Recent advances and challenges of fluid manipulation on microstructured surfaces

Yan Li , Chunyu Zhang , Long Li , Fan Song , Qiuya Zhang , Dongliang Tian

Microstructures ›› 2025, Vol. 5 ›› Issue (2) : 2025038

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (2) :2025038 DOI: 10.20517/microstructures.2024.98
Review

Recent advances and challenges of fluid manipulation on microstructured surfaces

Author information +
History +
PDF

Abstract

Microstructured surfaces play a pivotal role in fluid manipulation, leveraging their unique chemical and physical properties to exert precise control over fluid behavior. These structures significantly influence fluid wettability, adhesion, mobility, and dynamic behavior, offering broad prospects in microfluidics, biomedicine, energy, materials science, and other fields. Despite existing challenges related to stability, wear resistance and manufacturing processes, the field of microstructured fluid control holds substantial promise for future advancements. This review surveys the latest advancements in microstructured surface fluid control technology, spanning from the design and fabrication of microstructured surfaces to their applications and deployment across various domains. We initially explore the design principles and fabrication methods of microstructured surfaces, and delve into the strategies employed for fluid manipulation by modulating surface chemistry and morphography. Additionally, the applications of microstructured surfaces in microfluidic control, biomedical engineering, energy harvesting, and environmental monitoring are further emphasized and discussed, showcasing the significant contributions to technological innovation. Finally, the current technical challenges and potential applications of liquid manipulation on microstructured surfaces are featured, and their prospects are discussed based on the current development.

Keywords

Micro/nanostructure surface / intelligent surface / wettability / fluid manipulate

Cite this article

Download citation ▾
Yan Li, Chunyu Zhang, Long Li, Fan Song, Qiuya Zhang, Dongliang Tian. Recent advances and challenges of fluid manipulation on microstructured surfaces. Microstructures, 2025, 5(2): 2025038 DOI:10.20517/microstructures.2024.98

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bába P,Horváth D.Surface-tension-driven dynamic contact line in microgravity.Langmuir2019;35:406-12

[2]

Nagura R,Sato N.Water movement on the convex surfaces of porous media under microgravity.Advances in Space Research2019;63:589-97

[3]

Kwon SR,Fu K.Electrowetting-mediated transport to produce electrochemical transistor action in nanopore electrode arrays.Small2020;16:e1907249

[4]

Kim G,Chun H.Droplet energy harvesting is reverse phenomenon of electrowetting on dielectric.Adv Funct Mater2021;31:2105233

[5]

Zhang X,Du G.Hong J.Elastic properties and Ion-mediated domain switching of self-assembled heterostructures CuInP2S6-In4/3P2S6.Microstructures2023;3:2023010

[6]

Deng S,He L.Magnetic structures and correlated physical properties in antiperovskites.Microstructures2023;3:2023044

[7]

Wei X,Liu Y.Biomimetic design strategies for biomedical applications.Matter2024;7:826-54

[8]

Xu B,Shi Z.Electrochemical on-site switching of the directional liquid transport on a conical fiber.Adv Mater2022;34:e2200759.

[9]

Zhang C,Zhang Y.Bioinspired anisotropic slippery cilia for stiffness-controllable bubble transport.ACS Nano2022;16(6):9348-58

[10]

Yang X,Lu Y,Wang X.Bionic surface diode for droplet steering.Droplet2023;2:e46

[11]

Yue C,Yang X,Huang W.Controllable self-transport of bouncing droplets on ultraslippery surfaces with wedge-shaped grooves.Droplet2024;3:e118

[12]

Li C,Zhou S,Jiang L.Liquid harvesting and transport on multiscaled curvatures.Proc Natl Acad Sci U S A2020;117:23436-42 PMCID:PMC7519342

[13]

Dong LZ,Wang YL.Artificial neuromuscular fibers by multilayered coaxial integration with dynamic adaption.Sci. Adv.2022;8:eabq7703 PMCID:PMC9668289

[14]

Yang L,Lian J.Selective directional liquid transport on shoot surfaces of Crassula muscosa.Science2024;384:1344-9.

[15]

Feng L,Li Y.Super-hydrophobic surfaces: from natural to artificial.Adv Mater2002;14:1857-60

[16]

Zhang P,Chen H,Zhang D.Surfaces inspired by the nepenthes peristome for unidirectional liquid transport.Adv Mater2017;29.

[17]

Yang H,Xu C.Femtosecond laser fabricated elastomeric superhydrophobic surface with stretching-enhanced water repellency.Nanoscale Res Lett2019;14:333 PMCID:PMC6813406

[18]

Zhang Y,Chen C.Reversible tuning between isotropic and anisotropic sliding by one-direction mechanical stretching on microgrooved slippery surfaces.Langmuir2019;35:10625-30

[19]

Lee M,Lim H.Enhanced liquid transport on a highly scalable, cost-effective, and flexible 3d topological liquid capillary diode.Adv Funct Mater2021;31:2011288

[20]

Li J,Tao R,Wang Z.Directional liquid transport from the cold region to the hot region on a topological surface.Langmuir2021;37:5059-65

[21]

Sun J,Yan X.Robust liquid repellency by stepwise wetting resistance.Appl Phys Rev2021;8:031403

[22]

Tian D,Zhang N.Electric field and gradient microstructure for cooperative driving of directional motion of underwater oil droplets.Adv Funct Mater2016;26:7986-92

[23]

Yan Y,Li Y.The highly efficient collection of underwater oil droplets on an anisotropic porous cone surface via an electric field.J Mater Chem A2020;8:8605-11.

[24]

Sheng Z,Tang Y.Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport.Sci Adv2018;4:eaao6724 PMCID:PMC5817924

[25]

Ben S,Ma H.Cilia-inspired flexible arrays for intelligent transport of viscoelastic microspheres.Adv Funct Mater2018;28:1706666

[26]

Li Q,Shi K.Reversible Structure engineering of bioinspired anisotropic surface for droplet recognition and transportation.Adv Sci (Weinh)2020;7:2001650 PMCID:PMC7509748

[27]

Li C,Hao D,Dong Z.Smart liquid transport on dual biomimetic surface via temperature fluctuation control.Adv Funct Mater2018;28:1707490

[28]

Liu X,Wang M.3D printing of bioinspired liquid superrepellent structures.Adv Mater2018;30:e1800103.

[29]

Si Y,Li C.Liquids unidirectional transport on dual-scale arrays.ACS Nano2018;12:9214-22

[30]

Zhou S,Li C,Dong Z.Droplets crawling on peristome-mimetic surfaces.Adv Funct Materials2020;30:1908066

[31]

Dong Z,Cui W,Ras RHA.3D printing of superhydrophobic objects with bulk nanostructure.Adv Mater2021;33:e2106068 PMCID:PMC11468021

[32]

Young T.An essay on the cohesion of fluids.Proc R Soc Lond1832;1:171-2

[33]

Ward CA.Effect of contact line curvature on solid-fluid surface tensions without line tension.Phys Rev Lett2008;100:256103

[34]

Ning Y,Ben S.An innovative design by single-layer superaerophobic mesh: continuous underwater bubble antibuoyancy collection and transportation.Adv Funct Materials2020;30:1907027

[35]

Liu M,Jiang L.Nature-inspired superwettability systems.Nat Rev Mater2017;2:BFnatrevmats201736

[36]

Liu X,Xue Z.Clam’s shell inspired high-energy inorganic coatings with underwater low adhesive superoleophobicity.Adv Mater2012;24:3401-5.

[37]

Wenzel RN.Resistance of solid surfaces to wetting by water.Ind Eng Chem1936;28:988-94

[38]

Orr FM,Rivas AP.Pendular rings between solids: meniscus properties and capillary force.J Fluid Mech1975;67:723-42

[39]

Byun D,Saputra .Wetting characteristics of insect wing surfaces.J Bionic Eng2009;6:63-70

[40]

Tian D,Nie F Q,Song Y.Patterned wettability transition by photoelectric cooperative and anisotropic wetting for liquid reprography.Adv Mater2009;21(37):3744-49

[41]

Tian Y.Wetting: intrinsically robust hydrophobicity.Nat Mater2013;12:291-2

[42]

Liu K.Metallic surfaces with special wettability.Nanoscale2011;3:825-38

[43]

Cassie ABD.Wettability of porous surfaces.Tran. Faraday Soc40:546-51

[44]

Ju J,Yao X,Jiang L.Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection.Adv Mater2013;25:5937-

[45]

Lehnert MS,Andrukh T,Adler PH.Hydrophobic-hydrophilic dichotomy of the butterfly proboscis.J R Soc Interface2013;10:20130336 PMCID:PMC4043169

[46]

Wang F,Nestler B.Wetting effect on patterned substrates.Adv Mater2023;35:e2210745

[47]

Soltani M.Lossless, Passive Transportation of low surface tension liquids induced by patterned omniphobic liquidlike polymer brushes.Adv Funct Mater2022;32:2107465

[48]

Feng R,Xu C,Wang Y.A quadruple-biomimetic surface for spontaneous and efficient fog harvesting.Chem Eng J2021;422:130119

[49]

Xie X,Levkin PA.A reactive superhydrophobic platform for living photolithography.Adv Mater2022;34:e2203619.

[50]

Zhao Z,Ben S.Liquid-assisted single-layer janus membrane for efficient unidirectional liquid penetration.Adv Sci (Weinh)2022;9:e2103765. PMCID:PMC8760174

[51]

Zhou X,Liu W,Butt HJ.Fabrication of stretchable superamphiphobic surfaces with deformation-induced rearrangeable structures.Adv Mater2022;34:e2107901

[52]

Han G,Park S,Lee J.Moth-eye mimicking solid slippery glass surface with icephobicity, transparency, and self-Healing.ACS Nano2020;14:10198-209

[53]

Dai Z,Ding S.Facile formation of hierarchical textures for flexible, translucent, and durable superhydrophobic film.Adv Funct Mater2021;31:2008574

[54]

Shi S,Zheng Q.Temperature-regulated adhesion of impacting drops on nano/microtextured monostable superrepellent surfaces.Soft Matter2020;16:5388-97

[55]

Jiang M,Liu F.Inhibiting the Leidenfrost effect above 1,000 °C for sustained thermal cooling.Nature2022;601:568-72

[56]

Zhang Y,Xu B.Robust underwater air layer retention and restoration on salvinia-inspired self-grown heterogeneous architectures.ACS Nano2022;16:2730-40

[57]

Barthlott W,Wiersch S.The salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water.Adv Mater2010;22:2325-8.

[58]

Wang D,Hokkanen MJ.Design of robust superhydrophobic surfaces.Nature2020;582:55-9

[59]

Dai H,Jiang L.Directional liquid dynamics of interfaces with superwettability.Sci Adv2020;6:e37 PMCID:PMC11206479

[60]

Dai X,Nielsen SO.Hydrophilic directional slippery rough surfaces for water harvesting.Sci Adv2018;4:eaaq0919 PMCID:PMC5903897

[61]

Li C,Zhang X,Chen H.Uni-directional transportation on peristome-mimetic surfaces for completely wetting liquids.Angew Chem Int Ed Engl2016;55:14988-92.

[62]

Zheng Y,Huang Z.Directional water collection on wetted spider silk.Nature2010;463:640-3

[63]

Stamatopoulos C,Ackerl N.Droplet self-propulsion on superhydrophobic microtracks.ACS Nano2020;14:12895-904

[64]

Zhao Z,Dong Z.Adaptive Superamphiphilic organohydrogels with reconfigurable surface topography for programming unidirectional liquid transport.Adv Funct Materials2019;29:1807858

[65]

Li J,Shah A,Tian X.Oil droplet self-transportation on oleophobic surfaces.Sci Adv2016;2:e1600148 PMCID:PMC4928977

[66]

Bai H,Li Z.Improved liquid collection on a dual-asymmetric superhydrophilic origami.Adv Mater2023;35:e2211596.

[67]

Zhang Q,Li Y,Tian D.Ultrastable super-hydrophobic surface with an ordered scaly structure for decompression and guiding liquid manipulation.ACS Nano2022;16:16843-52

[68]

Li Y,Wei X,Tian D.Curvature adjustable liquid transport on anisotropic microstructured elastic film.ACS Nano2023;17:6036-44

[69]

Liu Y,He X.Excellent liquid unidirectional transport inner tilted-sector arrayed tubes.Adv Mater Interface2023;10:2300239

[70]

Feng S,Zheng H.Three-dimensional capillary ratchet-induced liquid directional steering.Science2021;373:1344-8

[71]

Huang S,Liu L,Tian X.Lossless fast drop self-transport on anisotropic omniphobic surfaces: origin and elimination of microscopic liquid residue.Adv Mater2019;31:e1901417.

[72]

Li J,Zhou X,Liu M.Flexible Topological Liquid Diode Catheter.Mater Today Phys2020;12:100170

[73]

Sun Z,Li Y.Switchable smart porous surface for controllable liquid transportation.Mater Horiz2022;9:780-90

[74]

Demirörs AF,Ganzeboom S.Amphibious transport of fluids and solids by soft magnetic carpets.Adv Sci (Weinh)2021;8:e2102510 PMCID:PMC8564456

[75]

Zhang J,He H.Analysis of water droplet motion on hydrophobic surfaces with different microstructures.J Appl Polymer Sci2024;141:e55516

[76]

Long Z,Cao M,Jiang L.Bioinspired gas manipulation for regulating multiphase interactions in electrochemistry.Adv Mater2024;36:e2312179

[77]

Liang X,Ahmadi F.Manipulation of droplets and bubbles for thermal applications.Droplet2022;1:80-91

[78]

Padinjareveetil AKK,Bakandritsos A,Otyepka M.Real time tracking of nanoconfined water-assisted ion transfer in functionalized graphene derivatives supercapacitor electrodes.Adv Sci (Weinh)2024;11:e2307583. PMCID:PMC11497090

[79]

Mazaltarim AJ,Taylor JM.Dynamic manipulation of droplets using mechanically tunable microtextured chemical gradients.Nat Commun2021;12:3114 PMCID:PMC8149645

[80]

Zhang Q,Zhang X,Jiang L.Switchable direction of liquid transport via an anisotropic microarray surface and thermal stimuli.ACS Nano2020;14:1436-44.

[81]

Wang J,Wang C.A review for design, mechanism, fabrication, and application of magnetically responsive microstructured functional surface.Int J Extrem Manuf2025;7:012004

[82]

Wen K,Cheng S.Modulation of wetting state switching of droplets on superhydrophobic microstructured surfaces by external electric field.J Colloid Interface Sci2024;672:533-42

[83]

Chen Y,Cui J.One-step facile fabrication of visible light driven antifouling carbon cloth fibers membrane for efficient oil-water separation.Sep Purif Technol2019;228:115769

[84]

Duan Z,Ren P.Non-UV activated superhydrophilicity of patterned Fe-doped TiO2 film for anti-fogging and photocatalysis.Appl Surf Sci2018;452:165-73

[85]

Yu N,Liu Y.Thermal-responsive anisotropic wetting microstructures for manipulation of fluids in microfluidics.Langmuir2017;33:494-502

[86]

Miao W,Liu Z.Bioinspired Self-Healing Liquid Films for Ultradurable Electronics.ACS Nano2019;13:3225-31

[87]

Wang Z,Wang L.Stretchable superlyophobic surfaces for nearly- lossless droplet transfer.Sens Actuators B Chem2017;244:649-54

[88]

Wu S,Niu L,Wu D.Reversible switching between isotropic and anisotropic wetting by one-direction curvature tuning on flexible superhydrophobic surfaces.Appl Phys Lett2011;98:081902

[89]

Ma C,Xu Z,Zheng Q.Substrate curvature dependence of intrinsic contact angles.Extreme Mech Lett2021;48:101388

[90]

Hu B,Xu B.Ultrafast self-propelled directional liquid transport on the pyramid-structured fibers with concave curved surfaces.J Am Chem Soc2020;142:6111-6

[91]

Lee WK,Rhee D.Monolithic polymer nanoridges with programmable wetting transitions.Adv Mater2018;30:e1706657

[92]

Gao C,Lin Y.Droplets manipulated on photothermal organogel surfaces.Adv Funct Mater2018;28:1803072

[93]

Kim DH,Park SR,Cho YT.Shape-deformed mushroom-like reentrant structures for robust liquid-repellent surfaces.ACS Appl Mater Interfaces2021;13:33618-26

[94]

Palamà IE,Biasiucci M,Cortese B.Bioinspired design of a photoresponsive superhydrophobic/oleophilic surface with underwater superoleophobic efficacy.J Mater Chem A2014;2:17666-75

[95]

Huang Z,Wang X.Light-driven locomotion of underwater bubbles on ultrarobust paraffin-impregnated laser-ablated Fe3O4-doped slippery surfaces.ACS Appl Mater Interfaces2021;13:9272-80.

[96]

Chen C,Shi L.Remote photothermal actuation of underwater bubble toward arbitrary direction on planar slippery Fe3O4 -doped surfaces.Adv Funct Mater2019;29:1904766.

[97]

Li D,Chen R.Controllable light-induced droplet evaporative crystallization.Soft Matter2021;17:8730-41

[98]

Hwang H,Fujii S.Driving droplets on liquid repellent surfaces via light-driven marangoni propulsion.Adv Funct Mater2022;32:2111311

[99]

Wu J,Lin T.Electric-field-induced selective directed transport of diverse droplets.ACS Appl Mater Interfaces2024;16:4126-37

[100]

Zhang Q,Cai H.A single-droplet electricity generator achieves an ultrahigh output over 100 v without pre-charging.Adv Mater2021;33:e2105761.

[101]

Tang B,Zhuang L.Field-induced wettability gradients for no-loss transport of oil droplets on slippery surfaces.ACS Appl Mater Interfaces2020;12:38723-9

[102]

Li Y,Liu L.Switchable wettability and adhesion of micro/nanostructured elastomer surface via electric field for dynamic liquid droplet manipulation.Adv Sci (Weinh)2020;7:2000772 PMCID:PMC7509640

[103]

Chen C,Jiao Y.In Situ Reversible control between sliding and pinning for diverse liquids under ultra-low voltage.ACS Nano2019;13:5742-52

[104]

Dai H,Sun J.Controllable high-speed electrostatic manipulation of water droplets on a superhydrophobic surface.Adv Mater2019;31:e1905449.

[105]

Li J,Liu T’,‘CJ’ Kim CJ.Ionic-surfactant-mediated electro-dewetting for digital microfluidics.Nature2019;572:507-10

[106]

Sun J,Gong S,Guo H.Mechano-driven tribo-electrophoresis enabled human-droplet interaction in 3D space.Adv Mater2023;35:e2305578.

[107]

Chen C,Zhu S.In situ electric-induced switchable transparency and wettability on laser-ablated bioinspired paraffin-impregnated slippery surfaces.Adv Sci (Weinh)2021;8:e2100701. PMCID:PMC8292917

[108]

Wang H,Wang Z.Multistimuli-responsive microstructured superamphiphobic surfaces with large-range, reversible switchable wettability for oil.ACS Appl Mater Interfaces2019;11:28478-86

[109]

Qin H,Ji J.A magnetically controlled microstructured surface for three-dimensional droplet manipulation.Smart Mater Struct2024;33:025020

[110]

Tian D,Zheng X.Fast responsive and controllable liquid transport on a magnetic fluid/nanoarray composite interface.ACS Nano2016;10:6220-6

[111]

Yun S,Kim HW,Lee S.Reversible switching performance of water droplet-driven triboelectric nanogenerators using a magnetocontrollable lubricant-infused surface for sustainable power generation.Nano Energy2022;103:107783

[112]

Zhang Y,Gu H.An active strategy based on different droplet removal modes on polydimethylsiloxane magnetic microstructures.Small2024;20:e2400466

[113]

Jun K,Ryu S.surface modification of anisotropic dielectric elastomer actuators with Uni-and Bi-axially wrinkled carbon electrodes for wettability control.Sci Rep2017;7:6091 PMCID:PMC5519688

[114]

Lu Y,Song J,Carmalt CJ.Repellent materials. Robust self-cleaning surfaces that function when exposed to either air or oil.Science2015;347:1132-5.

[115]

Su C,Yuan C.Robust superhydrophobic composite fabricated by a dual-sized particle design.Compos Sci Technol2023;231:109785

[116]

Li D,Liu Y,Zhao Z.Large-scale fabrication of durable and robust super-hydrophobic spray coatings with excellent repairable and anti-corrosion performance.Chem Eng J2019;367:169-79

[117]

Li X,Stetten AZ.Spontaneous charging affects the motion of sliding drops.Nat Phys2022;18:713-9

[118]

Mendel N,Mugele F.Electrowetting-assisted generation of ultrastable high charge densities in composite silicon oxide-fluoropolymer electret samples for electric nanogenerators.Adv Funct Mater2021;31:2007872

[119]

Xu W,Liu Y.A droplet-based electricity generator with high instantaneous power density.Nature2020;578:392-6

[120]

Guo Y,Feng H.Programmable control of two-phase fluid interface relative motion in electrowetting device.Adv Mater Interface2021;8:2101086

[121]

Zhou X,Diaz D.Chemically robust superhydrophobic surfaces with a self-replenishing nanoscale liquid coating.Droplet2024;3:e103

[122]

Zhang F,Chen M.Multi-scale superhydrophobic surface with excellent stability and solar-thermal performance for highly efficient anti-icing and deicing.Small2024;20:e2312226.

[123]

Zhang H,Jin Y.Freezing droplet ejection by spring-like elastic pillars.Nat Chem Eng2024;1:765-73

[124]

Ang BTW,Lin GJ,Lee WSV.Enhancing water harvesting through the cascading effect.ACS Appl Mater Interfaces2019;11:27464-9

[125]

Zhang C,Du Y,Wang Z.Bioinspired heterogeneous surface for radiative cooling enhanced power-free moisture harvesting in unsaturated atmosphere.Adv Mater2025;37:e2414389

[126]

Zhang J,Zhou Z.Durable superhydrophobic surfaces with self-generated wenzel sites for efficient fog collection.Small2024;20:e2312112.

[127]

Li Z,Sun J,Zhang D.Bioinspired rapid self-replenishing liquid-infused surfaces for stable anti-adhesion of electrosurgical electrodes.Chem Eng J2023;470:144173

[128]

Xiao W,Shi L,Zhang Y.A viscous-biofluid self-pumping organohydrogel dressing to accelerate diabetic wound healing.Adv Mater2024;36:e2401539.

[129]

Liang X,Zhi C.Thermal transfer printed flexible and wearable bionic skin with bilayer nanofiber for comfortable multimodal health management.Adv Healthc Mater2025;14:e2403780

[130]

Zhang Q,Huo T.Biomimetic patch with wicking-breathable and multi-mechanism adhesion for bioelectrical signal monitoring.ACS Appl Mater Interfaces2022;14:48438-48

[131]

Chen X,Parida K.Transparent and stretchable bimodal triboelectric nanogenerators with hierarchical micro-nanostructures for mechanical and water energy harvesting.Nano Energy2019;64:103904

[132]

Liu BY,Xue CH.Bioinspired superhydrophobic all-in-one coating for adaptive thermoregulation.Adv Mater2024;36:e2400745.

[133]

Li Y,Li L.Bubble-guidance breaking gas shield for highly efficient overall water splitting.Adv Mater2024;36:e2405493.

AI Summary AI Mindmap
PDF

65

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/