Progress on hafnium oxide-based emerging ferroelectric materials and applications

Zihao Zhu , Bangmin Zhang , Yue Zheng

Microstructures ›› 2025, Vol. 5 ›› Issue (4) : 2025095

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (4) :2025095 DOI: 10.20517/microstructures.2025.32
Review

Progress on hafnium oxide-based emerging ferroelectric materials and applications

Author information +
History +
PDF

Abstract

Since the discovery of ferroelectricity in Si-doped HfO2 in 2011, HfO2-based materials have attracted extensive interest from researchers. Their various advantages provide a broad research prospect in the field of ferroelectric materials and devices. Researchers have conducted effective studies on the origin of ferroelectricity, the wake-up effect, the fatigue effect, and the potential for device applications. These studies contribute to a better understanding of the properties and applications of HfO2-based materials. This article provides a comprehensive review of the origin and influencing factors of ferroelectricity in HfO2, advantages in material applications, and limitations in applications from multiple perspectives. It also introduces the currently mature methods for preparing HfO2-based ferroelectric materials and cutting-edge applications in different device fields. Finally, the future development prospects of HfO2-based materials are also discussed.

Keywords

hafnium oxide / ferroelectric materials / orthorhombic phase / synaptic behavior

Cite this article

Download citation ▾
Zihao Zhu, Bangmin Zhang, Yue Zheng. Progress on hafnium oxide-based emerging ferroelectric materials and applications. Microstructures, 2025, 5(4): 2025095 DOI:10.20517/microstructures.2025.32

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mcadams H,Blake T.A 64-Mb embedded FRAM utilizing a 130-nm 5LM Cu/FSG logic process.IEEE J Solid State Circuits2004;39:667-77

[2]

Xie L,Dong Z.Nonvolatile photoelectric memory induced by interfacial charge at a ferroelectric PZT-gated black phosphorus transistor.Adv Elect Mater2019;5:1900458

[3]

Sulzbach MC,Long X.Unraveling ferroelectric polarization and ionic contributions to electroresistance in epitaxial Hf0.5Zr0.5O2 tunnel junctions.Adv Elect Mater2020;6:1900852

[4]

Böscke TS,Bräuhaus D,Böttger U.Ferroelectricity in hafnium oxide thin films.Appl Phys Lett2011;99:102903

[5]

Wei Y,Salverda M.A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films.Nat Mater2018;17:1095-100

[6]

Guo J,Xu X.Rhombohedral R3 phase of Mn-doped Hf0.5Zr0.5O2 epitaxial films with robust ferroelectricity.Adv Mater2024;36:e2406038

[7]

Eom D,Lee W.Temperature-driven co-optimization of IGZO/HZO ferroelectric field-effect transistors for optoelectronic neuromorphic computing.Nano Energy2025;138:110837

[8]

Yu Y,Xu Z.Structure-evolution-designed amorphous oxides for dielectric energy storage.Nat Commun2023;14:3031 PMCID:PMC10213053

[9]

Zhao D,Liao X.Microstructural evolution and ferroelectricity in HfO2 films.Microstructures2022;2:2022007

[10]

Banerjee W,Kamba S.Hafnium Oxide (HfO2) - A multifunctional oxide: a review on the prospect and challenges of hafnium oxide in resistive switching and ferroelectric memories.Small2022;18:e2107575

[11]

Cao J,Zhu Y.An overview of ferroelectric hafnia and epitaxial growth.Rap Res Lett2021;15:2100025

[12]

Breyer ET,Mikolajick T.Perspective on ferroelectric, hafnium oxide based transistors for digital beyond von-Neumann computing.Appl Phys Lett2021;118:050501

[13]

Park MH,Mikolajick T,Hwang CS.Review and perspective on ferroelectric HfO2-based thin films for memory applications.MRS Commun2018;8:795-808

[14]

Schroeder U,Mikolajick T.The fundamentals and applications of ferroelectric HfO2.Nat Rev Mater2022;7:653-69

[15]

Ohtaka O,Kunisada T.Phase relations and volume changes of hafnia under high pressure and high temperature.J Am Ceram Soc2001;84:1369-73

[16]

Park MH,Kim HJ.Ferroelectricity and antiferroelectricity of doped thin HfO2-based films.Adv Mater2015;27:1811-31

[17]

Howard CJ,Ohtaka O.Crystal structures of two orthorhombic Zirconias.J Am Ceram Soc1991;74:2321-3

[18]

Arashi H.Pressure-induced phase transformation of HfO2.J Am Ceram Soc1992;75:844-7

[19]

Huan TD,Rossetti GA.Pathways towards ferroelectricity in hafnia.Phys Rev B2014;90:064111

[20]

Materlik R,Kersch A.The origin of ferroelectricity in Hf1-xZrxO2: a computational investigation and a surface energy model.J Appl Phys2015;117:134109

[21]

Lee HJ,Lee K.Scale-free ferroelectricity induced by flat phonon bands in HfO2.Science2020;369:1343-7

[22]

Sang X,Schenk T,Lebeau JM.On the structural origins of ferroelectricity in HfO2 thin films.Appl Phys Lett2015;106:162905

[23]

Park MH,Mikolajick T,Hwang CS.Thermodynamic and kinetic origins of ferroelectricity in fluorite structure oxides.Adv Elect Mater2019;5:1800522

[24]

Park MH,Kim HJ.Understanding the formation of the metastable ferroelectric phase in hafnia-zirconia solid solution thin films.Nanoscale2018;10:716-25

[25]

Fan P,Yang Q.Origin of the intrinsic ferroelectricity of HfO2 from ab initio molecular dynamics.J Phys Chem C2019;123:21743-50

[26]

Wu Y,Jiang J.Unconventional polarization-switching mechanism in (Hf,Zr)O2 ferroelectrics and its implications.Phys Rev Lett2023;131:226802

[27]

Zhu T,Duan X,Liu S.Origin of interstitial doping induced coercive field reduction in ferroelectric hafnia.Phys Rev Lett2025;134:056802

[28]

Peng R,Cheng X,Liao M.Revealing the role of spacer layer in domain dynamics of Hf0.5Zr0.5O2 thin films for ferroelectrics.Adv Funct Mater2024;34:2403864

[29]

Wang S,Liu Z.Unconventional ferroelectric-ferroelastic switching mediated by non-polar phase in fluorite oxides.Adv Mater2025;37:e2415131

[30]

Li X,Gao A.Ferroelastically protected reversible orthorhombic to monoclinic-like phase transition in ZrO2 nanocrystals.Nat Mater2024;23:1077-84

[31]

Qi Y,Lau C.Stabilization of competing ferroelectric phases of HfO2 under epitaxial strain.Phys Rev Lett2020;125:257603

[32]

Wang Y,Guzman R.A stable rhombohedral phase in ferroelectric Hf(Zr)1+xO2 capacitor with ultralow coercive field.Science2023;381:558-63

[33]

Lee K,Choi IH.Deterministic orientation control of ferroelectric HfO2 thin film growth by a topotactic phase transition of an oxide electrode.ACS Nano2024;18:12707-15

[34]

Wang S,Yang X.Unlocking the phase evolution of the hidden non-polar to ferroelectric transition in HfO2-based bulk crystals.Nat Commun2025;16:3745 PMCID:PMC12012034

[35]

Materano M,Mulaosmanovic H.Polarization switching in thin doped HfO2 ferroelectric layers.Appl Phys Lett2020;117:262904

[36]

Xu X,Qi Y.Kinetically stabilized ferroelectricity in bulk single-crystalline HfO2:Y.Nat Mater2021;20:826-32

[37]

Cheng H,Liu JM.Structure and stability of La- and hole-doped hafnia with/without epitaxial strain.J Phys Condens Matter2024;36:205401

[38]

Zhang Y,Wang D.Enhanced ferroelectric properties and insulator-metal transition-induced shift of polarization-voltage hysteresis loop in VOx-capped Hf0.5Zr0.5O2 thin films.ACS Appl Mater Interfaces2020;12:40510-7

[39]

Athle R,Irish A,Timm R.Effects of TiN top electrode texturing on ferroelectricity in Hf1-xZrxO2.ACS Appl Mater Interfaces2021;13:11089-95 PMCID:PMC8027987

[40]

Mimura T,Shimizu T.Formation of (111) orientation-controlled ferroelectric orthorhombic HfO2 thin films from solid phase via annealing.Appl Phys Lett2016;109:052903

[41]

Liu S.Effects of growth orientations and epitaxial strains on phase stability of HfO2 thin films.Phys Rev Mater2019;3:054404

[42]

Park JY,Yang K.Engineering strategies in emerging fluorite-structured ferroelectrics.ACS Appl Electron Mater2022;4:1369-80

[43]

Islamov DR,Orlov OM,Krasnikov GY.Impact of oxygen vacancy on the ferroelectric properties of lanthanum-doped hafnium oxide.Appl Phys Lett2020;117:162901

[44]

Schroeder U,Müller J.Impact of different dopants on the switching properties of ferroelectric hafniumoxide.Jpn J Appl Phys2014;53:08LE02

[45]

Kirbach S,Eßlinger S.Doping concentration dependent piezoelectric behavior of Si:HfO2 thin-films.Appl Phy Lett2021;118:012904

[46]

Müller J,Böscke TS.Ferroelectricity in yttrium-doped hafnium oxide.J Appl Phys2011;110:114113

[47]

Starschich S,Schneller T,Böttger U.Chemical solution deposition of ferroelectric yttrium-doped hafnium oxide films on platinum electrodes.Appl Phy Lett2014;104:202903

[48]

Mimura T,Funakubo H.Ferroelectricity in YO1.5-HfO2 films around 1 μm in thickness.Appl Phys Lett2019;115:032901

[49]

Yun Y,Li M.Intrinsic ferroelectricity in Y-doped HfO2 thin films.Nat Mater2022;21:903-9

[50]

Müller J,Bräuhaus D.Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications.Appl Phys Lett2011;99:112901

[51]

Müller J,Schröder U.Ferroelectricity in simple binary ZrO2 and HfO2.Nano Lett2012;12:4318-23

[52]

Yan F,Chen Y,Liao M.Optimization of ferroelectricity and endurance of hafnium zirconium oxide thin films by controlling element inhomogeneity.J Adv Ceram2024;13:1023-31

[53]

Ansari E,Hartmann E,Stolichnov I.Vanadium-doped hafnium oxide: a high-endurance ferroelectric thin film with demonstrated negative capacitance.Nano Lett2025;25:2702-8 PMCID:PMC11849039

[54]

Zhou C,Feng Y.Enhanced polarization switching characteristics of HfO2 ultrathin films via acceptor-donor co-doping.Nat Commun2024;15:2893 PMCID:PMC10991407

[55]

Park MH,Kim YJ,Hwang CS.The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity.Appl Phys Lett2014;104:1243-400

[56]

Karbasian G,Yadav AK,Hu C.Stabilization of ferroelectric phase in tungsten capped Hf0.8Zr0.2O2.Appl Phys Lett2017;111:022907

[57]

Onaya T,Sawamoto N.Improvement in ferroelectricity of HfxZr1-xO2 thin films using ZrO2 seed layer.Appl Phys Express2017;10:081501

[58]

Weeks SL,Narasimhan VK,Chiang T.Engineering of Ferroelectric HfO2-ZrO2 nanolaminates.ACS Appl Mater Interfaces2017;9:13440-7

[59]

Cao R,Zhao S.Effects of capping electrode on ferroelectric properties of Hf0.5Zr0.5O2 thin films.IEEE Electron Device Lett2018;39:1207-10

[60]

Chen L,Dai YW.Ultra-low power Hf0.5Zr0.5O2 based ferroelectric tunnel junction synapses for hardware neural network applications.Nanoscale2018;10:15826-33

[61]

Yoong HY,Zhao J.Epitaxial ferroelectric Hf0.5Zr0.5O2 thin films and their implementations in memristors for brain-inspired computing.Adv Funct Mater2018;28:1806037

[62]

Bouaziz J,Baboux N.Huge reduction of the wake-up effect in ferroelectric HZO thin films.ACS Appl Electron Mater2019;1:1740-5

[63]

Estandía S,Gazquez J.Engineering ferroelectric Hf0.5Zr0.5O2 thin films by epitaxial stress.ACS Appl Electron Mater2019;1:1449-57

[64]

Goh Y,Park SK.Crystalline phase-controlled high-quality hafnia ferroelectric with RuO2 electrode.IEEE Trans Electron Devices2020;67:3431-4

[65]

Goh Y,Park SK.Oxygen vacancy control as a strategy to achieve highly reliable hafnia ferroelectrics using oxide electrode.Nanoscale2020;12:9024-31

[66]

Goh Y,Lee Y,Jeon S.Ultra-thin Hf0.5Zr0.5O2 thin-film-based ferroelectric tunnel junction via stress induced crystallization.Appl Phys Lett2020;117:242901

[67]

Lyu J,Fina I.High polarization, endurance and retention in sub-5 nm Hf0.5Zr0.5O2 films.Nanoscale2020;12:11280-7

[68]

Zou Z,Wang D.Enhancement of ferroelectricity and homogeneity of orthorhombic phase in Hf0.5Zr0.5O2 thin films.Nanotechnology2021;32:335704

[69]

Kim H,Oh Y.A simple strategy to realize super stable ferroelectric capacitor via interface engineering.Adv Materials Inter2022;9:2102528

[70]

Wang Y,Zhao J.A robust high-performance electronic synapse based on epitaxial ferroelectric Hf0.5Zr0.5O2 films with uniform polarization and high Curie temperature.Appl Mater Today2022;29:101587

[71]

Mehmood F,Vishnumurthy P.Reliability improvement from La2O3 interfaces in Hf0.5Zr0.5O2-based ferroelectric capacitors.Adv Mater Inter2023;10:2202151

[72]

Wang T,Chou C,Chen M.Impact of monolayer engineering on ferroelectricity of sub-5 nm Hf0.5Zr0.5O2 thin films.Acta Mater2023;250:118848

[73]

Cao Y,Yang Y.Structural engineering of H0.5Z0.5O2-based ferroelectric tunneling junction for fast-speed and low-power artificial synapses.Adv Elect Mater2023;9:2201247

[74]

Jia S,Yang Q.Developing HZO-based superlattices to enhance fatigue-resistance by charge injection suppression.Adv Funct Mater2025;35:2501470

[75]

Hoffmann M,Schenk T.Stabilizing the ferroelectric phase in doped hafnium oxide.J Appl Phys2015;118:072006

[76]

Kobayashi M.On device design for steep-slope negative-capacitance field-effect-transistor operating at sub-0.2V supply voltage with ferroelectric HfO2 thin film.AIP Adv2016;6:025113

[77]

Park MH,Lee G.A comprehensive study on the mechanism of ferroelectric phase formation in hafnia-zirconia nanolaminates and superlattices.Appl Phys Rev2019;6:041403

[78]

Peng Y,Liu Y.HfO2-ZrO2 superlattice ferroelectric capacitor with improved endurance performance and higher fatigue recovery capability.IEEE Electron Device Lett2022;43:216-9

[79]

Cheema SS,Wang LC.Ultrathin ferroic HfO2-ZrO2 superlattice gate stack for advanced transistors.Nature2022;604:65-71

[80]

Bai N,Huang J.Designing wake-up free ferroelectric capacitors based on the HfO2/ZrO2 superlattice structure.Adv Elect Mater2023;9:2200737

[81]

Gong Z,Peng Y,Yu X.Physical origin of the endurance improvement for HfO2-ZrO2 superlattice ferroelectric film.Appl Phys Lett2022;121:242901

[82]

Kim S,Kim MJ,Jin HS.Method to achieve the morphotropic phase boundary in HfxZr1-xO2 by electric field cycling for DRAM cell capacitor applications.IEEE Electron Device Lett2021;42:517-20

[83]

Das D,Gaddam V.Sub 5 Å-EOT HfxZr1-xO2 for next-generation DRAM capacitors using morphotropic phase boundary and high-pressure (200 atm) annealing with rapid cooling process.IEEE Trans Electron Devices2022;69:103-8

[84]

Kashir A.A CMOS-compatible morphotropic phase boundary.Nanotechnology2021;32:445706

[85]

Kashir A.Ferroelectric and dielectric properties of Hf0.5Zr0.5O2 thin film near morphotropic phase boundary.Phys Status Solidi2021;218:2000819

[86]

Oh S,Hwang H.Composition optimization of HfxZr1-xO2 thin films to achieve the morphotrophic phase boundary for high- k dielectrics.J Appl Phy2023;133:154102

[87]

Gaddam V,Kim T,Kim C.Novel approach to high κ (~59) and low EOT (~3.8 Å) near the morphotrophic phase boundary with AFE/FE (ZrO2/HZO) bilayer heterostructures and high-pressure annealing.ACS Appl Mater Interfaces2022;14:43463-73

[88]

Lin Y,Chang S.Role of electrode-induced oxygen vacancies in regulating polarization wake-up in ferroelectric capacitors.Appl Sur Sci2020;528:147014

[89]

Buragohain P,Schenk T.Nanoscopic studies of domain structure dynamics in ferroelectric La:HfO2 capacitors.Appl Phys Lett2018;112:222901

[90]

Mizutani K,Wakabayashi H,Chang EY.Cerium oxide capping on Y-doped HfO2 films for ferroelectric phase stabilization with endurance improvement.Jpn J Appl Phys2022;61:021006

[91]

Pešić M,Larcher L.Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors.Adv Funct Mater2016;26:4601-12

[92]

Cheng Y,Ye KH.Reversible transition between the polar and antipolar phases and its implications for wake-up and fatigue in HfO2-based ferroelectric thin film.Nat Commun2022;13:645 PMCID:PMC8814215

[93]

Mcmitchell SRC,Ronchi N.Elucidating possible crystallographic origins of wake-up mechanisms in ferroelectric hafnia.Appl Phys Lett2021;118:092902

[94]

Rushchanskii KZ,Ležaić M.Ordering of Oxygen Vacancies and Related Ferroelectric Properties in HfO_{2-δ}.Phys Rev Lett2021;127:087602

[95]

Miikkulainen V,Ritala M.Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends.J Appl Phys2013;113:021301

[96]

Cheema SS,Shanker N.Enhanced ferroelectricity in ultrathin films grown directly on silicon.Nature2020;580:478-82

[97]

Yu T,Zhao J.Hf0.5Zr0.5O2-based ferroelectric memristor with multilevel storage potential and artificial synaptic plasticity.Sci China Mater2021;64:727-38

[98]

Liang Y,Wang Y.ZrO2-HfO2 superlattice ferroelectric capacitors with optimized annealing to achieve extremely high polarization stability.IEEE Electron Device Lett2022;43:1451-4

[99]

Lee Y,Fields SS.Unexpectedly large remanent polarization of Hf0.5Zr0.5O2 metal-ferroelectric-metal capacitor fabricated without breaking vacuum.Appl Phys Lett2021;118:012903

[100]

Profijt HB,van de Sanden MCM.Plasma-assisted atomic layer deposition: basics, opportunities, and challenges.J Vac Sci Technol A2011;29:050801

[101]

Van Bui H,Gupta A.Initial growth, refractive index, and crystallinity of thermal and plasma-enhanced atomic layer deposition AlN films.J Vac Sci Technol A2015;33:01A111

[102]

Onaya T,Sawamoto N.Ferroelectricity of HfxZr1-xO2 thin films fabricated by 300 °C low temperature process with plasma-enhanced atomic layer deposition.Microelectron Eng2019;215:111013

[103]

Ahn Y,Lim S.Effects of plasma power on ferroelectric properties of HfO2-ZrO2 nanolaminates produced by plasma enhanced atomic layer deposition.Surf Interfaces2023;37:102669

[104]

Chesnokov YM,Rogozhin AE,Vasiliev AL.Microstructure and electrical properties of thin HfO2 deposited by plasma-enhanced atomic layer deposition.J Mater Sci2018;53:7214-23

[105]

Onaya T,Jung YC.Correlation between ferroelectricity and ferroelectric orthorhombic phase of HfxZr1-xO2 thin films using synchrotron X-ray analysis.APL Mater2021;9:031111

[106]

Xiao W,Peng Y.Memory window and endurance improvement of Hf0.5Zr0.5O2-based FeFETs with ZrO2 seed layers characterized by fast voltage pulse measurements.Nanoscale Res Lett2019;14:254 PMCID:PMC6660534

[107]

Chen H,Liu L.Significant improvement of ferroelectricity and reliability in Hf0.5Zr0.5O2 films by inserting an ultrathin Al2O3 buffer layer.Appl Surf Sci2021;542:148737

[108]

Ryu J,Kim S.Long-term and short-term plasticity of Ta2O5/HfO2 memristor for hardware neuromorphic application.J Alloys Compd2021;850:156675

[109]

Cho JW,Choi IH.Atomic layer deposition of epitaxial ferroelectric Hf0.5Zr0.5O2 thin films.Adv Funct Mater2024;34:2314396

[110]

Wang J,Zeng M.Excellent ferroelectric properties of Hf0.5Zr0.5O2 thin films induced by Al2O3 dielectric layer.IEEE Electron Device Lett2019;40:1937-40

[111]

Kashir A,Oh S.Large remnant polarization in a wake-up free Hf0.5Zr0.5O2 ferroelectric film through bulk and interface engineering.ACS Appl Electron Mater2021;3:629-38

[112]

Liu B,Zhang W.Excellent ferroelectric Hf0.5Zr0.5O2 thin films with ultra-thin Al2O3 serving as capping layer.Appl Phys Lett2021;119:172902

[113]

Wang C,Wang C.Evolution of pronounced ferroelectricity in Hf0.5Zr0.5O2 thin films scaled down to 3 nm.J Mater Chem C2021;9:12759-67

[114]

Kim S,Jeon YR,Ku B.Engineering synaptic characteristics of TaOx/HfO2 bi-layered resistive switching device.Nanotechnology2018;29:415204

[115]

Shiraishi T,Yokouchi T.Impact of mechanical stress on ferroelectricity in (Hf0.5Zr0.5)O2 thin films.Appl Phys Lett2016;108:262904

[116]

Sulzbach MC,Gàzquez J,Fina I.Blocking of conducting channels widens window for ferroelectric resistive switching in interface-engineered Hf0.5Zr0.5O2 tunnel devices.Adv Funct Mater2020;30:2002638

[117]

Estandía S,Mishra R,Sánchez F.Insights into the atomic structure of the interface of ferroelectric Hf0.5Zr0.5O2 grown epitaxially on La2/3Sr1/3MnO3.Phys Rev Mater2021;5:074410

[118]

Estandía S,Varela M.Critical effect of the bottom electrode on the ferroelectricity of epitaxial Hf0.5Zr0.5O2 thin films.J Mater Chem C2021;9:3486-92

[119]

Shi S,Cao T.Interface-engineered ferroelectricity of epitaxial Hf0.5Zr0.5O2 thin films.Nat Commun2023;14:1780 PMCID:PMC10063548

[120]

Lyu J,Solanas R,Sánchez F.Growth window of ferroelectric epitaxial Hf0.5Zr0.5O2 thin films.ACS Appl Electron Mater2019;1:220-8

[121]

Long X,Estandía S.Enhanced electroresistance endurance of capped Hf0. 5Zr0. 5O2 ultrathin epitaxial tunnel barriers.APL Mater2022;10:031114

[122]

Mittermeier B,Horoschenkoff A.CMOS compatible Hf0.5Zr0.5O2 ferroelectric tunnel junctions for neuromorphic devices.Adv Intell Syst2019;1:1900034

[123]

Chen X,Tian Z,Zhu Y.A two-terminal binary HfO2 resistance switching random access memory for an artificial synaptic device.J Mater Chem C2023;11:622-9

[124]

Chen X,Tian Z,Su L.Study of resistive switching behavior in HfO2 nanocrystals synthesized via a low temperature hydrothermal method.Nanotechnology2024;35:125203

[125]

Jeong DS.Nonvolatile memory materials for neuromorphic intelligent machines.Adv Mater2018;30:e1704729

[126]

Chanthbouala A,Cherifi RO.A ferroelectric memristor.Nat Mater2012;11:860-4

[127]

Bégon-Lours L,Popoff Y.Ferroelectric, analog resistive switching in back-end-of-line compatible TiN/HfZrO4/TiOx junctions.Rap Res Lett2021;15:2000524

[128]

Prasad B,Kalitsov A,Terris B.Large tunnel electroresistance with ultrathin Hf0.5Zr0.5O2 ferroelectric tunnel barriers.Adv Elect Mater2021;7:2001074

[129]

Du X,Wang H,Yin Y.High-speed switching and giant electroresistance in an epitaxial Hf0.5Zr0.5O2-based ferroelectric tunnel junction memristor.ACS Appl Mater Interfaces2022;14:1355-61

[130]

Yang Y.Probing memristive switching in nanoionic devices.Nat Electron2018;1:274-87

[131]

Chand U,Huang C,Lin C.Investigation of thermal stability and reliability of HfO2 based resistive random access memory devices with cross-bar structure.J Appl Phys2015;117:184105

[132]

Murdoch BJ,Ganesan R,Bilek MMM.Memristor and selector devices fabricated from HfO2-xNx.Appl Phys Lett2016;108:143504

[133]

Zhu Z,Gao C,Yan X.A Cu/HZO/GeS/Pt memristor for neuroinspired computing.Rap Res Lett2021;15:2100072

[134]

Matveyev Y,Markeev A.Resistive switching and synaptic properties of fully atomic layer deposition grown TiN/HfO2/TiN devices.J Appl Phys2015;117:044901

[135]

Niu G,Auf der Maur M.Geometric conductive filament confinement by nanotips for resistive switching of HfO2-RRAM devices with high performance.Sci Rep2016;6:25757 PMCID:PMC4867633

[136]

Chandrasekaran S,Saminathan R,Tseng TY.Improving linearity by introducing Al in HfO2 as a memristor synapse device.Nanotechnology2019;30:445205

[137]

Zhu J,Yang Y.A comprehensive review on emerging artificial neuromorphic devices.Appl Phys Rev2020;7:011312

[138]

Zeng T,Hu K.Approaching the ideal linearity in epitaxial crystalline-type memristor by controlling filament growth.Adv Mater2024;36:e2401021

[139]

Covi E,Serb A,Fanciulli M.HfO2-based memristors for neuromorphic applications. In 2016 IEEE International Symposium on Circuits and Systems (ISCAS); 2016.

[140]

Jiang H,Lin P.Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor.Sci Rep2016;6:28525 PMCID:PMC4917839

[141]

Liu C,Cao Y,Wang P.Optimization of oxygen vacancy concentration in HfO2/HfOx bilayer-structured ultrathin memristors by atomic layer deposition and their biological synaptic behavior.J Mater Chem C2020;8:12478-84

[142]

Ryu JH.Artificial synaptic characteristics of TiO2/HfO2 memristor with self-rectifying switching for brain-inspired computing.Chaos Solitons Fractals2020;140:110236

[143]

Ismail M,Mahata C,Kim S.Demonstration of synaptic and resistive switching characteristics in W/TiO2/HfO2/TaN memristor crossbar array for bioinspired neuromorphic computing.J Mater Sci Technol2021;96:94-102

[144]

Wang TY,He ZY.Atomic layer deposited Hf0.5Zr0.5O2-based flexible memristor with short/long-term synaptic plasticity.Nanoscale Res Lett2019;14:102 PMCID:PMC6420527

[145]

Margolin I,Mikheev V,Negrov D.Flexible HfO2-based ferroelectric memristor.Appl Phys Lett2022;121:102901

[146]

Matveyev Y,Negrov D.Polarization-dependent electric potential distribution across nanoscale ferroelectric Hf0.5Zr0.5O2 in functional memory capacitors.Nanoscale2019;11:19814-22

[147]

Fan Z,Wang J.Ferroelectric HfO2-based materials for next-generation ferroelectric memories.J Adv Dielect2016;06:1630003

[148]

Xiao Z,Cao J,Chen J.Controlling resistance switching performances of Hf0.5Zr0.5O2 films by substrate stress and potential in neuromorphic computing.Adv Intell Syst2022;4:2100244

[149]

Zhu Z,Huang X.Improving the synaptic behavior with polar orthorhombic phase in Hf0.5Zr0.5O2 film.ACS Appl Electron Mater2023;5:4682-9

[150]

Zhao Z.Ferroelectric memristor based on Hf0.5Zr0.5O2 thin film combining memristive and neuromorphic functionalities.Rap Res Lett2020;14:2000224

[151]

Huang W,Zhang Y.HfO2-based ferroelectric field-effect-transistor with large memory window and good synaptic behavior.ECS J Solid State Sci Technol2021;10:065012

[152]

Tsai SH,Wang X.Stress-memorized HZO for high-performance ferroelectric field-effect memtransistor.ACS Appl Electron Mater2022;4:1642-50

[153]

Halter M,Bragaglia V.Back-end, CMOS-compatible ferroelectric field-effect transistor for synaptic weights.ACS Appl Mater Interfaces2020;12:17725-32

[154]

Liang T,Zhao Y.High-performance artificial synapse developed by HZO on (110) NSTO.ACS Appl Nano Mater2024;7:19006-13

[155]

Siannas N,Tsipas P.Electronic synapses enabled by an epitaxial SrTiO3-δ/Hf0.5Zr0.5O2 ferroelectric field-effect memristor integrated on silicon.Adv Funct Mater2024;34:2311767

[156]

Nie F,Wang J.An adaptive solid-state synapse with Bi-directional relaxation for multimodal recognition and spatio-temporal learning.Adv Mater2025;37:e2412006

[157]

Shen Z,Wang Q.Full-vdW heterosynaptic memtransistor with the ferroelectric inserted functional layer and its neuromorphic applications.Adv Funct Mater2025;35:2412832

[158]

Hu Y,Liu N.Artificial optoelectronic synapses based on light-controllable ferroelectric semiconductor memristor.Adv Opt Mater2024;12:2302887

[159]

Roy S,Jena AK.Analog-digital hybridity of resistive switching in ion-irradiated BiFeO3 memristor for synergistic neuromorphic functionality and artificial learning.Adv Mater Technol2025;10:2400557

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/