Recent advances in elevated-temperature flexible composite dielectrics for energy storage applications

Liang Zhao , Fan Zhang , Hailong Hu

Microstructures ›› 2025, Vol. 5 ›› Issue (4) : 2025085

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (4) :2025085 DOI: 10.20517/microstructures.2025.14
Review

Recent advances in elevated-temperature flexible composite dielectrics for energy storage applications

Author information +
History +
PDF

Abstract

Dielectric composites play a crucial role in meeting the growing demand for high-energy-density capacitors that can operate effectively in challenging environments. These applications include aerospace power management, underground oil and gas exploration, electrified transportation, and pulse power systems. This work provides a comprehensive overview of current research on flexible, high-temperature-resistant composite dielectrics for energy storage, emphasizing enhancing thermal stability and dielectric performance. Initially, this work examines the crucial characterization parameters that define the performance of dielectric energy storage materials at elevated temperatures and explores the mechanisms behind them. Subsequently, the recent research achievements and the primary challenges facing these flexible composite materials are summarized. Further discussions on strategies are performed for optimizing the microstructure of these materials to improve performance, where three key dimensions are analyzed, such as system selection, filler types, and structural design. Additionally, the review introduces innovative approaches to enhance the temperature resistance of flexible dielectric composites, employing machine learning algorithms and high entropy design concepts. Finally, a summary and future outlook on the potential development pathways in this field are concluded.

Keywords

Composite dielectrics / energy storage / flexible electronics / elevated temperature applications

Cite this article

Download citation ▾
Liang Zhao, Fan Zhang, Hailong Hu. Recent advances in elevated-temperature flexible composite dielectrics for energy storage applications. Microstructures, 2025, 5(4): 2025085 DOI:10.20517/microstructures.2025.14

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen J,Huang X.Ladderphane copolymers for high-temperature capacitive energy storage.Nature2023;615:62-6

[2]

Kim J,Acharya M.Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films.Science2020;369:81-4

[3]

Yang B,Huang H.Engineering relaxors by entropy for high energy storage performance.Nat Energy2023;8:956-64

[4]

Johnson R,Jacobsen P,Christopher M.The changing automotive environment: high-temperature electronics.IEEE Trans Electron Packag Manufact2004;27:164-76

[5]

Weimer J A.In AIAA/IEEE Digital Avionics Systems Conference, Proceedings of AIAA/IEEE Digital Avionics Systems Conference, Fort Worth, TX, USA, October 25-28; IEEE Publishers: Piscataway, New Jersey, USA, 1993; pp 445-450.

[6]

Wu C,Li Z. Flexible temperature-invariant polymer dielectrics with large bandgap. Adv Mater 2020;32:e2000499.[DOI:10.1002/adma.202000499] Caution!

[7]

Global Power Capacitor Markets in 2020: Expect Slow and Steady Market Growth. Available from: https://www.tti.com/content/ttiinc/en/resources/marketeye/categories/passives/me-zogbi-20200309.html [accessed on 29 May 2025].

[8]

Li Q,Gadinski MR.Flexible high-temperature dielectric materials from polymer nanocomposites.Nature2015;523:576-9

[9]

Li H,Liu Y,Liu Y.Dielectric polymers for high-temperature capacitive energy storage.Chem Soc Rev2021;50:6369-400

[10]

Li S,Niu Y.Enhanced high-temperature energy storage properties of polymer composites by interlayered metal nanodots.J Mater Chem A2022;10:18773-81

[11]

Yuan C,Zhu Y.Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage.Nat Commun2020;11:3919 PMCID:PMC7411043

[12]

Wei R,Yang Y,Liu X.Polyarylene ether nitrile and titanium dioxide hybrids as thermal resistant dielectrics.Chin J Polym Sci2021;39:211-8

[13]

You Y,Tu L.Controllable fabrication of poly(arylene ether nitrile) dielectrics for thermal-resistant film capacitors.Macromolecules2019;52:5850-9

[14]

Zhang T,Thakur Y.A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature.Sci Adv2020;6:eaax6622 PMCID:PMC6981089

[15]

Huan TD,Teyssedre G.Advanced polymeric dielectrics for high energy density applications.Prog Mater Sci2016;83:236-69

[16]

Kim MP,Shin YE.High-performance triboelectric devices via dielectric polarization: a review.Nanoscale Res Lett2021;16:35 PMCID:PMC7881083

[17]

Nan C,Ma J.Physical properties of composites near percolation.Annu Rev Mater Res2010;40:131-51

[18]

Fan B,Zhang C,Bai J.Polymer-based materials for achieving high energy density film capacitors.Prog Polym Sci2019;97:101143

[19]

Dong J,Niu Y,Wang H.Research progress of polymer based dielectrics for high-temperature capacitor energy storage.Acta Phys Sin2020;69:217701

[20]

Qiu J,Sha Y,Zhang M.Preparation and application of dielectric polymers with high permittivity and low energy loss: a mini review.J Appl Polym Sci2022;139:52367

[21]

O’Hara A,Pantelides ST.Unique features of polarization in ferroelectric ionic conductors.Adv Elect Mater2022;8:2100810

[22]

Dakin T.Conduction and polarization mechanisms and trends in dielectric.IEEE Electr Insul Mag2006;22:11-28

[23]

Huang S,Zhang W.All-organic polymer dielectric materials for advanced dielectric capacitors: theory, property, modified design and future prospects.Polym Rev2023;63:515-73

[24]

Thakur VK, Gupta RK. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects.Chem Rev2016;116:4260-317

[25]

Baldwin AF,Huan TD,Ramprasad R.Effect of incorporating aromatic and chiral groups on the dielectric properties of poly(dimethyltin esters).Macromol Rapid Commun2014;35:2082-8

[26]

Chen Y,Yue YC.Correlation between energy storage density and differential dielectric constant in ferroelectrics.J Elec Materi2020;49:659-67

[27]

Wei J.Intrinsic polymer dielectrics for high energy density and low loss electric energy storage.Prog Polym Sci2020;106:101254

[28]

Chen J,Chai B.Engineering the dielectric constants of polymers: from molecular to mesoscopic scales.Adv Mater2024;36:e2308670

[29]

Kao K C,1st ed. San Diego: Academic Press 2004, p573.

[30]

Mannodi-kanakkithodi A,Ramprasad R.Mining materials design rules from data: the example of polymer dielectrics.Chem Mater2017;29:9001-10

[31]

Rui G,Thomas JJ,Zhu L.Temperature-dependent rotational dipole mobility and devitrification of the rigid amorphous fraction in unpoled and poled biaxially oriented poly(vinylidene fluoride).Macromolecules2022;55:9705-14

[32]

Zhu Y,Litt MH.High dielectric constant sulfonyl-containing dipolar glass polymers with enhanced orientational polarization.Macromolecules2018;51:6257-66

[33]

Zapsas G,Gnanou Y,Hadjichristidis N.Poly(vinylidene fluoride)-based complex macromolecular architectures: from synthesis to properties and applications.Prog Polym Sci2020;104:101231

[34]

Rui G,Chen X.Giant spontaneous polarization for enhanced ferroelectric properties of biaxially oriented poly(vinylidene fluoride) by mobile oriented amorphous fractions.J Mater Chem C2021;9:894-907

[35]

Zhang G,Tang S,Zhu L.The role of field electron emission in polypropylene/aluminum nanodielectrics under high electric fields.ACS Appl Mater Interfaces2017;9:10106-19

[36]

Hardy CG,Gonzalez-delozier D.Converting an electrical insulator into a dielectric capacitor: end-capping polystyrene with oligoaniline.Chem Mater2013;25:799-807

[37]

Yang M,Xu E.Polymer nanocomposite dielectrics for capacitive energy storage.Nat Nanotechnol2024;19:588-603

[38]

Collins J,Foster M.Carbon surface functionalities and SEI formation during Li intercalation.Carbon2015;92:193-244

[39]

Jian G,Feng L.High energy density of BaTiO3@TiO2 nanosheet/polymer composites via ping-pong-like electron area scattering and interface engineering.NPG Asia Mater2022;14:356

[40]

Luo D,Feng W,He B.Achieving high energy density and efficiency concurrently in BNNS/P(VDF-HFP) composites via synchronous heating and stirring treatment.J Energy Storage2024;82:110553

[41]

Zhu T,Zhang N,Bai J.Tuning the MOF-derived Fe fillers and crystal structure of PVDF composites for enhancement of their energy storage density.Chem Eng J2024;482:149204

[42]

Mukherjee A,Roy S.Ultra strong flexible Ba0.7Sr0.3Zr0.02Ti0.98O3/MWCNT/PVDF Nanocomposites: Pioneering material with remarkable energy storage for self-powered devices.Chem Eng J2024;488:151014

[43]

Liu Y,Wang Z.Enhanced dielectric performances of strontium barium titanate nanorod composites via improved interfacial compatibility.J Colloid Interface Sci2025;680:85-95

[44]

Chen J,Wang Z,Yuan Q.Laminated ferroelectric polymer composites exhibit synchronous ultrahigh discharge efficiency and energy density via utilizing multiple-interface barriers.J Mater Chem A2022;10:20402-13

[45]

Guo R,Zhai D.Bilayer structured PVDF-based composites via integrating BaTiO3 nanowire arrays and BN nanosheets for high energy density capacitors.Chem Eng J2022;437:135497

[46]

Sun L,Liang L.Concurrently achieving high discharged energy density and efficiency in composites by introducing ultralow loadings of core-shell structured graphene@TiO2 nanoboxes.ACS Appl Mater Interfaces2022;14:29292-301

[47]

Zheng Y,Liu C.High energy storage properties for dielectric composite by asymmetric three-layer films design.J Energy Storage2024;93:112387

[48]

Li W,Yang L.Novel plum pudding structured BaTiO3@ZIF-67 filler design for high-performance dielectric polymer composites.J Energy Storage2024;91:112010

[49]

Gao L,Song L,Yu C.Low-content core-shell-structured TiO2 nanobelts@SiO2 doped with poly(vinylidene fluoride) composites to achieve high-energy storage density.J Mater Sci: Mater Electron2022;33:18345-55

[50]

Chen J,Zhang C,Cao L.Enhanced energy storage density in poly(vinylidene fluoride-hexafluoropropylene) nanocomposites by filling with core-shell structured BaTiO3@MgO nanoparticals.J Energy Storage2022;53:105163

[51]

Zhao D,Zhu X.Multilayer dielectric nanocomposites with cross-linked dielectric transition interlayers for high-temperature applications.ACS Appl Mater Interfaces2022;14:42531-40

[52]

Yu X,Zhang W.Interface engineering of polymer composite films for high-temperature capacitive energy storage.Chem Eng J2024;496:154056

[53]

Xie H,Pei Z,Zhang D.Improved discharge energy density and efficiency of polypropylene-based dielectric nanocomposites utilizing BaTiO3@TiO2 nanoparticles.Mater Today Energy2022;30:101160

[54]

Zhang F,Lin N.Synergistic promotion of inter-particle and intra-particle polarizations in BST@TiO2/PVDF nanocomposites towards elevated dielectric properties.Compos Sci Technol2024;251:110547

[55]

Ding C,Yu S.Concurrently enhanced dielectric properties and energy density in poly(vinylidene fluoride)-based core-shell BaTiO3 nanocomposites via constructing a polar and rigid polymer interfacial layer.J Mater Chem C2022;10:6323-33

[56]

Wang P,Sun Z,Bi J.Carrier gradient core-double shell structure with heterojunction transition layer for significantly enhancing dielectric properties.Chem Eng J2024;496:153968

[57]

Jing L,Gao C,Fei W.Achieving high energy storage performance in BiFeO3@TiO2 filled PVDF-based composites with opposite double heterojunction via electric field tailoring.Chem Eng J2022;450:138143

[58]

Xu H,Gou B,Zhou J.Core-double-shell structured BT@TiO2@PDA and oriented BNNSs doped epoxy nanocomposites with field-dependent nonlinear electrical properties and enhancing breakdown strength.Compos Sci Technol2022;230:109777

[59]

Li X,Rao Y,Yang Y.Enhanced energy storage in PVDF-based nanocomposite capacitors through (00l)-oriented BaTiO3 single-crystal platelets.ACS Appl Mater Interfaces2024;16:27785-93

[60]

Wang T,Sun H,Zhang M.Enhancing energy storage performance of PVDF-based composites through semiconducting AZO-BT heterostructure.J Energy Storage2024;82:110541

[61]

Wang F,Zhai D.Dielectric nanocomposites with high energy density by doping core-double shell structured fillers.Compos Part A: Appl Sci Manuf2022;159:107019

[62]

Zhang Z,Wang L,Hua X.Enhancing energy storage density of poly(arylene ether nitrile) via incorporating modified barium titanate nanorods and hot-stretching.Nano Res2024;17:7574-84

[63]

Sun X,Liu K.Gradient core-shell structure enabling high energy storage performances in PVDF-based copolymers.J Mater Chem A2024;12:8216-25

[64]

Chen C,Gong Z.Stable dielectric properties at high-temperature of Al2O3-PESU composite for energy storage application.Compos Part A: Appl Sci Manuf2024;181:108109

[65]

Meng G,Wang C,Pan C.Sandwich-structured h-BN/PVDF/h-BN film with high dielectric strength and energy storage density.Front Chem2022;10:910305 PMCID:PMC9291729

[66]

Shang Y,Meng Z,Zhang T.Achieving synergistic improvement in dielectric and energy storage properties at high-temperature of all-organic composites via physical electrostatic effect.Mater Horiz2024;11:1528-38

[67]

Yang T,Liu L.Silicone elastomer dielectric composites by introducing novel O-MMT@TiO2 nanoparticles for energy harvesting application.Composites Part A: Appl Sci Manuf2024;185:108351

[68]

Ma J,Miao L,Zhang S.Combining covalent bonding interface among different components and controlled orientation of one-dimensional nanofibers for high energy density nanocomposites.Compos Part B: Eng2022;243:110134

[69]

Zuo B,Davis MJB,Priestley RD.Effect of local chain conformation in adsorbed nanolayers on confined polymer molecular mobility.Phys Rev Lett2019;122:217801

[70]

Papon A,Hanafi M,Guy L.Glass-transition temperature gradient in nanocomposites: evidence from nuclear magnetic resonance and differential scanning calorimetry.Phys Rev Lett2012;108:065702

[71]

Ediger MD.Dynamics near free surfaces and the glass transition in thin polymer films: a view to the future.Macromolecules2014;47:471-8

[72]

Rittigstein P,Broadbelt LJ.Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites.Nat Mater2007;6:278-82

[73]

Wan B,Yang X.Rising of dynamic polyimide materials: a versatile dielectric for electrical and electronic applications.Adv Mater2023;35:e2301185

[74]

Ho JS.Polymer capacitor dielectrics for high temperature applications.ACS Appl Mater Interfaces2018;10:29189-218

[75]

Qiao Y,Zhu T,Tang C.Dielectric polymers with novel chemistry, compositions and architectures.Prog Polym Sci2018;80:153-62

[76]

Deshmukh AA,Yassin O.Flexible polyolefin dielectric by strategic design of organic modules for harsh condition electrification.Energy Environ Sci2022;15:1307-14

[77]

Wang R,Fu J.Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage.Nat Commun2023;14:2406 PMCID:PMC10133333

[78]

Zhu T,Zhang N.Ultrahigh energy storage density in poly(vinylidene fluoride)-based composite dielectrics via constructing the electric potential well.Adv Energy Mater2023;13:2203587

[79]

Yu S,Ding C.All-organic sandwich structured polymer dielectrics with polyimide and PVDF for high temperature capacitor application.J Energy Storage2023;62:106868

[80]

Bao Z,Ding S.Improved working temperature and capacitive energy density of biaxially oriented polypropylene films with alumina coating layers.ACS Appl Energy Mater2022;5:3119-28

[81]

Ping JB,Zhang YX.A bilayer high-temperature dielectric film with superior breakdown strength and energy storage density.Nanomicro Lett2023;15:154 PMCID:PMC10250289

[82]

Zha J,Wan B,Dang Z.Polymer dielectrics for high-temperature energy storage: Constructing carrier traps.Prog Mater Sci2023;140:101208

[83]

Li X,Wang J.High-temperature capacitive energy storage in polymer nanocomposites through nanoconfinement.Nat Commun2024;15:6655 PMCID:PMC11303793

[84]

Guo M,Shen Z,Nan C.High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency.Mater Today2019;29:49-67

[85]

Li X,Jiang Y.Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites.Nat Commun2023;14:5707 PMCID:PMC10504251

[86]

Zhou Y.Advanced polymer dielectrics for high temperature capacitive energy storage.J Appl Phys2020;127:240902

[87]

Vanherck K,Vankelecom IF.Crosslinking polyimides for membrane applications: a review.Prog Polym Sci2013;38:874-96

[88]

Zhou Y,Dang B.A Scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures.Adv Mater2018;30:e1805672

[89]

Venkat N,Bai Z.High temperature polymer film dielectrics for aerospace power conditioning capacitor applications.Mater Sci Eng: B2010;168:16-21

[90]

Feng Y,Zhang T.Ultrahigh discharge efficiency and excellent energy density in oriented core-shell nanofiber-polyetherimide composites.Energy Storage Mater2020;25:180-92

[91]

Zou K,Yu Y.Flexible dielectric nanocomposites with simultaneously large discharge energy density and high energy efficiency utilizing (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric nanoparticles as fillers.J Mater Chem A2019;7:13473-82

[92]

Wang S,Wang G,He J.Increasing the energy efficiency and breakdown strength of high-energy-density polymer nanocomposites by engineering the Ba0.7Sr0.3TiO3 nanowire surface via reversible addition-fragmentation chain transfer polymerization.J Phys Chem C2015;119:25307-18

[93]

Huang X.Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications.Adv Mater2015;27:546-54

[94]

Yu K,Zhou Y,Niu Y.Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications.J Appl Phys2013;113:034105

[95]

Hu P,Fan M.Large energy density at high-temperature and excellent thermal stability in polyimide nanocomposite contained with small loading of BaTiO3 nanofibers.Appl Surf Sci2018;458:743-50

[96]

Sun W,Jiang J.Dielectric and energy storage performances of polyimide/BaTiO3 nanocomposites at elevated temperatures.J Appl Phys2017;121:244101

[97]

Shen Z,Jiang J.Phase-field model of electrothermal breakdown in flexible high-temperature nanocomposites under extreme conditions.Adv Energy Mater2018;8:1800509

[98]

Wang P,Zhou D.High-temperature flexible nanocomposites with ultra-high energy storage density by nanostructured MgO fillers.Adv Funct Mater2022;32:2204155

[99]

Zhu Y,Huang X.High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets.Adv Energy Mater2019;9:1903062

[100]

Li H,Ren L.Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers.Adv Mater2019;31:e1900875

[101]

Ai D,Zhou Y.Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage.Adv Energy Mater2020;10:1903881

[102]

Liu F,Li Z.Poly(methyl methacrylate)/boron nitride nanocomposites with enhanced energy density as high temperature dielectrics.Composites Science and Technology2017;142:139-44

[103]

Li X,Zhai D.Enhanced capacitive energy storage of polyetherimide at high temperatures by integration of electrical insulation and thermal conductivity.Adv Powder Mater2025;4:100286

[104]

Thakur Y,Iacob C.Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers.Nanoscale2017;9:10992-7

[105]

Yang M,Wang J.Roll-to-roll fabricated polymer composites filled with subnanosheets exhibiting high energy density and cyclic stability at 200 °C.Nat Energy2024;9:143-53

[106]

Chadband WG.Electrical degradation and breakdown in polymers.IEE Rev1992;38:404

[107]

Thakur Y,Zhang QM.Reducing conduction losses in high energy density polymer using nanocomposites.Appl Phys Lett2017;110:122905

[108]

Liu J,Xu W.Interface-strengthened polymer nanocomposites with reduced dielectric relaxation exhibit high energy density at elevated temperatures utilizing a facile dual crosslinked network.Small2020;16:e2000714

[109]

Xu W,Chen T.Bioinspired polymer nanocomposites exhibit giant energy density and high efficiency at high temperature.Small2019;15:e1901582

[110]

Wang Z,Yang M.Surface strengthening of polymer composite dielectrics for superior high-temperature capacitive energy storage.Adv Energy Mater2025;15:2405411

[111]

Bonardd S,Kortaberria G,Leiva A.Dipolar glass polymers containing polarizable groups as dielectric materials for energy storage applications. A minireview.Polymers (Basel)2019;11:317 PMCID:PMC6419174

[112]

Zhuang Y,Lee YM.Polyimides containing aliphatic/alicyclic segments in the main chains.Prog Polym Sci2019;92:35-88

[113]

Ding S,Wang Y.Excellent high-temperature dielectric energy storage of flexible all-organic polyetherimide/poly(arylene ether urea) polymer blend films.J Power Sources2023;570:233053

[114]

Zhang Q,Zhang B.High-temperature polymers with record-high breakdown strength enabled by rationally designed chain-packing behavior in blends.Matter2021;4:2448-59

[115]

Feng Q,Zhang Y.Significantly improved high-temperature charge-discharge efficiency of all-organic polyimide composites by suppressing space charges.Nano Energy2022;99:107410

[116]

Zhang T,Zhang S.Nanoscale phase separation achieved through trace PVDF/PEI blending enhances mechanical and energy storage performance at high temperatures.J Power Sources2024;620:235255

[117]

Xing K,Wang XJ.Enhanced energy storage performance of nano-submicron structural dielectric films by suppressed ferroelectric phase aggregation.Nat Commun2025;16:2006 PMCID:PMC11865547

[118]

Yang M,Shi W.Sub-nanowires boost superior capacitive energy storage performance of polymer composites at high temperatures.Adv Funct Mater2023;33:2214100

[119]

Yang M,Jin Z,Shen Y.Enhanced high-temperature energy storage performances in polymer dielectrics by synergistically optimizing band-gap and polarization of dipolar glass.Nat Commun2024;15:8647 PMCID:PMC11455895

[120]

Sun S,Sun L.Achieving concurrent high energy density and efficiency in all-polymer layered paraelectric/ferroelectric composites via introducing a moderate layer.ACS Appl Mater Interfaces2021;13:27522-32

[121]

Wang J,Zhang Y.The ultrahigh discharge efficiency and energy density of P(VDF-HFP) via electrospinning-hot press with St-MMA copolymer.Mater Chem Front2021;5:3646-56

[122]

Liu XJ,Zheng MS,Chen G.Enhanced high-temperature capacitive performance of a bilayer-structured composite film employing a charge blocking layer.ACS Appl Mater Interfaces2023;15:1105-14

[123]

Guo Y,Li D.Ultra-high capacitive energy storage density at 150 °C achieved in polyetherimide composite films by filler and structure design.Adv Mater2025;37:e2415652

[124]

Zhang D,Li Y.Synergistically enhanced dielectric, insulating and thermally conductive performances of sandwich PMMA based dielectric films.Prog Nat Sci: Mater Int2024;34:591-7

[125]

Zhou C,Zhang Y.Hydrogen bonding of aramid boosts high-temperature capacitive properties of polyetherimide blends.ACS Appl Mater Interfaces2023;15:8471-9

[126]

Niu Y,He Y.Significantly enhancing the discharge efficiency of sandwich-structured polymer dielectrics at elevated temperature by building carrier blocking interface.Nano Energy2022;97:107215

[127]

Sun L,Li L.Superior capacitive energy storage enabled by molecularly interpenetrating interfaces in layered polymers.Adv Mater2025;37:e2412561

[128]

Chen CP,Zou H.Evaluation of cost-effectiveness of peginterferon plus ribavirin for chronic hepatitis C treatment and direct-acting antiviral agents among HIV-infected patients in the prison and community settings.J Microbiol Immunol Infect2019;52:556-62

[129]

Shen Z,Shen Y,Chen L.Machine learning in energy storage materials.InterdiscMat2022;1:175-95

[130]

Bera S,Thantirige R.2D-nanofiller-based polymer nanocomposites for capacitive energy storage applications.Small Sci2023;3:2300016 PMCID:PMC11936023

[131]

Zhang T,Luo T.Polymer nanofibers with outstanding thermal conductivity and thermal stability: fundamental linkage between molecular characteristics and macroscopic thermal properties.J Phys Chem C2014;118:21148-59

[132]

Shen ZH,Lin Y,Chen LQ.High-throughput phase-field design of high-energy-density polymer nanocomposites.Adv Mater2018;30:1704380

[133]

Wang C,Boggs S,Breneman C.Computational strategies for polymer dielectrics design.Polymer2014;55:979-88

[134]

Roy SL,Laurent C,Palmieri F.Description of charge transport in polyethylene using a fluid model with a constant mobility: fitting model and experiments.J Phys D: Appl Phys2006;39:1427-36

[135]

Chen J,Zhu M,Yu Q.Space charge dynamics in double-layered insulation cable under polarity reversal voltage.IEEE Trans Dielect Electr Insul2020;27:622-30

[136]

Rong Q,Huang X.Predicting the effective thermal conductivity of composites from cross sections images using deep learning methods.Compos Sci Technol2019;184:107861

[137]

Li S,Lei Q.Understanding insulation failure of nanodielectrics: tailoring carrier energy.High Voltage2020;5:643-9

[138]

Huang Y,Wang Y.Predicting the breakdown strength and lifetime of nanocomposites using a multi-scale modeling approach.J Appl Phys2017;122:065101

[139]

Liu D,Zhu Y.High-throughput phase field simulation and machine learning for predicting the breakdown performance of all-organic composites.J Phys D: Appl Phys2024;57:415502

[140]

Liu D,Zhu Y.Physics-informed neural networks for phase-field simulation in designing high energy storage performance polymer nanocomposites.Appl Phys Lett2025;126:052901

[141]

Jayakrishnan A,Kamakshi K.Are lead-free relaxor ferroelectric materials the most promising candidates for energy storage capacitors?.Prog Mater Sci2023;132:101046

[142]

Shetty S,Wang K.Relaxor behavior in ordered lead magnesium niobate (PbMg1/3Nb2/3O3) thin films.Adv Funct Materials2019;29:1804258

[143]

Chen J,Zuo R.Realizing stable relaxor antiferroelectric and superior energy storage properties in (Na1-x/2Lax/2)(Nb1-xTix)O3 lead-free ceramics through A/B-site complex substitution.ACS Appl Mater Interfaces2020;12:32871-9

[144]

Sarkar A,Schiele A.High-entropy oxides: fundamental aspects and electrochemical properties.Adv Mater2019;31:e1806236

[145]

Yang B,Pan H.High-entropy enhanced capacitive energy storage.Nat Mater2022;21:1074-80

[146]

Chen L,Liu H,Qi H.Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design.Nat Commun2022;13:3089 PMCID:PMC9163056

[147]

Kim C,Ramprasad R.Machine learning assisted predictions of intrinsic dielectric breakdown strength of ABX3 perovskites.J Phys Chem C2016;120:14575-80

[148]

Mu S,Wimmer S.Uncovering electron scattering mechanisms in NiFeCoCrMn derived concentrated solid solution and high entropy alloys.npj Comput Mater2019;5:138

[149]

Liu P,Chen Z,Zheng L.Suppressing the phase transition of ZrP2O7 by defect and entropy regulation for high-temperature wave-transparent material application.J Adv Ceram2024;13:1164-77

[150]

Zhu B,Long F.Boosting energy-storage in high-entropy pb-free relaxors engineered by local lattice distortion.J Am Chem Soc2024;146:29694-702

[151]

Fan Y,Qiu H.High entropy modulated quantum paraelectric perovskite for capacitive energy storage.Nat Commun2025;16:3818 PMCID:PMC12019572

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/