Wavelength-tunable deep blue emission from pure bromide-based colloidal perovskite nanocrystals

Su Hwan Lee , Serim Cho , Bongjun Yeom , Young-Hoon Kim

Microstructures ›› 2025, Vol. 5 ›› Issue (3) : 2025054

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (3) :2025054 DOI: 10.20517/microstructures.2024.93
Research Article

Wavelength-tunable deep blue emission from pure bromide-based colloidal perovskite nanocrystals

Author information +
History +
PDF

Abstract

Metal halide perovskites are promising light emitters due to their tunable and highly pure emission color in visible light. However, achieving deep blue emission remains a major challenge due to low stability and intrinsic defects. Traditional methods for synthesizing blue-emitting colloidal perovskite nanocrystals (PNCs) involve organic ammonium engineering and halide engineering, which often suffer from problems such as ion migration and color instability. In this study, we demonstrate a novel central metal engineering approach that achieves deep blue emission with a wavelength of 435.8 nm from pure bromide-based PNCs at room temperature. To synthesize deep blue-emitting pure-bromide-based PNCs, we incorporate manganese bromide (MnBr2) to the formamidinium-guanidinium lead bromide (FA0.9GA0.1PbBr3) PNCs. Mn2+ suppresses the growth of FA0.9GA0.1PbBr3 crystals during the synthesis, resulting in decreases in both particle size and dimensionality and deep blue emission by the quantum confinement effect. The emission wavelength of pure-bromide-based PNCs is controlled by varying the amount of MnBr2. This study provides an effective and simple method for achieving deep blue emission from pure bromide-based PNCs, offering significant advantages for display technologies such as light-emitting diodes.

Keywords

Deep blue emission / perovskite nanocrystal / central metal engineering / quantum confinement effect / ligand-assisted reprecipitation

Cite this article

Download citation ▾
Su Hwan Lee, Serim Cho, Bongjun Yeom, Young-Hoon Kim. Wavelength-tunable deep blue emission from pure bromide-based colloidal perovskite nanocrystals. Microstructures, 2025, 5(3): 2025054 DOI:10.20517/microstructures.2024.93

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Schmidt LC,González-Carrero S.Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles.J Am Chem Soc2014;136:850-3

[2]

Kim YH,Lee TW.Metal halide perovskite light emitters.Proc Natl Acad Sci U S A2016;113:11694-702 PMCID:PMC5081613

[3]

Kim YH,Lee TW.Strategies to improve luminescence efficiency of metal-halide perovskites and light-emitting diodes.Adv Mater2019;31:1804595

[4]

Koscher BA,Bronstein ND.Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment.J Am Chem Soc2017;139:6566-9

[5]

De Roo J,Geiregat P.Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals.ACS Nano2016;10:2071-81

[6]

Wang H,Tang A.High-performance CsPb1-xSnxBr3 perovskite quantum dots for light-emitting diodes.Angew Chem Int Ed2017;129:13838-42

[7]

Chiba T,Ebe H.Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices.Nature Photon2018;12:681-7

[8]

Song J,Li J.Organic-inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%.Adv Mater2018;30:e1805409

[9]

Kim YH,Kim S.Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes.Nat Nanotechnol2022;17:590-7

[10]

Kim Y,Kakekhani A.Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes.Nat Photonics2021;15:148-55

[11]

Kong L,Zhao B.Fabrication of red-emitting perovskite LEDs by stabilizing their octahedral structure.Nature2024;631:73-9

[12]

Li G,Zhu H,Tang J.Surface ligand engineering for near-unity quantum yield inorganic halide perovskite QDs and high-performance QLEDs.Chem Mater2018;30:6099-107

[13]

Dong Y,Yuan F.Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots.Nat Nanotechnol2020;15:668-74

[14]

Chen C,Bai W.Highly stable CsPbI3:Sr2+ nanocrystals with near-unity quantum yield enabling perovskite light-emitting diodes with an external quantum efficiency of 17.1%.Nano Energy2021;85:106033

[15]

Ren Z,Sun XW.Strategies toward efficient blue perovskite light‐emitting diodes.Adv Funct Mater2021;31:2100516

[16]

Bi C,Li Q,Tian J.Thermally stable copper(II)-doped cesium lead halide perovskite quantum dots with strong blue emission.J Phys Chem Lett2019;10:943-52

[17]

Liu R.Blue perovskite light-emitting diodes (LEDs): a minireview.Instrum Sci Technol2020;48:616-36

[18]

Shao H,Wu X.High brightness blue light-emitting diodes based on CsPb(Cl/Br)3 perovskite QDs with phenethylammonium chloride passivation.Nanoscale2020;12:11728-34.

[19]

Protesescu L,Bodnarchuk MI.Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut.Nano Lett2015;15:3692-6

[20]

He X,Yang S.Fully-inorganic trihalide perovskite nanocrystals: a new research frontier of optoelectronic materials.Adv Mater2017;29

[21]

Yang X,Yu M.Focus on perovskite emitters in blue light-emitting diodes.Light Sci Appl2023;12:177 PMCID:PMC10363551

[22]

Polavarapu L,Feldmann J.Advances in quantum-confined perovskite nanocrystals for optoelectronics.Adv Energy Mater2017;7:1700267

[23]

Sichert JA,Mutz N.Quantum size effect in organometal halide perovskite nanoplatelets.Nano Lett2015;15:6521-7

[24]

Weidman MC,Stranks SD.Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition.ACS Nano2016;10:7830-9

[25]

Kumar S,Yakunin S.Efficient blue electroluminescence using quantum-confined two-dimensional perovskites.ACS Nano2016;10:9720-9

[26]

Kumar S,Kallikounis N.Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: achieving recommendation 2020 Color coordinates.Nano Lett2017;17:5277-84

[27]

Wang Y,Li R.Quantum-confined perovskite nanocrystals enabled by negative catalyst strategy for efficient light-emitting diodes.Small2024;20:e2402825

[28]

Chu Z,Ma F.Large cation ethylammonium incorporated perovskite for efficient and spectra stable blue light-emitting diodes.Nat Commun2020;11:4165 PMCID:PMC7441179

[29]

Yuan F,Zhang L.A Cocktail of multiple cations in inorganic halide perovskite toward efficient and highly stable blue light-emitting diodes.ACS Energy Lett2020;5:1062-9

[30]

Jiang Y,Cui M.Spectra stable blue perovskite light-emitting diodes.Nat Commun2019;10:1868 PMCID:PMC6478869

[31]

Liu Y,Du K.Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures.Nat Photonics2019;13:760-4

[32]

Zhang M,Zhao G.Efficient blue CsPbBr3 perovskite nanocrystals synthesis with the assistance of zwitterionic straight chain amino acids.Colloids Surf A Physicochem Eng Asp2023;673:131793

[33]

Grandhi GK,Ong SP.Jahn-Teller distortion-driven robust blue-light-emitting perovskite nanoplatelets.Appl Mater Today2020;20:100668

[34]

Li X,Chen X.Deep-blue narrow-band emissive cesium europium bromide perovskite nanocrystals with record high emission efficiency for wide-color-gamut backlight displays.Mater Horiz2024;11:1294-304

[35]

Xie Y,Bravić I.Highly Efficient blue-emitting CsPbBr3 perovskite nanocrystals through neodymium doping.Adv Sci2020;7:2001698

[36]

Guria AK,Adhikari SD.Doping Mn2+ in lead halide perovskite nanocrystals: successes and challenges.ACS Energy Lett2017;2:1014-21

[37]

Feldmann S,Bravić I.Charge carrier localization in doped perovskite nanocrystals enhances radiative recombination.J Am Chem Soc2021;143:8647-53 PMCID:PMC8297723

[38]

Liu W,Li H.Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content.J Am Chem Soc2016;138:14954-61

[39]

Liu Y,Zhu Y,Matras-postolek K.Ion exchange derived CsPbBr3: Mn nanocrystals with stable and bright luminescence towards white light-emitting diodes.Mater Res Bull2022;153:111915

[40]

Hou S,Quan Q.Efficient blue and white perovskite light-emitting diodes via manganese doping.Joule2018;2:2421-33

[41]

Proppe AH,Teale S.Multication perovskite 2D/3D interfaces form via progressive dimensional reduction.Nat Commun2021;12:3472 PMCID:PMC8190276

[42]

Kim YH,Kim YT.Highly efficient light-emitting diodes of colloidal metal-halide perovskite nanocrystals beyond quantum size.ACS Nano2017;11:6586-93

[43]

Slimi B,Ben Assaker I,Chtourou R.Synthesis and characterization of perovskite FAPbBr3-xIx thin films for solar cells.Monatsh Chem2017;148:835-44

[44]

Yu D,Cao F.Cation exchange-induced dimensionality construction: from monolayered to multilayered 2D single crystal halide perovskites.Adv Mater Interfaces2017;4:1700441

[45]

Takeoka Y,Rikukawa M.Systematic studies on chain lengths, halide species, and well thicknesses for lead halide layered perovskite thin films.Bull Chem Soc Jpn2006;79:1607-13

[46]

Zhang D,Yu Y,Yang P.Solution-phase synthesis of cesium lead halide perovskite nanowires.J Am Chem Soc2015;137:9230-3

[47]

Pan A,Fan X.Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors.ACS Nano2016;10:7943-54

[48]

Sun S,Xu Y,Deng Z.Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature.ACS Nano2016;10:3648-57

AI Summary AI Mindmap
PDF

214

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/