Achieving near-zero thermal expansion over a wide temperature range in (Hf,Ta)(Fe,Cr)2 alloys

Xiaobo Wang , Minjun Ai , Feixiang Long , Hong Zhong , Hao Lu , Chang Zhou , Jun Chen

Microstructures ›› 2025, Vol. 5 ›› Issue (4) : 2025097

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (4) :2025097 DOI: 10.20517/microstructures.2025.31
Research Article

Achieving near-zero thermal expansion over a wide temperature range in (Hf,Ta)(Fe,Cr)2 alloys

Author information +
History +
PDF

Abstract

Zero thermal expansion alloys possess significant potential for applications in aerospace, electronics, and optical instruments because their volume remains nearly constant despite temperature changes. Regulating and exploring zero thermal expansion alloys is crucial to mitigating thermal strain and stress. This study successfully adjusted negative thermal expansion alloy (Hf, Ta)Fe2 to zero thermal expansion over a wide temperature range by optimizing its composition and controlling the magnetic phase transition. Moderately substituting Cr for Fe transformed the giant negative thermal expansion (ΔT = 15 K) into near-zero thermal expansion (ΔT = 200 K). High-resolution synchrotron X-ray diffraction, macroscopic magnetic measurements, and linear thermal expansion measurements were employed to investigate the crystalline structures, magnetic properties, and thermal expansion of Hf0.84Ta0.16Fe2-xCrx (0 ≤ x ≤ 0.25). The alignment of the magnetic phase transition and anomalous thermal expansion temperature ranges demonstrates the essential role of spin-lattice coupling. This work offers valuable insights into regulating zero thermal expansion behavior and explaining the applications of magnetic negative thermal expansion alloys. This advancement will promote their use in high-precision instruments, aerospace, microelectronics, and advanced manufacturing, enhancing device reliability and performance, particularly in extreme temperature environments.

Keywords

Near-zero thermal expansion / magnetic phase transition / negative thermal expansion / kagome structure

Cite this article

Download citation ▾
Xiaobo Wang, Minjun Ai, Feixiang Long, Hong Zhong, Hao Lu, Chang Zhou, Jun Chen. Achieving near-zero thermal expansion over a wide temperature range in (Hf,Ta)(Fe,Cr)2 alloys. Microstructures, 2025, 5(4): 2025097 DOI:10.20517/microstructures.2025.31

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yokoyama T.Anisotropic thermal expansion and cooperative Invar and anti-Invar effects in mn alloys.Phys Rev Lett2013;110:075901

[2]

Gao Q,Shi N.Large isotropic negative thermal expansion in water-free Prussian blue analogues of ScCo(CN)6.Scripta Materialia2020;187:119-24

[3]

Attfield JP.Condensed-matter physics: a fresh twist on shrinking materials.Nature2011;480:465-6

[4]

Song Y,Xu M.Negative thermal expansion in (Sc,Ti)Fe2 induced by an unconventional magnetovolume effect.Mater Horiz2020;7:275-81

[5]

Lohaus SH,Guzman P.A thermodynamic explanation of the Invar effect.Nat Phys2023;19:1642-8

[6]

Pang X,Shi N,Zhou C.Design of zero thermal expansion and high thermal conductivity in machinable xLFCS/Cu metal matrix composites.Compos Part B Eng2022;238:109883

[7]

Schilfgaarde M, Abrikosov IA, Johansson B. Origin of the Invar effect in iron-nickel alloys.Nature1999;400:46-9

[8]

Diop LV,Isnard O.Large magnetovolume effects due to transition from the ferromagnetic to antiferromagnetic state in Hf0.825Ta0.175Fe2 intermetallic compound.J Phys Condens Matter2013;25:416007

[9]

Chen F,Huo M,Li L.Effects of magnetic field and hydrostatic pressure on the antiferromagnetic-ferromagnetic transition and magneto-functional properties in Hf1-xTaxFe2 alloys.Tungsten2023;5:503-11

[10]

Dong X,Yu C.Zero thermal expansion in non-stoichiometric and single-phase (Hf,Nb)Fe2.5 alloy.Scr Mater2023;229:115388

[11]

Yan-jun H,Nan C,Shu-zhen L.Magnetic properties of Hf0.8Ta0.2(Fe0.97A0.03)2 (A=Al, Co, Mn) systems.Chinese Phys Lett2006;23:3309-12

[12]

Duijn HGM,Menovsky AA.Magnetic and transport properties of the itinerant electron system Hf1-xTaxFe2.J Appl Phys1997;81:4218-20

[13]

Diop L,Suard E.Neutron diffraction study of the itinerant-electron metamagnetic Hf0.825Ta0.175Fe2 compound.Solid State Commun2016;229:16-21

[14]

Ouyang Z,Yang H.Structure and unusual magnetic properties in the itinerant electron system Hf0.8Ta0.2(Fe1-xCox)2.J Appl Phys2004;370:18-24

[15]

Ma R,Chen L.Transition from isotropic positive to negative thermal expansion by local Zr6O8 node distortion in MOF-801.Microstructures2024;4:2024023

[16]

Kennedy CA.Unusual thermal conductivity of the negative thermal expansion material, ZrW2O8.Solid State Commun2005;134:271-6

[17]

Jiao YC,Qu BY.First-principles study of the negative thermal expansion of PbTiO3.Comput Mater Sci2016;124:92-7

[18]

Azuma M,Seki H.Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer.Nat Commun2011;2:347 PMCID:PMC3156814

[19]

Zheng XG,Yamada H.Giant negative thermal expansion in magnetic nanocrystals.Nat Nanotechnol2008;3:724-6

[20]

Cao Y,Khmelevskyi S.Interplanar magnetic orders and symmetry-tuned zero thermal expansion in Kagomé metal (Zr,Ta)Fe2.Chem Mater2023;35:9167-74

[21]

Song Y,Liu X.Zero thermal expansion in magnetic and metallic Tb(Co,Fe)2 intermetallic compounds.J Am Chem Soc2018;140:602-5

[22]

Huang R,Fan W.Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds.J Am Chem Soc2013;135:11469-72

[23]

Li S,Zhao Y,Han Y.Zero thermal expansion achieved by an electrolytic hydriding method in La(Fe,Si)13 compounds.Adv Funct Mater2017;27:1604195

[24]

Xu M,Xu Y.High-temperature zero thermal expansion in HfFe2+δ from added ferromagnetic paths.Chem Mater2022;34:9437-45

[25]

Yuan X,Sun Y.High‐entropy anti‐perovskites with enhanced negative thermal expansion behavior.Adv Funct Mater2024;34:2404629

[26]

Cen D,Chu R.Design of (Hf,Ta)Fe2/Fe composite with zero thermal expansion covering room temperature.Scr Mater2020;186:331-5

[27]

Bag P,Chaddah P,Siruguri V.Unconventional thermal effects across first-order magnetic transition in the Ta-doped HfFe2 intermetallic.Phys Rev B2016;93:014416

[28]

Li B,Wang H.Colossal negative thermal expansion induced by magnetic phase competition on frustrated lattices in Laves phase compound (Hf,Ta) Fe2.Phys Rev B2016;93:224405

[29]

Qiao Y,Lin K.Negative thermal expansion in (Hf,Ti)Fe2 induced by the ferromagnetic and antiferromagnetic phase coexistence.Inorg Chem2019;58:5380-3

[30]

Wada H,Shiga M.Thermal and transport properties of Hf1-xTaxFe2.Phys Rev B Condens Matter1993;48:10221-6

[31]

Delyagin N,Parfenova V,Ryasny G.Ferromagnetic-to-antiferromagnetic transition in (Hf1-xTix)Fe2 intermetallic compounds induced by geometrical frustration of the Fe(2a) sites.J Magn Magn Mater2008;320:1853-7

[32]

Sun Y,Hu S.Interplanar ferromagnetism enhanced ultrawide zero thermal expansion in kagome cubic intermetallic (Zr,Nb)Fe2.J Am Chem Soc2023;145:17096-102

[33]

Xu J,Huang H.Significant zero thermal expansion via enhanced magnetoelastic coupling in kagome magnets.Adv Mater2023;35:e2208635

[34]

Diop LVB,Isnard O,Kamarad J.Collapse of ferromagnetism in itinerant-electron system: a magnetic, transport properties, and high pressure study of (Hf,Ta)Fe2 compounds.J Appl Phys2014;116:163907

[35]

Li L,Zou Y.Good comprehensive performance of Laves phase Hf1-xTaxFe2 as negative thermal expansion materials.Acta Mater2018;161:258-65

[36]

Qiao Y,Zhu Y,Liang E.Tunable thermal expansion via the magnetic phase competition in kagome magnets.Appl Phys Lett2024;125:032403

[37]

Wang H,Gong Y.Designing (Hf,Ta)Fe2-based zero thermal expansion composites consisting of multiple Laves phases.Rare Met2024;43:6596-605

AI Summary AI Mindmap
PDF

81

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/