Charge/orbital disordered states with smaller volume and higher entropy in transition-metal oxides

Takashi Mizokawa

Microstructures ›› 2025, Vol. 5 ›› Issue (2) : 2025026

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (2) :2025026 DOI: 10.20517/microstructures.2024.99
Research Article

Charge/orbital disordered states with smaller volume and higher entropy in transition-metal oxides

Author information +
History +
PDF

Abstract

Some transition-metal oxides such as Ca2RuO4, BiNiO3, and V2OPO4 harbor smaller volume and higher entropy states by role sharing of the spin, charge, and orbital degrees of freedom. Effect of lattice distortions on the various charge/orbital patterns can be analyzed by d-p models with full degeneracy of the transition-metal d and oxygen 2p orbitals. Based on the mean-field analyses on the d-p models for Ca2RuO4, BiNiO3 and V2OPO4, possible mechanisms of negative thermal expansion with charge and orbital degrees of freedom are discussed. In Ca2RuO4 and BiNiO3, orbital and/or charge states are rearranged across their insulator-metal transitions, and the metallic phases with orbital and/or charge fluctuations can be stabilized at high temperatures relative to the insulating phases without them. In V2OPO4, the charge/orbital disordered state can keep relatively smaller volume due to orbital-dependent hybridization in the face-sharing VO6 octahedron chain.

Keywords

Transition-metal oxides / charge order / orbital order / spin-orbit interaction / charge disproportionation / oxygen hole

Cite this article

Download citation ▾
Takashi Mizokawa. Charge/orbital disordered states with smaller volume and higher entropy in transition-metal oxides. Microstructures, 2025, 5(2): 2025026 DOI:10.20517/microstructures.2024.99

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Imada M,Tokura Y.Metal-insulator transitions.Rev Mod Phys1998;70:1039-263

[2]

Khomskii DI.Transition metal compounds. Cambridge University Press; 2014.

[3]

Mizokawa T,Sawatzky GA.Spin-orbit coupling in the Mott insulator Ca2RuO4.Phys Rev Lett2001;87:077202

[4]

Takenaka K,Mizuno Y.Extended operating temperature window of giant negative thermal expansion in Sn-doped Ca2RuO4.Appl Phys Lett2018;113:071902

[5]

Alonso JA,Fernández-Díaz MT,Martínez-Lope MJ.Charge disproportionation in RNiO3 perovskites: simultaneous metal-insulator and structural transition in YNiO3.Phys Rev Lett1999;82:3871-4

[6]

Azuma M,Seki H.Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer.Nat Commun2011;2:347 PMCID:PMC3156814

[7]

Pachoud E,Lithgow CT.Charge order and negative thermal expansion in V2OPO4.J Am Chem Soc2018;140:636-41

[8]

Murota K,Attfield JP.Charge correlation in V2OPO4 probed by hard x-ray photoemission spectroscopy.Phys Rev B2020;101:235159

[9]

Murota K,Attfield JP.Vanadium 3d charge and orbital states in V2OPO4 probed by x-ray absorption spectroscopy.Phys Rev B2020;101:245106

[10]

Mizokawa T.Unrestricted hartree-fock study of transition-metal oxides: spin and orbital ordering in perovskite-type lattice.Phys Rev B Condens Matter1995;51:12880-3

[11]

Mizokawa T.Electronic structure and orbital ordering in perovskite-type 3d transition-metal oxides studied by Hartree-Fock band-structure calculations.Phys Rev B Condens Matter1996;54:5368-80

[12]

Kurokawa M.Orbital state and metal-insulator transition in Ca2-xSrxRuO4 studied by model Hartree-Fock calculations.Phys Rev B2002;66:024434

[13]

Naka M,Motome Y.Theory of valence transition in BiNiO3.Phys Rev Lett2016;116:056402

[14]

Mizokawa T,Sawatzky GA.Spin and charge ordering in self-doped Mott insulators.Phys Rev B2000;61:11263-6

[15]

Yoshino T,Kajita T.Unusual valence state and metal-insulator transition in BaV10O15 probed by hard x-ray photoemission spectroscopy.Phys Rev B2017;95:075151

[16]

Mizokawa T,Lin H.Orbital state and metal-insulator transition in Ca2-xSrxRuO4 (x=0.0 and 0.09) studied by x-ray absorption spectroscopy.Phys Rev B2004;69:132410

[17]

Nakamura F,Ito M.From mott insulator to ferromagnetic metal: a pressure study of Ca2RuO4.Phys Rev B2002;65:220402

[18]

Steffens P,Alireza P.High-pressure diffraction studies on Ca2RuO4.Phys Rev B2005;72:094104

[19]

Keen HDJ,Hermann A.Ab initio study of pressure-induced structural and electronic phase transitions in Ca2RuO4.Phys Rev B2021;104:085143

[20]

Torrance JB,Nazzal AI,Niedermayer C.Systematic study of insulator-metal transitions in perovskites RNiO3 (R=Pr,Nd,Sm,Eu) due to closing of charge-transfer gap.Phys Rev B Condens Matter1992;45:8209-12

[21]

Zhou JS,Dabrowski B.Pressure-induced non-Fermi-liquid behavior of PrNiO3.Phys Rev Lett2005;94:226602

[22]

Cheng J,Goodenough JB,Martinez-lope MJ.Pressure dependence of metal-insulator transition in perovskites RNiO3 (R=Eu , Y, Lu).Phys Rev B2010;82:085107

[23]

Mizokawa T,Arima T,Mori N.Electronic structure of PrNiO3 studied by photoemission and x-ray-absorption spectroscopy: band gap and orbital ordering.Phys Rev B Condens Matter1995;52:13865-73

[24]

Johnston S,Elfimov I,Sawatzky GA.Charge disproportionation without charge transfer in the rare-earth-element nickelates as a possible mechanism for the metal-insulator transition.Phys Rev Lett2014;112:106404

[25]

Green RJ,Sawatzky GA.Bond disproportionation and dynamical charge fluctuations in the perovskite rare-earth nickelates.Phys Rev B2016;94

[26]

Wang L,Bowden ME.Hole-trapping-induced stabilization of Ni4 + in SrNiO3/LaFeO3 superlattices.Adv Mater2020;32:e2005003

[27]

Paul A,Dasgupta I,Saha-Dasgupta T.Hybridization-switching induced mott transition in ABO3 perovskites.Phys Rev Lett2019;122:016404

[28]

Nishikubo T,Oka K.Optimized negative thermal expansion induced by gradual intermetallic charge transfer in Bi1-xSbxNiO3.Appl Phys Express2018;11:061102

[29]

Pachoud E,Wright J,Glaum R.Electronic origin of negative thermal expansion in V2OPO4.Chem Commun2020;56:6523-6

[30]

Chang C,Hu Z.c-axis dimer and its electronic breakup: the insulator-to-metal transition in Ti2O3.Phys Rev X2018;8:021004

[31]

Miyoshino T,Meléndez-Sans A.Intra c-axis dimer hybridization and mixed valency in Mg-doped Ti2O3.Phys Rev B2023;107:115145

[32]

Kim M,Kim CH.Signature of Kondo hybridisation with an orbital-selective Mott phase in 4d Ca2-xSrxRuO4.NPJ Quantum Mater2022;7:471

AI Summary AI Mindmap
PDF

42

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/