Microstructural engineering for temperature-stable piezoresponse in KNN-based lead-free piezoceramics: a comprehensive review

Shuo Tian , Zhihao Zhao , Bin Li , Yejing Dai

Microstructures ›› 2026, Vol. 6 ›› Issue (1) : 2026002

PDF
Microstructures ›› 2026, Vol. 6 ›› Issue (1) :2026002 DOI: 10.20517/microstructures.2025.55
Review

Microstructural engineering for temperature-stable piezoresponse in KNN-based lead-free piezoceramics: a comprehensive review

Author information +
History +
PDF

Abstract

Potassium sodium niobate (KNN) lead-free piezoceramics are among the most promising candidates to replace lead-based counterparts. However, the limited temperature stability of KNN ceramics remains a critical challenge for practical application. This review provides a comprehensive overview of recent advancements in both the performance and temperature stability of KNN-based piezoceramics. Special emphasis is placed on the correlation between microstructure and temperature stability, with a systematic analysis of key strategies, including diffuse phase transition with multiphase coexistence, polar nanoregions, domain engineering, multilayer gradient doping structure, atomic-scale local ferroelectric state design, and defect engineering. Furthermore, an objective evaluation of these advances is provided to examine the potential mechanisms underlying these strategies. Beyond summarizing recent progress in improving the properties and temperature stability of KNN-based ceramics, this review highlights the intricate interplay between microstructure and piezoelectric performance, offering valuable insights to guide future research and the rational design of high-performance, temperature-stable KNN-based lead-free piezoceramics.

Keywords

KNN / piezoceramic / microstructure / temperature stability

Cite this article

Download citation ▾
Shuo Tian, Zhihao Zhao, Bin Li, Yejing Dai. Microstructural engineering for temperature-stable piezoresponse in KNN-based lead-free piezoceramics: a comprehensive review. Microstructures, 2026, 6(1): 2026002 DOI:10.20517/microstructures.2025.55

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhou X,Luo H,Zhang D.Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics.Prog Mater Sci2021;122:100836

[2]

Hao J,Zhai J.Progress in high-strain perovskite piezoelectric ceramics.Mater Sci Eng R Rep2019;135:1-57

[3]

Li F,Chen Z.Ultrahigh piezoelectricity in ferroelectric ceramics by design.Nat Mater2018;17:349-54

[4]

Wei H,Xia Y.An overview of lead-free piezoelectric materials and devices.J Mater Chem C2018;6:12446-67

[5]

Shrout TR.Lead-free piezoelectric ceramics: alternatives for PZT?.J Electroceram2007;19:113-26

[6]

Zheng T,Yuan Y.The structural origin of enhanced piezoelectric performance and stability in lead free ceramics.Energy Environ Sci2017;10:528-37

[7]

Chen L,Qi H.High-electromechanical performance for high-power piezoelectric applications: Fundamental, progress, and perspective.Prog Mater Sci2022;127:100944

[8]

Maeder MD,Setter N.Lead free piezoelectric materials.J Electroceram2004;13:385-92

[9]

Wu J.Perovskite lead-free piezoelectric ceramics.J Appl Phys2020;127:190901

[10]

Xiao DQ,Wu L.Investigation on the composition design and properties study of perovskite lead-free piezoelectric ceramics.J Mater Sci2009;44:5408-19

[11]

Qin H,Chen X.Investigation of BiFeO3-BaTiO3 lead-free piezoelectric ceramics with nonstoichiometric bismuth.Microstructures2023;3:2023235

[12]

Wu J,Zhu J.Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries.Chem Rev2015;115:2559-95

[13]

Wang H,Guo W.Effect of A and B-site ion doping on the structure and properties of KNN-based ceramic coatings.Ceram Int2024;50:37809-19

[14]

Lv X,Zhu J,Zhang X.Temperature stability and electrical properties in La-doped KNN-based ceramics.J Am Ceram Soc2018;101:4084-94

[15]

Liu D,Tang T.Textured potassium sodium niobate lead-free ceramics with high d33 and Qm for meeting high-power applications.ACS Appl Mater Interfaces2024;16:7444-52

[16]

Liu Y,Cheng Y,Wang K.Defect-mediated domain-wall motion and enhanced electric-field-induced strain in hot-pressed K0.5Na0.5NbO3 lead-free piezoelectric ceramics.J App Phys2021;129:024102

[17]

Lv X,Xiao D,Zhang X.Structural evolution of the R-T phase boundary in KNN -based ceramics.J Am Ceram Soc2018;101:1191-200

[18]

Cen Z,Feng W.Improving piezoelectric properties and temperature stability for KNN-based ceramics sintered in a reducing atmosphere.J Am Ceram Soc2018;101:4108-17

[19]

Cheng Y,Li X.Meticulously tailoring phase boundary in KNN-based ceramics to enhance piezoelectricity and temperature stability.J Am Ceram Soc2022;105:5213-21

[20]

Cen Z,Xu Z.Simultaneously improving piezoelectric properties and temperature stability of Na0.5K0.5NbO3 (KNN)-based ceramics sintered in reducing atmosphere.J Adv Ceram2021;10:820-31

[21]

Peng Z,Zhang F.A new family of high temperature stability and ultra-fast charge-discharge KNN-based lead-free ceramics.J Mater Sci2022;57:9992-10002

[22]

Qi X,Tong X,Zhuo F.Enhanced piezoelectric properties of KNN-based ceramics by synergistic modulation of phase constitution, grain size and domain configurations.J Eur Ceram Soc2025;45:116874

[23]

Gao S,Qu J.Crystallographic texture and phase structure induced excellent piezoelectric performance in KNN-based ceramics.J Am Ceram Soc2023;106:3481-90

[24]

Liu Z,Zhang Q.Dielectric and ferroelectric properties of knn ceramics fabricated by microwave sintering.J Electron Mater2024;53:7170-8

[25]

Huang Y,Ma Y,Wu J.Multiscale understanding the effect of K/Na ratio on electrical properties of high-performance KNN-based ceramics.J Am Ceram Soc2024;107:355-66

[26]

Wang C,Qu Y,Zhang S.Preparation of KNN based lead-free piezoelectric ceramics via composition designing and two-step sintering.J Alloys Compd2020;832:153043

[27]

Li K,Bian L.Simultaneous enhancement of piezoelectricity and temperature stability in Pb(Ni1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics via Sm-modification.J Adv Ceram2024;13:1578-89

[28]

Liu Q,Zhao L.Niobate-based lead-free piezoceramics: a diffused phase transition boundary leading to temperature-insensitive high piezoelectric voltage coefficients.J Mater Chem C2018;6:1116-25

[29]

Liu Q,Gao J.Practical high-performance lead-free piezoelectrics: structural flexibility beyond utilizing multiphase coexistence.Natl Sci Rev2020;7:355-65 PMCID:PMC8288886

[30]

Xu L,Yang Y.Ultrahigh thermal stability and piezoelectricity of lead-free KNN-based texture piezoceramics.Nat Commun2024;15:9018 PMCID:PMC11489714

[31]

Song A,Feng T.Simultaneous enhancement of piezoelectricity and temperature stability in KNN-based lead-free ceramics via layered distribution of dopants.Adv Funct Mater2022;32:2204385

[32]

Zhang Y,Zhang N,Wu J.Simultaneous realization of good piezoelectric and strain temperature stability via the synergic contribution from multilayer design and rare earth doping.Adv Funct Mater2023;33:2211439

[33]

Zheng T,Lei H.Compositionally graded KNN-based multilayer composite with excellent piezoelectric temperature stability.Adv Mater2022;34:e2109175

[34]

Li P,Lu G.Significantly enhanced piezoelectric temperature stability of KNN-based ceramics through multilayer textured thick films composite.J Eur Ceram Soc2024;44:3861-8

[35]

Li R,Lv X,Wu J.Manipulating temperature stability in KNN-based ceramics via defect design.Acta Materialia2021;218:117229

[36]

Sun X,Zhao C,Wu J.One simple approach, two remarkable enhancements: manipulating defect dipoles and local stress of (K, Na)NbO3-based ceramics.Acta Mater2021;221:117351

[37]

Tian S,Cheng Y,Li B.Strong pinning effect on domains in piezoelectrics.Acta Mater2024;280:120344

[38]

Egerton L.Piezoelectric and dielectric properties of ceramics in the system potassium - sodium niobate.J Am Ceram Soc1959;42:438-42

[39]

Saito Y,Tani T.Lead-free piezoceramics.Nature2004;432:84-7

[40]

Zou J,Zhou X.Enhancing piezoelectric coefficient and thermal stability in lead-free piezoceramics: insights at the atomic-scale.Nat Commun2024;15:8591 PMCID:PMC11452656

[41]

Dai Y,Zhou G.Phase transitional behavior in K0.5Na0.5NbO3-LiTaO3 ceramics.Appl Phys Lett2007;90:262903

[42]

Du X,Belegundu U.Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary.Appl Phys Lett1998;72:2421-3

[43]

Randall CA,Kucera J,Shrout TR.Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics.J Am Ceram Soc1998;81:677-88

[44]

Ahart M,Cohen RE.Origin of morphotropic phase boundaries in ferroelectrics.Nature2008;451:545-8

[45]

Liu Y,Liu L.Morphotropic phase boundary-like properties in a ferroelectric-paraelectric nanocomposite.J Appl Phys2019;126:124102

[46]

Feng X,Wang Y.Enhanced electrocaloric effect in KNN-based ceramic via polymorphic phase transition.Ceram Int2024;50:1788-94

[47]

Huan Y,Wang Z,Chen F.Polarization switching and rotation in KNN-based lead-free piezoelectric ceramics near the polymorphic phase boundary.J Eur Ceram Soc2019;39:1002-10

[48]

Liu G,Hu Q.Diffused morphotropic phase boundary in relaxor-PbTiO3 crystals: high piezoelectricity with improved thermal stability.Appl Phys Rev2020;7:021405

[49]

Zhang Y,Shen B.Effect of orthorhombic-tetragonal phase transition on structure and piezoelectric properties of KNN-based lead-free ceramics.Dalton Trans2015;44:7797-802

[50]

Zhao C,Huang Y.Polymorphic characteristics challenging electrical properties in lead-free piezoceramics.Dalton Trans2019;48:11250-8

[51]

Li B,Cao X,Qiu Y.Temperature stability of multilayer symmetric KNN-based ceramics with continuous phase transitions.Appl Phys Lett2025;126:031901

[52]

Zhai Y,Chen C.Temperature stability and electrical properties of Tm2O3 doped KNN-based ceramics.J Mater Sci Mater Electron2019;30:4716-25

[53]

Sun X,Lv X.Understanding the piezoelectricity of high-performance potassium sodium niobate ceramics from diffused multi-phase coexistence and domain feature.J Mater Chem A2019;7:16803-11

[54]

Yao F,Jo W.Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics.Adv Funct Mater2016;26:1217-24

[55]

Wang K,Jo W.Temperature-insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics.Adv Funct Mater2013;23:4079-86

[56]

Hua Y,Yang Y.Broad temperature plateau for high piezoelectric coefficient by embedding PNRs in singe-phase KNN-based ceramics.Adv Funct Mater2025;35:2414348

[57]

Liu Q,Gao J.High-performance lead-free piezoelectrics with local structural heterogeneity.Energy Environ Sci2018;11:3531-9

[58]

Zheng T,Xiao D.Recent development in lead-free perovskite piezoelectric bulk materials.Prog Mater Sci2018;98:552-624

[59]

Wang K.(K, Na)NbO3-based lead-free piezoceramics: phase transition, sintering and property enhancement.J Adv Ceram2012;1:24-37

[60]

Hou J,Liu C,Cong Y.Enhanced photoelectric properties for BiZn0.5Zr0.5O3 modified KNN-based lead-free ceramics.J Alloys Compd2023;960:170639

[61]

Wang R,Yao F.Temperature stability of lead-free niobate piezoceramics with engineered morphotropic phase boundary.J Am Ceram Soc2015;98:2177-82

[62]

Liu Q,Zhao L.Simultaneous enhancement of piezoelectricity and temperature stability in (K,Na)NbO3-based lead-free piezoceramics by incorporating perovskite zirconates.J Mater Chem C2018;6:10618-27

[63]

Zhang MH,Du YJ.High and Temperature-Insensitive Piezoelectric Strain in Alkali Niobate Lead-free Perovskite.J Am Chem Soc2017;139:3889-95

[64]

Qin Y,Yao W,Zhang S.Domain configuration and thermal stability of (K0.48Na0.52)(Nb0.96Sb0.04)O3-Bi0.50(Na0.82K0.18)0.50ZrO3Piezoceramics with High d33 coefficient.ACS Appl Mater Interfaces2016;8:7257-65

[65]

Liu B,Shen B.Simultaneously enhanced piezoelectric response and piezoelectric voltage coefficient in textured KNN-based ceramics.J Am Ceram Soc2018;101:265-73

[66]

Zhou J,Yao F.Multi-scale thermal stability of niobate-based lead-free piezoceramics with large piezoelectricity.J Mater Chem C2015;3:8780-7

[67]

Guan S,Cheng S.Phase structure, domain structure, thermal stability, and high-temperature piezoelectric response of BiFeO3-BaTiO3 lead-free piezoelectric ceramics.Ceram Int2024;50:384-93

[68]

Shvartsman VV,Orlova A,Bogomolov AA.Polar nanodomains and local ferroelectric phenomena in relaxor lead lanthanum zirconate titanate ceramics.Appl Phys Lett2005;86:202907

[69]

Zhang X,Li P.Simultaneous achievement of large strain, low hysteresis, and high-temperature stability in textured BT-based piezoelectric ceramics.J Adv Ceram2025;14:9221025

[70]

Li P,Shen B.Ultrahigh piezoelectric properties in textured (K,Na)NbO3 -based lead-free ceramics.Adv Mater2018;30:1705171

[71]

Jia P,Li Y,Liu T.The achieving enhanced piezoelectric performance of KNN-based ceramics: decisive role of multi-phase coexistence induced by lattice distortion.J Alloys Compd2023;930:167416

[72]

Li T,Ke X.High electrostrictive strain in lead-free relaxors near the morphotropic phase boundary.Acta Mater2020;182:39-46

[73]

Sun S,Fan L.Role of tetragonal distortion on domain switching and lattice strain of piezoelectrics by in-situ synchrotron diffraction.Scr Mater2021;194:113627

[74]

Xu G,Stock C.Phase instability induced by polar nanoregions in a relaxor ferroelectric system.Nat Mater2008;7:562-6

[75]

Roukos R,Chaumont D.Relaxor behaviour and phase transition of perovskite ferroelectrics-type complex oxides (1-x)Na0.5Bi0.5TiO3-xCaTiO3 system.J. Adv Ceram2018;7:124-42

[76]

Qian J,Ge G.Topological vortex domain engineering for high dielectric energy storage performance.Adv Energy Mater2024;14:2303409

[77]

Lin J,Xiong R.Tailoring micro-structure of eco-friendly temperature-insensitive transparent ceramics achieving superior piezoelectricity.Acta Mater2022;235:118061

[78]

Zhao L,Liu Q,Li JF.Silver niobate lead-free antiferroelectric ceramics: enhancing energy storage density by B-site doping.ACS Appl Mater Interfaces2018;10:819-26

[79]

Lin L,Liu J,Li W.Boosting capacitive performance of lead-free relaxor ferroelectrics by introducing a linear dielectric.Ceram Int2024;50:829-37

[80]

Rossetti GA,Akcay G.Ferroelectric solid solutions with morphotropic boundaries: vanishing polarization anisotropy, adaptive, polar glass, and two-phase states.J Appl Phys2008;103:114113

[81]

Sluka T,Damjanovic D,Setter N.Enhanced electromechanical response of ferroelectrics due to charged domain walls.Nat Commun2012;3:748 PMCID:PMC4354168

[82]

Catalan G,Ramesh R.Domain wall nanoelectronics.Rev Mod Phys2012;84:119-56

[83]

Li F,Yang T.The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals.Nat Commun2016;7:13807 PMCID:PMC5187463

[84]

Westphal V,Glinchuk M.Diffuse phase transitions and random-field-induced domain states of the ‘‘relaxor’’ferroelectric PbMg1/3Nb2/3O3.Phys Rev Lett1992;68:847

[85]

Zheng T.Electric field compensation effect driven strain temperature stability enhancement in potassium sodium niobate ceramics.Acta Mater2020;182:1-9

[86]

Luo B,Dai S,Wu Y.Stabilizing oxygen vacancies and promoting electrostrain in lead-free potassium niobate-based piezoelectrics over wide temperature ranges.J Adv Ceram2024;13:1965-73

[87]

Gao J,Wang Y.Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics.Appl Phys Lett2011;99:092901

[88]

Xu K,Lv X.Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics.Adv Mater2016;28:8519-23

[89]

Zhao C,Wang K.Practical high strain with superior temperature stability in lead-free piezoceramics through domain engineering.J Mater Chem A2018;6:23736-45

[90]

Lv X,Wu J.Nano-domains in lead-free piezoceramics: a review.J Mater Chem A2020;8:10026-73

[91]

Zhao C,Yang T.Precipitation hardening in ferroelectric ceramics.Adv Mater2021;33:e2102421 PMCID:PMC11469274

[92]

Damjanovic D.Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics.J Am Ceram Soc2005;88:2663-76

[93]

Zhang W.A computational model of ferroelectric domains. Part I: model formulation and domain switching.Acta Mater2005;53:185-98

[94]

Nagarajan V,Stanishevsky A.Dynamics of ferroelastic domains in ferroelectric thin films.Nat Mater2003;2:43-7

[95]

Zhao Y,Zhou H.A rational designed multi-layered structure to improve the temperature stability of Li modified (K,Na)NbO3 piezoceramics.J Alloys Compd2018;731:39-43

[96]

Zeng S,Song M.The mechanism for the enhanced piezoelectricity, dielectric property and thermal stability in (K,Na)NbO3 ceramics.Acta Mater2025;287:120801

[97]

Zhang J,Bowen C.Piezoelectric effects and electromechanical theories at the nanoscale.Nanoscale2014;6:13314-27

[98]

Fulton C, Gao H. Effect of local polarization switching on piezoelectric fracture.J Mechan Phys Solids2001;49:927-52

[99]

Li F,Damjanovic D,Shrout TR.Local structural heterogeneity and electromechanical responses of ferroelectrics: learning from relaxor ferroelectrics.Adv Funct Mater2018;28:1801504

[100]

Zhang Y,Sun S.Ultrahigh piezoelectric performance benefiting from quasi-isotropic local polarization distribution in complex lead-based perovskite.Nano Energy2022;104:107910

[101]

Rödel J,Dittmer R,Kimura M.Transferring lead-free piezoelectric ceramics into application.J Eur Ceram Soc2015;35:1659-81

[102]

Lv X,Xiao D,Wu J.Emerging new phase boundary in potassium sodium-niobate based ceramics.Chem Soc Rev2020;49:671-707

[103]

Zhang S,Shrout TR,Wang J.Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3-0.052LiSbO3 lead-free ceramics.J Appl Phys2006;100:104108

[104]

Cohen RE.Origin of ferroelectricity in perovskite oxides.Nature1992;358:136-8

[105]

Wang Z,Wu J.New lead-free (1-x)(K0.5Na0.5)NbO3-x(Bi0.5Na0.5)ZrO3 ceramics with high piezoelectricity.J Am Ceram Soc2014;97:688-90

[106]

Batra K,Kumar B.Lead-free 0.95(K0.6Na0.4)NbO3-0.05(Bi0.5Na0.5)ZrO3 ceramic for high temperature dielectric, ferroelectric and piezoelectric applications.J Alloys Compd2020;818:152874

[107]

Lv X,Zhang X.Reduced degree of phase coexistence in KNN-Based ceramics by competing additives.J Eur Ceram Soc2020;40:2945-53

[108]

Yao W,Zhou C,Su W.Giant piezoelectricity, rhombohedral-orthorhombic-tetragonal phase coexistence and domain configurations of (K,Na)(Nb,Sb)O3-BiFeO3-(Bi, Na)ZrO3 ceramics.J Eur Ceram Soc2020;40:1223-31

[109]

Li P,Wang F.High piezoelectricity and stable output in BaHfO3 and (Bi0.5Na0.5)ZrO3 modified (K0.5Na0.5)(Nb0.96Sb0.04)O3 textured ceramics.Acta Mater2020;199:542-50

[110]

Liu Q,Liu F.(K,Na)NbO3-based lead-free ceramics with enhanced temperature-stable piezoelectricity and efficient red luminescence.J Adv Ceram2023;12:373-85

[111]

Tian S,Dai Y.Distinguishing electrotensile strain and electrobending strain.J Adv Ceram2025;14:9221048

[112]

Ren X.Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching.Nat Mater2004;3:91-4

[113]

Huang Y,Feng M.The unipolarity formed in the CuO-doped (K0.48Na0.52)0.96Li0.04Nb0.95Ta0.05O3 ceramics.Mater Lett2021;283:128825

[114]

Tian S,Dai Y.Defect dipole asymmetry response induces electrobending deformation in thin piezoceramics.Phys Rev Lett2024;133:186802

[115]

Liao Y,Wang H,Zheng Q.Modulation of defects and electrical behaviors of Cu-doped KNN ceramics by fluorine-oxygen substitution.Dalton Trans2020;49:1311-8

[116]

Hong Z,Wang D,Ren X.Role of point defects in the formation of relaxor ferroelectrics.Acta Mater2022;225:117558

[117]

Wang D,Carman GP.Influence of temperature on the electromechanical and fatigue behavior of piezoelectric ceramics.J Appl Phys1998;83:5342-50

AI Summary AI Mindmap
PDF

7

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/