomb for targeted synergistic therapy of hypoxic breast cancer.RSC Adv2025;15:3098-109 PMCID:PMC11780488

[185]

Dong X,Liu H,Deng X.Carrier-free nanomedicines: mechanisms of formation and biomedical applications.Giant2024;18:100256

[186]

Allen TM.Liposomal drug delivery systems: from concept to clinical applications.Adv Drug Deliv Rev2013;65:36-48

[187]

Cheng Z,Yin M.Applications of liposomes and lipid nanoparticles in cancer therapy: current advances and prospects.Exp Hematol Oncol2025;14:11 PMCID:PMC11786384

[188]

Menachem R,Vorontsova A.Bone marrow-targeted liposomes loaded with bortezomib overcome multiple myeloma resistance.ACS Nano2025;19:11684-701 PMCID:PMC11966756

[189]

Liu Y,Chen Y.A protease-cleavable liposome for co-delivery of anti-PD-L1 and doxorubicin for colon cancer therapy in mice.Nat Commun2025;16:2854 PMCID:PMC11933685

[190]

Xia J,Zhang J.Geometric-aware deep learning enables discovery of bifunctional ligand-based liposomes for tumor targeting therapy.Nano Today2025;61:102668

[191]

Ghosh R.Liposome-based antibacterial delivery: an emergent approach to combat bacterial infections.ACS Omega2023;8:35442-51 PMCID:PMC10551917

[192]

Wu S.Liposome-enabled nanomaterials for muscle regeneration.Small Methods2025;9:e2402154 PMCID:PMC12353368

[193]

Trivedi J,Maurya RK.Aptamer-based theranostics in oncology: design strategies and limitations.BIOI2024;5

[194]

Zhao Y,Yu D.Polymer-locking fusogenic liposomes for glioblastoma-targeted siRNA delivery and CRISPR-Cas gene editing.Nat Nanotechnol2024;19:1869-79

[195]

Wang G,Pan Y,Huang Y.Ultrasound-sensitive targeted liposomes as a gene delivery system for the synergistic treatment of hepatocellular carcinoma.Small2024;20:e2406182

[196]

Bhattacherjee A,Bains A.Increasing phagocytosis of microglia by targeting CD33 with liposomes displaying glycan ligands.J Control Release2021;338:680-93

[197]

Ren X,Luo Y.Programmable melanoma-targeted radio-immunotherapy via fusogenic liposomes functionalized with multivariate-gated aptamer assemblies.Nat Commun2024;15:5035 PMCID:PMC11169524

[198]

Di J,Xu Y.When liposomes met antibodies: drug delivery and beyond.Adv Drug Deliv Rev2020;154-5:151-62

[199]

Park YI,Lee G.pH-sensitive multi-drug liposomes targeting folate receptor β for efficient treatment of non-small cell lung cancer.J Control Release2021;330:1-14

[200]

Yu Y,He D.pH-dependent reversibly activatable cell-penetrating peptides improve the antitumor effect of artemisinin-loaded liposomes.J Colloid Interface Sci2021;586:391-403

[201]

Lee Y,Yang S.Photo-induced crosslinked and anti-PD-L1 peptide incorporated liposomes to promote PD-L1 multivalent binding for effective immune checkpoint blockade therapy.Acta Pharm Sin B2024;14:1428-40 PMCID:PMC10934337

[202]

Wang C,Zhu L.Construction strategy of functionalized liposomes and multidimensional application.Small2024;20:e2309031

[203]

Rahman MM,Wang G.Chimeric nanobody-decorated liposomes by self-assembly.Nat Nanotechnol2024;19:818-24 PMCID:PMC11904852

[204]

Jourdain MA.Recent advances in liposomes and peptide-based therapeutics for glioblastoma treatment.J Control Release2024;376:732-52

[205]

Yang Y,Li C.Brain-targeted drug delivery by in vivo functionalized liposome with stable D-peptide ligand.J Control Release2024;373:240-51

[206]

Zhang Y,Sun H.Modulation of tumor hypoxia and redox microenvironment using nanomedicines for enhanced cancer photodynamic therapy.Appl Mater Today2022;29:101687

[207]

Wang C,Hao Y.Photodynamic creation of artificial tumor microenvironments to collectively facilitate hypoxia-activated chemotherapy delivered by coagulation-targeting liposomes.Chem Eng J2021;414:128731

[208]

Yan K,Zhang C.Pt nanoenzyme decorated yolk-shell nanoplatform as an oxygen generator for enhanced multi-modality imaging-guided phototherapy.J Colloid Interface Sci2022;616:759-68

[209]

Ren C,Yan D.Dual-action nanoplatform with a synergetic strategy to promote oxygen accumulation for enhanced photodynamic therapy against hypoxic tumors.Acta Biomater2022;146:465-77

[210]

Sun Y,Wang G.Recent progress of hypoxia-modulated multifunctional nanomedicines to enhance photodynamic therapy: opportunities, challenges, and future development.Acta Pharm Sin B2020;10:1382-96 PMCID:PMC7488364

[211]

Zhao LP,Chen HQ.Self-delivery nanomedicine for O2-economized photodynamic tumor therapy.Nano Lett2020;20:2062-71

[212]

Xu T,Yuan Q.Enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy.ACS Nano2020;14:3414-25

[213]

Wang Y,Qu L.Hemoglobin nanoclusters-mediated regulation of KPNA4 in hypoxic tumor microenvironment enhances photodynamic therapy in hepatocellular carcinoma.J Nanobiotechnol2024;22:473

[214]

Lee HS,Lee SM.Hypoxia-alleviating hemoglobin nanoclusters for sensitizing chemo-photodynamic therapy of cervical cancer.Chem Eng J2023;457:141224

[215]

Han W,Qiao B.Self-sustained biophotocatalytic nano-organelle reactors with programmable DNA switches for combating tumor metastasis.Adv Mater2025;37:e2415030 PMCID:PMC11881670

[216]

Li J,Tian J.Fluorinated-functionalized hyaluronic acid nanoparticles for enhanced photodynamic therapy of ocular choroidal melanoma by ameliorating hypoxia.Carbohydr Polym2020;237:116119

[217]

Zhang Y,Tang Q,Huang P.Biomimetic nanoemulsion for synergistic photodynamic-immunotherapy against hypoxic breast tumor.Angew Chem Int Ed2021;60:10647-53

[218]

Zhang S,Wang Q.An NIR-II photothermally triggered "oxygen bomb" for hypoxic tumor programmed cascade therapy.Adv Mater2022;34:e2201978

[219]

Zhang S,Sun S.Dually fluorinated unimolecular micelles for stable oxygen-carrying and enhanced photosensitive efficiency to boost photodynamic therapy against hypoxic tumors.Acta Biomater2025;193:406-16

[220]

Zhang X,Li J,Lan Z.Bimetallic nanozymes-integrated parachute-like Au2Pt@PMO@ICG janus nanomotor with dual propulsion for enhanced tumor penetration and synergistic PTT/PDT/CDT cancer therapy.Adv Funct Mater2024;34:2406059

[221]

Hao R,Zhang J.Ultrasmall Au/Pt-loaded biocompatible albumin nanospheres to enhance photodynamic/catalytic therapy via triple amplification of glucose-oxidase/catalase/peroxidase.J Colloid Interface Sci2024;654:212-23

[222]

He M,Wang Z.Controllable regulation of Ag2S quantum-dot-mediated protein nanoassemblies for imaging-guided synergistic PDT/PTT/chemotherapy against hypoxic tumor.Adv Healthc Mater2023;12:e2300752

[223]

Wang T,Li Z,Zhao X.Ultrasmall gold-encapsulated mesoporous platinum to promote photodynamic/catalytic therapy through cascade enzyme-like reactions.J Colloid Interface Sci2025;680:117-28

[224]

Song C,Yao S.DNA Damage-sensitized metal phenolic nanosynergists potentiate low-power phototherapy for osteosarcoma therapy.J Colloid Interface Sci2024;674:1025-36

[225]

Zhen W,Fan Y.Simultaneous protonation and metalation of a porphyrin covalent organic framework enhance photodynamic therapy.J Am Chem Soc2024;146:16609-18

[226]

Zhang J,Chen P.Photodynamic therapy-accelerated hypoxia-responsive prodrug release for synergistic photo-chemotherapy of melanoma cancer based on noncovalent interactions.ACS Materials Lett2025;7:770-9

[227]

Jiang M,Dong Y,Yuan Y.Bioorthogonal chemistry and illumination controlled programmed size-changeable nanomedicine for synergistic photodynamic and hypoxia-activated therapy.Biomaterials2022;284:121480

[228]

Jia Z,Ni J.A hybrid metal-organic framework nanomedicine-mediated photodynamic therapy and hypoxia-activated cancer chemotherapy.J Colloid Interface Sci2023;629:379-90

[229]

Tang Y,Pang E.Thienothiophene-benzopyran derivative and AQ4N-assembled liposomes for near-infrared II fluorescence imaging-guided phototherapy, chemotherapy, and immune activation.Small2025;21:e2407680

[230]

Wang Z.Broad-spectrum prodrugs with anti-SARS-CoV-2 activities: strategies, benefits, and challenges.J Med Virol2022;94:1373-90

[231]

Wang Z,Song XQ.Oral GS-441524 derivatives: next-generation inhibitors of SARS-CoV-2 RNA-dependent RNA polymerase.Front Immunol2022;13:1015355 PMCID:PMC9763260

[232]

Wang X,Cui L.Inhibitory effect of saffron on head and neck squamous cell carcinoma via targeting of ESR1 and CCND1 by its active compound crocetin.Tradit Med Res2024;9:39

[233]

Chen L,Zheng Z.MicroRNA-32-5p inhibits metastasis by directly targeting VPS4B and increases sensitivity to dihydroartemisinin in neuroblastoma.Sci Tradit Chin Med2024;2:202-13

[234]

Guo T,Chen F,Li L.A review on the pathogenesis theory of cancerous toxin from the viewpoint of system theory.Sci Tradit Chin Med2024;2:187-93

[235]

Li L,Cheng S.Lung adenocarcinoma-intrinsic GBE1 signaling inhibits anti-tumor immunity.Mol Cancer2019;18:108 PMCID:PMC6585057

[236]

Dastmalchi N,Banan Khojasteh SM,Safaralizadeh R.miR-424: a novel potential therapeutic target and prognostic factor in malignancies.Cell Biol Int2021;45:720-30

[237]

Li J,Fu Y.Biodegradable iridium coordinated nanodrugs potentiate photodynamic therapy and immunotherapy of lung cancer.J Colloid Interface Sci2025;680:9-24

[238]

Shi X,Li Y.Theanine combined with cisplatin inhibits the proliferation and metastasis of TNBC cells through Akt signaling pathway.Tradit Med Res2023;8:25

[239]

Yang L.Natural products, alone or in combination with FDA-approved drugs, to treat COVID-19 and lung cancer.Biomedicines2021;9:689

[240]

Li Q,Yan C.Polysaccharide-based stimulus-responsive nanomedicines for combination cancer immunotherapy.Small2023;19:e2206211

[241]

Zhang Y,Chen X.Modulating tumor-stromal crosstalk via a redox-responsive nanomedicine for combination tumor therapy.J Control Release2023;356:525-41

[242]

Zhao YD,Mamuti M.Reprogramming hypoxic tumor-associated macrophages by nanoglycoclusters for boosted cancer immunotherapy.Adv Mater2023;35:e2211332

[243]

Luo YL,Gan YJ.An all-in-one nanomedicine consisting of CRISPR-Cas9 and an autoantigen peptide for restoring specific immune tolerance.ACS Appl Mater Interfaces2020;12:48259-71

[244]

van Hooren L,Ramachandran M.Agonistic CD40 therapy induces tertiary lymphoid structures but impairs responses to checkpoint blockade in glioma.Nat Commun2021;12:4127 PMCID:PMC8257767

[245]

Broos S,Apel J.Synergistic augmentation of CD40-mediated activation of antigen-presenting cells by amphiphilic poly(γ-glutamic acid) nanoparticles.Biomaterials2012;33:6230-9

[246]

Correa S,Gale EC.Injectable nanoparticle-based hydrogels enable the safe and effective deployment of immunostimulatory CD40 agonist antibodies.Adv Sci2022;9:e2103677

[247]

Gaur V,Das S,Bhattacharyya J.CD40 agonist engineered immunosomes modulated tumor microenvironment and showed pro-immunogenic response, reduced toxicity, and tumor free survival in mice bearing glioblastoma.Biomaterials2024;311:122688

[248]

Cui Y,Liu Q.A tumor-activatable liposomal nanoprobe for selective visualization of metastatic lymph nodes.Adv Healthc Mater2024;13:e2401935

[249]

Lee JSF,Khan RA.Paving the way for affordable and equitable liposomal amphotericin B access worldwide.Lancet Glob Health2024;12:e1552-9

[250]

Zhao Z,Wang G.Dual peptides-modified cationic liposomes for enhanced Lung cancer gene therapy by a gap junction regulating strategy.J Nanobiotechnol2023;21:473 PMCID:PMC10709977

[251]

Liu X,Xu X.Mobilizing STING pathway via a cationic liposome to enhance doxorubicin-induced antitumor immunity.Adv Funct Mater2025;35:2416406

[252]

Wang D,Yang G.Self-targeted Co-delivery of an antibiotic and a cancer-chemotherapeutic from synthetic liposomes for the treatment of infected tumors.Adv Funct Mater2023;33:2215153

[253]

Han K,Moon JJ.Antibiotic nanoparticles boost antitumor immunity.Nat Biotechnol2024;42:1187-8 PMCID:PMC11096259

[254]

Li X,Yan Z.Modulating autophagy in the tumor microenvironment with a salinomycin-loaded liposome hybrid nanovesicle system for tumor immunotherapy.Nano Today2025;61:102644

[255]

Zheng Y,Gu Y.Rational design of polymeric micelles for targeted therapeutic delivery.Nano Today2024;55:102147

[256]

Chen Z,Long L,Chen A.Current understanding of passive and active targeting nanomedicines to enhance tumor accumulation.Coordin Chem Rev2023;481:215051

[257]

Jia W,Zou F.Decorating delivery vehicles using hyaluronic acid oligosaccharides enables active targeting toward cancer and minimizes adverse effect of chemotherapeutics.Adv Healthc Mater2024;13:e2402158

[258]

Paula MC, Carvalho SG, Silvestre ALP, Dos Santos AM, Meneguin AB, Chorilli M. The role of hyaluronic acid in the design and functionalization of nanoparticles for the treatment of colorectal cancer.Carbohydr Polym2023;320:121257

[259]

Gao Y,Liang M.Active targeting redox-responsive mannosylated prodrug nanocolloids promote tumor recognition and cell internalization for enhanced colon cancer chemotherapy.Acta Biomater2022;147:299-313

[260]

Chen MM,Li JJ.Active targeting tumor therapy using host-guest drug delivery system based on biotin functionalized azocalix[4]arene.J Control Release2024;368:691-702

[261]

Li Y,Rizwan Younis M.Peptide functionalized actively targeted MoS2 nanospheres for fluorescence imaging-guided controllable pH-responsive drug delivery and collaborative chemo/photodynamic therapy.J Colloid Interface Sci2023;639:302-13

[262]

Lu J,Sun X.Protein and peptide-based renal targeted drug delivery systems.J Control Release2024;366:65-84

[263]

Li J,You Y.Active targeting of orthotopic glioma using biomimetic liposomes co-loaded elemene and cabazitaxel modified by transferritin.J Nanobiotechnology2021;19:289 PMCID:PMC8474941

[264]

Lin M,Chen G.A hierarchical tumor-targeting strategy for eliciting potent antitumor immunity against triple negative breast cancer.Biomaterials2023;296:122067

[265]

Ding GB,Wang Q.Molecularly engineered tumor acidity-responsive plant toxin gelonin for safe and efficient cancer therapy.Bioact Mater2022;18:42-55 PMCID:PMC8961304

[266]

Zhang P,Li L.Charge reversal nano-systems for tumor therapy.J Nanobiotechnol2022;20:31 PMCID:PMC8751315

[267]

Ding H,Fu S.Preparation and application of pH-responsive drug delivery systems.J Control Release2022;348:206-38

[268]

Schützmann MP,Bachmann S.Endo-lysosomal Aβ concentration and pH trigger formation of Aβ oligomers that potently induce Tau missorting.Nat Commun2021;12:4634 PMCID:PMC8324842

[269]

Du Y,Wu W.Magnetic and pH dual responsive injectable magnetic zeolitic imidazole framework based colloidal gel for interventional treatment on hepatocellular carcinoma.Chem Eng J2024;497:154180

[270]

Liu X,Zang D.pH-responsive oxygen self-sufficient smart nanoplatform for enhanced tumor chemotherapy and photodynamic therapy.J Colloid Interface Sci2024;675:1080-90

[271]

Ma N,Palanisamy S.A novel sulfated mannan-carboxymethyl-5-fluorouracil-folic acid conjugates for targeted anticancer drug delivery.Carbohydr Polym2023;304:120454

[272]

Yang L,Luo A.Macrophage membrane-camouflaged pH-sensitive nanoparticles for targeted therapy of oral squamous cell carcinoma.J Nanobiotechnol2024;22:168

[273]

Hou G,Guo M.Hydrazide-manganese coordinated multifunctional nanoplatform for potentiating immunotherapy in hepatocellular carcinoma.J Colloid Interface Sci2022;628:968-83

[274]

Xiao W,Bi D.pH/H2O2 cascade-responsive nanoparticles of lipid-like prodrugs through dynamic-covalent and coordination interactions for chemotherapy.Small2024;20:e2308790

[275]

Hu Q,Huang X.Polydopamine-modified zeolite imidazole framework drug delivery system for photothermal chemotherapy of hepatocellular carcinoma.Biomacromolecules2023;24:5964-76

[276]

Weng J,Pu X.Preparation of polyethylene glycol-polyacrylic acid block copolymer micelles with pH/hypoxic dual-responsive for tumor chemoradiotherapy.Colloids Surf B Biointerfaces2020;191:110943

[277]

Qu D,Lin H.Anisamide-functionalized pH-responsive amphiphilic chitosan-based paclitaxel micelles for sigma-1 receptor targeted prostate cancer treatment.Carbohydr Polym2020;229:115498

[278]

Ma J,Sun Z.Folate-PEG-PROTAC micelles for enhancing tumor-specific targeting proteolysis in vivo.Adv Healthc Mater2024;13:e2400109

[279]

Huang C,Liu Y.A Sodium alginate-based multifunctional nanoplatform for synergistic chemo-immunotherapy of hepatocellular carcinoma.Adv Mater2023;35:e2301352

[280]

Xu C,Zheng Y.Active-targeting and acid-sensitive pluronic prodrug micelles for efficiently overcoming MDR in breast cancer.J Mater Chem B2020;8:2726-37

[281]

Scaranti M,Banerjee S.Exploiting the folate receptor α in oncology.Nat Rev Clin Oncol2020;17:349-59

[282]

Sudimack J.Targeted drug delivery via the folate receptor.Adv Drug Deliv Rev2000;41:147-62

[283]

Shakeri-zadeh A,Sarikhani A.Folate receptor-targeted nanoprobes for molecular imaging of cancer: friend or foe?.Nano Today2021;39:101173

[284]

Sheehy TL,Arora K.STING-activating polymer-drug conjugates for cancer immunotherapy.ACS Cent Sci2024;10:1765-81 PMCID:PMC11428287

[285]

Gao P,Nicolas J.Coarse-grained model-assisted design of polymer prodrug nanoparticles with enhanced cytotoxicity: a combined theoretical and experimental study.Angew Chem Int Ed2024;63:e202316056

[286]

Li Y,Dai P.Tailored Trojan horse nanocarriers for enhanced redox-responsive drug delivery.J Control Release2022;342:201-9

[287]

Tokura D,Suzuki M.Active control of pharmacokinetics using light-responsive polymer-drug conjugates for boron neutron capture therapy.J Control Release2024;371:445-54

[288]

Yu J,Chen J.pH-Responsive supramolecular hydrogels for codelivery of hydrophobic and hydrophilic anticancer drugs.RSC Adv2014;4:58982-9

[289]

Wang X,Zhang Y.Bioinspired adaptive microdrugs enhance the chemotherapy of malignant glioma: beyond their nanodrugs.Adv Mater2024;36:e2405165

[290]

Qin N,Gao S.Celastrol inhibits inflammatory factors expression in glioblastoma.Tradit Med Res2024;9:31

[291]

Wang R,Huang J.Bio-fabricated nanodrugs with chemo-immunotherapy to inhibit glioma proliferation and recurrence.J Control Release2023;354:572-87

[292]

Yan G,Chen J.Advances in drug development for targeted therapies for glioblastoma.Med Res Rev2020;40:1950-72

[293]

Cui J,Li J.Immune exosomes loading self-assembled nanomicelles traverse the blood-brain barrier for chemo-immunotherapy against glioblastoma.ACS Nano2023;17:1464-84

[294]

Hua Y,Wang W.Suit the remedy to the case: an activatable DNA damage initiator for postsurgical therapy of glioblastoma with TP53 mutations.ACS Mater Lett2024;6:1870-82

[295]

Gao M,Zhou W.EGFR activates a TAZ-driven oncogenic program in glioblastoma.Cancer Res2021;81:3580-92

[296]

Choi SW,Shin K.Mutation-specific non-canonical pathway of PTEN as a distinct therapeutic target for glioblastoma.Cell Death Dis2021;12:374 PMCID:PMC8027895

[297]

Wu B,Kong N,Li S.Engineering modular peptide nanoparticles for ferroptosis-enhanced tumor immunotherapy.Angew Chem Int Ed2025;64:e202421703

[298]

Liang Y,Tan J.HER2-targeting peptide drug conjugate with better penetrability for effective breast cancer therapy.BIOI2023;4

[299]

Zhou Y,Wu Y.Molecularly stimuli-responsive self-assembled peptide nanoparticles for targeted imaging and therapy.ACS Nano2023;17:8004-25

[300]

Qiu J,Jin Y,Zhao X.Microfluidic formulation of anticancer peptide loaded ZIF-8 nanoparticles for the treatment of breast cancer.J Colloid Interface Sci2023;642:810-9

[301]

Xu X,Lou X.Sialic acid-modified mesoporous polydopamine induces tumor vessel normalization to enhance photodynamic therapy by inhibiting VE-cadherin internalization.Chem Eng J2021;414:128743

[302]

Du Y,Sun M.Multifunctional Gd-CuS loaded UCST polymeric micelles for MR/PA imaging-guided chemo-photothermal tumor treatment.Nano Res2022;15:2288-99

[303]

Lu Y,Chai S.A pyroptosis-enhanced leucocyte-hitchhiking liposomal nanoplatform for potentiated immunotherapy of hepatocellular carcinoma.Mater Today Nano2024;27:100492

[304]

Li C,Han L.The eATP/P2×7R axis drives quantum dot-nanoparticle induced neutrophil recruitment in the pulmonary microcirculation.Adv Sci2024;11:e2404661 PMCID:PMC11615809

[305]

Li Y,Abdiryim T.Cyclodextrin-derived materials: from design to promising applications in water treatment.Coordin Chem Rev2024;502:215613

[306]

Hu XY,Chen FY.A host-guest drug delivery nanosystem for supramolecular chemotherapy.J Control Release2020;324:124-33

[307]

Bai Y,An N.Host-guest interactions based supramolecular complexes self-assemblies for amplified chemodynamic therapy with H2O2 elevation and GSH consumption properties.Chin Chem Lett2023;34:107552

[308]

Li H,Sun M.Self-strengthened cascade-explosive nanogel using host-guest interaction strategy for synergistic tumor treatment.Chin Chem Lett2025;36:110651

[309]

Liu Z,Liu Y.Macrocyclic supramolecular assemblies based on hyaluronic acid and their biological applications.Acc Chem Res2022;55:3417-29

[310]

Mousazadeh H,Zarghami N.Stimulus-responsive drug/gene delivery system based on polyethylenimine cyclodextrin nanoparticles for potential cancer therapy.Carbohydr Polym2022;276:118747

[311]

Hu X,Guo D.Hypoxia-responsive host-guest drug delivery system.Acc Mater Res2023;4:925-38

[312]

Guan W,Liu J.Macrocycles-assembled AIE supramolecular polymer networks.Coordin Chem Rev2024;507:215717

[313]

Gao P,Cheng Y.Strategies for efficient photothermal therapy at mild temperatures: Progresses and challenges.Chin Chem Lett2022;33:575-86

[314]

Chen P,Zhu C,Wang C.Targeted delivery of quinoxaline-based semiconducting polymers for tumor photothermal therapy.ACS Appl Mater Interfaces2024;16:38377-86

[315]

Liu C,Fan X.Rational construction of CQDs-based targeted multifunctional nanoplatform for synergistic chemo-photothermal tumor therapy.J Colloid Interface Sci2025;677:79-90

[316]

Li P,Hu J.The role of imaging in targeted delivery of nanomedicine for cancer therapy.Adv Drug Deliv Rev2022;189:114447

[317]

Sun Q,Qiu N.Rational design of cancer nanomedicine: nanoproperty integration and synchronization.Adv Mater2017;29:1606628

[318]

Wang X,Li Y,Yu B.Research status of dendrimer micelles in tumor therapy for drug delivery.Small2023;19:e2304006

[319]

Liang G,Tang D.Nanomedomics.ACS Nano2024;18:10979-1024

[320]

Wang Y,Niu G.Boosting sono-immunotherapy of prostate carcinoma through amplifying domino-effect of mitochondrial oxidative stress using biodegradable cascade-targeting nanocomposites.ACS Nano2024;18:5828-46

[321]

Chiang MR,Pan WC.Reprogramming dysfunctional dendritic cells by a versatile catalytic dual oxide antigen-captured nanosponge for remotely enhancing lung metastasis immunotherapy.ACS Nano2025;19:2117-35

[322]

Huynh TMH,Wang KL.Reprogramming immunodeficiency in lung metastases via PD-L1 siRNA delivery and antigen capture of nanosponge-mediated dendritic cell modulation.ACS Nano2025;19:25134-53

[323]

Huang L,Du Y.Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy.Nat Commun2019;10:4871 PMCID:PMC6814770

[324]

Sun H,Li X.Second near-infrared photothermal-amplified immunotherapy using photoactivatable composite nanostimulators.J Nanobiotechnol2021;19:433 PMCID:PMC8686222

[325]

Jana D,Chen Y,Zhao Y.A defect-engineered nanozyme for targeted NIR-II photothermal immunotherapy of cancer.Adv Mater2024;36:e2206401

[326]

Tan P,Zhang H,Luo K.Artificial intelligence aids in development of nanomedicines for cancer management.Semin Cancer Biol2023;89:61-75

[327]

Xie H,Liu S.Integration of artificial intelligence in clinical laboratory medicine: advancements and challenges.Interdiscip Med2024;2:e20230056

[328]

Xu B.Redefining the future of cancer care: intelligent oncology unveiled.Intell Oncol2025;1:31-3

[329]

Zhang C,Xia Q.Machine learning-driven prediction, preparation, and evaluation of functional nanomedicines via drug-drug self-assembly.Adv Sci2025;12:e2415902 PMCID:PMC11884566

[330]

Yan X,Winkler DA.Converting nanotoxicity data to information using artificial intelligence and simulation.Chem Rev2023;123:8575-637

AI Summary AI Mindmap
PDF

204

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/