A review on Mg-based metallic glasses for biomedical scaffolds: experimental and computational modeling

Chijioke Raphael Onyeagba , Tuquabo Tesfamichael

Microstructures ›› 2025, Vol. 5 ›› Issue (2) : 2025035

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (2) :2025035 DOI: 10.20517/microstructures.2024.89
Review

A review on Mg-based metallic glasses for biomedical scaffolds: experimental and computational modeling

Author information +
History +
PDF

Abstract

Magnesium (Mg)-based metallic glasses have emerged as a promising class of biomaterials for various biomedical applications due to their unique properties, such as high strength-to-weight ratio, good biocompatibility and biodegradability. The development of Mg-based metallic glass scaffolds is of particular interest for tissue engineering and regenerative medicine applications. However, the rate of biodegradability of the materials is not well controlled and requires extensive research for efficient tissue/bone regeneration. This review provides a comprehensive overview of the recent advancements in the development of Mg-based metallic glass scaffolds and their tuneable biodegradability with different compositions and thin film coatings. It discusses the structural and biological properties, mechanical and biodegradation behavior, and various fabrication techniques employed to produce Mg-based bulk metallic glass scaffolds. Furthermore, the review explores surface modification of permanent implants with Mg-based thin film biodegradable metallic glasses to simulate tissue regeneration on the implants. Optimization of scaffold design to increase tissue growth and healing by understanding the complex interactions between the scaffold and biological tissues and predicting the long-term implant behavior using computational models are reviewed. The challenges and future research directions in this field are also discussed, providing insights into the potential of Mg-based metallic glass scaffolds for various biomedical applications, including bone tissue engineering, wound healing, and cardiovascular implants.

Keywords

Metallic glasses / Mg-based metallic glasses / biocompatible / biodegradation / scaffolds / bone and tissue regeneration

Cite this article

Download citation ▾
Chijioke Raphael Onyeagba, Tuquabo Tesfamichael. A review on Mg-based metallic glasses for biomedical scaffolds: experimental and computational modeling. Microstructures, 2025, 5(2): 2025035 DOI:10.20517/microstructures.2024.89

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baino F,Vitale-Brovarone C.Bioceramics and scaffolds: a winning combination for tissue engineering.Front Bioeng Biotechnol2015;3:202 PMCID:PMC4681769

[2]

Arifvianto B.Fabrication of metallic biomedical scaffolds with the space holder method: a review.Materials2014;7:3588-622 PMCID:PMC5453213

[3]

Boccaccini AR,Liverani L. Tissue engineering using ceramics and polymers. 3th ed. Woodhead Publishing; 2021. p. 888. Available from: https://books.google.com/books?hl=zh-CN&lr=&id=T48mEAAAQBAJ&oi=fnd&pg=PP1&dq=.+Boccaccini+AR,+Ma+PX,+Liverani+L.+Tissue+engineering+using+ceramics+and+polymers.+3th+ed.+Woodhead+Publishing%3B+2021.+p.+888.&ots=dFsHECuJGQ&sig=SJ5feosbK0lDHAPtYiXHwzW35cE#v=onepage&q&f=false. [Last accessed on 6 Mar 2025]

[4]

Suamte L,Barman J.Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications.Smart Mater Manuf2023;1:100011

[5]

Ahmadipour M,Pang AL.A review: silicate ceramic-polymer composite scaffold for bone tissue engineering.Int J Polym Mater Polym Biomater2022;71:180-95

[6]

Thangavel M.Review of physical, mechanical, and biological characteristics of 3D-printed bioceramic scaffolds for bone tissue engineering applications.ACS Biomater Sci Eng2022;8:5060-93

[7]

Nuss KM.Biocompatibility issues with modern implants in bone-a review for clinical orthopedics.Open Orthop J2008;2:66-78 PMCID:PMC2687115

[8]

Söhling N,Kontradowitz K,Marzi I.Early immune response in foreign body reaction is implant/material specific.Materials2022;15:2195 PMCID:PMC8950904

[9]

Kämmerling L,Antmen E.Mitigating the foreign body response through ‘immune-instructive’ biomaterials.J Immunol Regen Med2021;12:100040

[10]

Zhang Y,Ruan YC.Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats.Nat Med2016;22:1160-9

[11]

Shanmugavadivu A,Babu S,Selvamurugan N.magnesium-incorporated biocomposite scaffolds: a novel frontier in bone tissue engineering.J Magnes Alloys2024;12:2231-48

[12]

Hung CC,Liu K,Sfeir C.The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway.Acta Biomater2019;98:246-55

[13]

Ye Li,Mi J.Biodegradable magnesium combined with distraction osteogenesis synergistically stimulates bone tissue regeneration via CGRP-FAK-VEGF signaling axis.Biomaterials2021;275:120984

[14]

Wang Q,Deng J.Research progress in calcitonin gene-related peptide and bone repair.Biomolecules2023;13:838 PMCID:PMC10216440

[15]

Zaidi M,Abe E.Calcitonin and bone formation: a knockout full of surprises.J Clin Invest2002;110:1769-71

[16]

Müller E,Mader K.The biological effects of magnesium-based implants on the skeleton and their clinical implications in orthopedic trauma surgery.Biomater Res2024;28:0122 PMCID:PMC11665827

[17]

Han F,Ding L.Tissue engineering and regenerative medicine: achievements, future, and sustainability in asia.Front Bioeng Biotechnol2020;8:83 PMCID:PMC7105900

[18]

Miki K,Yamashita M,Murakami S.Calcitonin gene-related peptide regulates periodontal tissue regeneration.Sci Rep2024;14:1344 PMCID:PMC10791604

[19]

Wimalawansa SJ.Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials.Endocr Rev1996;17:533-85

[20]

Wu H,Long Y.Calcitonin gene-related peptide is potential therapeutic target of osteoporosis.Heliyon2022;8:e12288 PMCID:PMC9758432

[21]

Yeung KWK.Biodegradable metallic materials for orthopaedic implantations: a review.Technol Health Care2012;20:345-62

[22]

Qin Y,Guo H.Additive manufacturing of biodegradable metals: current research status and future perspectives.Acta Biomater2019;98:3-22

[23]

Yazdimamaghani M,Vashaee D,Boccaccini AR.Porous magnesium-based scaffolds for tissue engineering.Mater Sci Eng C2017;71:1253-66

[24]

Levy GK,Aghion E.The prospects of zinc as a structural material for biodegradable implants-a review paper.Metals2017;7:402

[25]

Amukarimi S.Biodegradable magnesium-based biomaterials: an overview of challenges and opportunities.MedComm2021;2:123-44 PMCID:PMC8491235

[26]

Shahzamanian M,Dahotre NB,Reddy J.Analysis of stress shielding reduction in bone fracture fixation implant using functionally graded materials.Compos Struct2023;321:117262

[27]

Li K,Du P.Mechanical properties and corrosion resistance of powder metallurgical Mg-Zn-Ca/Fe bulk metal glass composites for biomedical application.J Mater Scie Technol2022;103:73-83

[28]

Velikokhatnyi OI.First principles study of the elastic properties of magnesium and iron based bio-resorbable alloys.Mater Sci Eng B2018;230:20-3

[29]

Cheng J,Wu Y.Comparative in vitro study on pure metals (Fe, Mn, Mg, Zn and W) as biodegradable metals.J Mater Sci Technol2013;29:619-27

[30]

Witte F.The history of biodegradable magnesium implants: a review.Acta Biomater2010;6:1680-92

[31]

Waizy H,Reifenrath J.Biodegradable magnesium implants for orthopedic applications.J Mater Sci2013;48:39-50

[32]

Meagher P,Byrne JH.Bulk metallic glasses for implantable medical devices and surgical tools.Adv Mater2016;28:5755-62

[33]

Sezer N,Koç M.Additive manufacturing of biodegradable magnesium implants and scaffolds: review of the recent advances and research trends.J Magnes Alloys2021;9:392-415

[34]

Staiger MP,Huadmai J.Magnesium and its alloys as orthopedic biomaterials: a review.Biomaterials2006;27:1728-34

[35]

Zheng Y,Witte F.Biodegradable metals.Mater Sci Eng R Reports2014;77:1-34

[36]

Cheng Y.Atomic-level structure and structure-property relationship in metallic glasses.Prog Mater Sci2011;56:379-473

[37]

Xie G.Metallic glasses for biomedical applications. In: Setsuhara Y, Kamiya T, Yamaura S, editors. Novel structured metallic and inorganic materials. Singapore: Springer; 2019. pp. 421-33.

[38]

Biały M,Łaszcz A.Review on biocompatibility and prospect biomedical applications of novel functional metallic glasses.J Funct Biomater2022;13:245 PMCID:PMC9680474

[39]

Du P,Li K,Xie G.Porous Ti-based bulk metallic glass orthopedic biomaterial with high strength and low Young’s modulus produced by one step SPS.J Mater Res Technol2021;13:251-9

[40]

Demetriou MD,Hofmann DC.Amorphous metals for hard-tissue prosthesis.JOM2010;62:83-91

[41]

Inoue A.Stabilization of metallic supercooled liquid and bulk amorphous alloys.Acta Materialia2000;48:279-306

[42]

Schroers J.The superplastic forming of bulk metallic glasses.JOM2005;57:35-9

[43]

Sharma A.Review of the recent development in metallic glass and its composites.Metals2021;11:1933

[44]

Onyeagba C,Wang H,Yarlagadda P.Nanomechanical surface properties of co-sputtered thin film polymorphic metallic glasses based on Ti-Fe-Cu, Zr-Fe-Al, and Zr-W-Cu.Surf Interfaces2023;40:103090

[45]

Onyeagba C,Barclay M,Wang H.Polymorphous nanostructured metallic glass coatings for corrosion protection of medical grade Ti substrate.Intermetallics2024;165:108167

[46]

Li HF.Recent advances in bulk metallic glasses for biomedical applications.Acta Biomater2016;36:1-20

[47]

Li Z,Sun F,Ma J.Forming of metallic glasses: mechanisms and processes.Mater Today Adv2020;7:100077

[48]

Dambatta M,Yahaya B,Kurniawan D.Mg-based bulk metallic glasses for biodegradable implant materials: a review on glass forming ability, mechanical properties, and biocompatibility.J Non-Cryst Solids2015;426:110-5

[49]

Bejarano J,Covarrubias C.Effect of Cu- and Zn-doped bioactive glasses on the in vitro bioactivity, mechanical and degradation behavior of biodegradable PDLLA scaffolds.Materials2020;13:2908 PMCID:PMC7372424

[50]

Purnama A,Couet J.Assessing the biocompatibility of degradable metallic materials: state-of-the-art and focus on the potential of genetic regulation.Acta Biomater2010;6:1800-7

[51]

Williams E.Laser processing of bulk metallic glass: a review.J Mater Process Technol2017;247:73-91

[52]

Wang W,Shek C.Bulk metallic glasses.Mater Sci Eng R: Reports2004;44:45-89

[53]

Sohrabi N,Logé RE.Additive manufacturing of bulk metallic glasses-process, challenges and properties: a review.Metals2021;11:1279

[54]

Klement W,Duwez P.Non-crystalline structure in solidified gold-silicon alloys.Nature1960;187:869-70

[55]

Telford M.The case for bulk metallic glass.Mater Today2004;7:36-43

[56]

Pan C,Chen M,Lee C.Hot embossing of micro-lens array on bulk metallic glass.Sens Actuators A Phys2008;141:422-31

[57]

Kawamura Y,Inoue A.Workability of the supercooled liquid in the Zr65Al10Ni10Cu15 bulk metallic glass.Acta Mater1998;46:253-63

[58]

Martinez R,Schroers J.Hot rolling of bulk metallic glass in its supercooled liquid region.Scripta Mater2008;59:187-90

[59]

Wiest A,Demetriou M,Johnson W.Injection molding metallic glass.Scripta Mater2009;60:160-3

[60]

Schroers J,Kumar G.Thermoplastic blow molding of metals.Materials Today2011;14:14-9

[61]

Onyeagba R.Surface engineering of implant substrates with nanostructured polymorphous thin film metallic glasses. Queensland University Of Technology, Brisbane, Queensland, 2024.

[62]

Li X,Ma J,Xu Y.Progress in the preparation, forming and machining of metallic glasses.J Manuf Processes2024;117:244-77

[63]

Khan MM,Rahman ZU,Asgar H.Recent advancements in bulk metallic glasses and their applications: a review.Crit Rev Solid State Mater Sci2018;43:233-68

[64]

Schroers J.Processing of bulk metallic glass.Adv Mater2010;22:1566-97

[65]

Li HX,Wang SL,Lu ZP.Fe-based bulk metallic glasses: glass formation, fabrication, properties and applications.Progress Mater Sci2019;103:235-18

[66]

Schroers J.Bulk metallic glasses.Physics Today2013;66:32-7

[67]

Jung HY,Prashanth KG.Fabrication of Fe-based bulk metallic glass by selective laser melting: a parameter study.Mater Des2015;86:703-8

[68]

Zhang C,Pauly S.3D printing of bulk metallic glasses.Mater Sci Eng R: Reports2021;145:100625

[69]

Kumar G,Schroers J.Bulk metallic glass: the smaller the better.Adv Mater2011;23:461-76

[70]

Zhang C,Liu S,Yu L.3D printing of Zr-based bulk metallic glasses and components for potential biomedical applications.J Alloys Compds2019;790:963-73

[71]

Ouyang D,Zhang C.Understanding of crystallization behaviors in laser 3D printing of bulk metallic glasses.Appl Mater Today2021;23:100988

[72]

Xie F,Gao J.Laser 3D printing of Fe-based bulk metallic glass: microstructure evolution and crack propagation.J Mater Eng Perform2019;28:3478-86

[73]

Ouyang D,Xing W,Liu L.3D printing of crack-free high strength Zr-based bulk metallic glass composite by selective laser melting.Intermetallics2017;90:128-34

[74]

Hofmann DC.Bulk metallic glasses and their composites: a brief history of diverging fields.J Mater2012;1:517904

[75]

Hofmann DC.Shape memory bulk metallic glass composites.Science2010;329:1294-5

[76]

Pan D,Sakurai T.Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses.Proc Natl Acad Sci U S A2008;105:14769-72

[77]

Hofmann DC,Wiest A.Designing metallic glass matrix composites with high toughness and tensile ductility.Nature2008;451:1085-9

[78]

Xu J,Ma E.The fracture toughness of bulk metallic glasses.JOM2010;62:10-8

[79]

He Q,Ma E.Locating bulk metallic glasses with high fracture toughness: chemical effects and composition optimization.Acta Mater2011;59:202-15

[80]

Nekouie V,Roy A.Bulk metallic glasses: mechanical properties and performance. In: Silberschmidt VV, Matveenko VP, editors. Mechanics of advanced materials. Cham: Springer International Publishing; 2015. pp. 101-34.

[81]

Hu J,Huang G,Pan S.In vitro and in vivo applications of magnesium-enriched biomaterials for vascularized osteogenesis in bone tissue engineering: a review of literature.J Funct Biomater2023;14:326 PMCID:PMC10299302

[82]

Cheng MQ,Jiang GF.A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration.Sci Rep2016;6:24134 PMCID:PMC4829853

[83]

Mordike B.Magnesium: properties - applications - potential.Mater Sci Eng A2001;302:37-45

[84]

Tóth L.Formation of the science of fatigue of metals. Part 1. 1825-1870.Mater Sci2006;42:673-80

[85]

Zhang X,Bauer T.Mg-based bulk metallic glass composite with high bio-corrosion resistance and excellent mechanical properties.Intermetallics2012;29:56-60

[86]

Li K.Development of Mg-based bulk metallic glasses and applications in biomedical field. In: Arkadiusz Tański T, Cesarz-andraczke K, Jonda E, editors. Magnesium alloys - processing, potential and applications. IntechOpen; 2023.

[87]

Ductile magnesium, rolling, alloy design, rare earth, yttrium, Erbium, Y, casting, rolling, bending, sheet forming. 2024. Available from: https://www.dierk-raabe.com/magnesium-alloys/. [Last accessed on 6 Mar 2025]

[88]

Antoniac I,Paltanea G.Additive manufactured magnesium-based scaffolds for tissue engineering.Materials2022;15:8693 PMCID:PMC9739563

[89]

Chu YS,Jang JS,Wu SH.Combining Mg-Zn-Ca bulk metallic glass with a mesoporous silica nanocomposite for bone tissue engineering.Pharmaceutics2022;14:1078 PMCID:PMC9145403

[90]

Jin C,Yu W,Yu H.Biodegradable Mg-Zn-Ca-based metallic glasses.Materials2022;15:2172

[91]

Chen J,Fu H.In vitro and in vivo studies on the biodegradable behavior and bone response of Mg69Zn27Ca4 metal glass for treatment of bone defect.J Mater Sci Technol2019;35:2254-62

[92]

Zhao Y.Structural relaxation and its influence on the elastic properties and notch toughness of Mg-Zn-Ca bulk metallic glass.J Alloys Compd2012;515:154-60

[93]

Li H,Liu Y,Liaw PK.Biodegradable Mg-Zn-Ca-Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications.Mater Des2015;67:9-19

[94]

Gu X,Guo F.Mg-Ca-Zn bulk metallic glasses with high strength and significant ductility.J Mater Res2005;20:1935-8

[95]

Sun Y,Fu H,Hu Z.Mg-Cu-Ag-Er bulk metallic glasses with high glass forming ability and compressive strength.Mater Sci Eng A2009;502:148-52

[96]

Amiya K.Preparation of bulk glassy Mg65Y10Cu15Ag5Pd5 alloy of 12 mm in diameter by water ouenching.Mater Trans2001;42:543-5

[97]

Li Y,Jones H.Easy glass formation in magnesium-based Mg-Ni-Nd alloys.J Mater Sci1996;31:1857-63

[98]

Park E.Formation of Mg-Cu-Ni-Ag-Zn-Y-Gd bulk glassy alloy by casting into cone-shaped copper mold in air atmosphere.J Mater Res2005;20:1465-9

[99]

Yuan G,Inoue A.Mg-based bulk glassy alloys with high strength above 900 MPa and plastic strain.J Mater Res2005;20:394-400

[100]

Gulenko A,Gao J.Atomic structure of Mg-based metallic glasses from molecular dynamics and neutron diffraction.Phys Chem Chem Phys2017;19:8504-15

[101]

Babilas R,Temleitner L.Atomic structure of Mg-based metallic glass investigated with neutron diffraction, reverse Monte Carlo modeling and electron microscopy.Beilstein J Nanotechnol2017;8:1174-82 PMCID:PMC5480322

[102]

Shi L.Mg based bulk metallic glasses: Glass transition temperature and elastic properties versus toughness.J Non-Cryst Solids2011;357:2926-33

[103]

Wang S,Song Z.Cast defects induced sample-size dependency on compressive strength and fracture toughness of Mg-Cu-Ag-Gd bulk metallic glass.Intermetallics2012;29:123-32

[104]

Ma H,Xu J.Chill-cast in situ composites in the pseudo-ternary Mg-(Cu,Ni)-Y glass-forming system: microstructure and compressive properties.J Mater Res2006;22:314-25

[105]

Rahman M,Roy Choudhury N.Magnesium alloys with tunable interfaces as bone implant materials.Front Bioeng Biotechnol2020;8:564 PMCID:PMC7297987

[106]

Xu H,Wang M.Degradability and biocompatibility of magnesium-MAO: the consistency and contradiction between in-vitro and in-vivo outcomes.Arab J Chem2020;13:2795-805

[107]

Rondanelli M,Tartara A.An update on magnesium and bone health.Biometals2021;34:715-36 PMCID:PMC8313472

[108]

Herber V,Antonoglou G,Payer M.Bioresorbable magnesium-based alloys as novel biomaterials in oral bone regeneration: general review and clinical perspectives.J Clin Med2021;10:1842 PMCID:PMC8123017

[109]

Ding P,He X,Chen M.In vitro and in vivo biocompatibility of Mg-Zn-Ca alloy operative clip.Bioact Mater2019;4:236-44

[110]

Uddin MS,Murphy P.Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants.Sci Technol Adv Mater2015;16:053501 PMCID:PMC5070015

[111]

Xue D,Tan Z,Schulz MJ.In vivo and in vitro degradation behavior of magnesium alloys as biomaterials.JMater Sci Technol2012;28:261-7

[112]

Guo KW.A review of magnesium/magnesium alloys corrosion and its protection.Recent Pat Corros Sci2020;2:13-21

[113]

Kannan MB.In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid.Biomaterials2008;29:2306-14

[114]

Ng W,Cheng F.Effect of pH on the in vitro corrosion rate of magnesium degradable implant material.Mater Scie Eng C2010;30:898-903

[115]

Törne K,Weissenrieder J.The influence of buffer system and biological fluids on the degradation of magnesium.J Biomed Mater Res B Appl Biomater2017;105:1490-502

[116]

Mueller WD,Nascimento ML.Degradation of magnesium and its alloys: dependence on the composition of the synthetic biological media.J Biomed Mater Res A2009;90:487-95

[117]

Kirkland NT,Staiger MP.Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations.Acta Biomater2012;8:925-36

[118]

Kumar S,Chaudhary R.Assessment of factors influencing bio-corrosion of magnesium based alloy implants: a review.Mater Today: Proc2022;56:2680-9

[119]

Kamrani S.Biodegradable magnesium alloys as temporary orthopaedic implants: a review.Biometals2019;32:185-93

[120]

Liu C,Tian X.Degradation susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin.J Mater Res2007;22:1806-14

[121]

Li X,Wu S,Zheng Y.Design of magnesium alloys with controllable degradation for biomedical implants: from bulk to surface.Acta Biomater2016;45:2-30

[122]

Xin Y,Zhang X,Tian X.Corrosion behavior of biomedical AZ91 magnesium alloy in simulated body fluids.J Mater Res2007;22:2004-11

[123]

Alawi AM, Majoni SW, Falhammar H. Magnesium and human health: perspectives and research directions.Int J Endocrinol2018;2018:9041694 PMCID:PMC5926493

[124]

Gums JG.Magnesium in cardiovascular and other disorders.Am J Health Syst Pharm2004;61:1569-76

[125]

Gröber U,Kisters K.Magnesium in prevention and therapy.Nutrients2015;7:8199-226 PMCID:PMC4586582

[126]

Volpe SL.Magnesium in disease prevention and overall health.Adv Nutr2013;4:378S-83S PMCID:PMC3650510

[127]

Zhu S,Li G,Nie J.Creep properties of biodegradable Zn-0.1Li alloy at human body temperature: implications for its durability as stents.Mater Res Lett2019;7:347-53

[128]

Li H,Zheng Y,Qiu K.Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr.Mater Des2015;83:95-102

[129]

Bowen PK,Shearier ER.Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents.Mater Sci Eng C2015;56:467-72 PMCID:PMC4529538

[130]

Khan AR,Zhou C,Zhang H.Recent advances in biodegradable metals for implant applications: exploring in vivo and in vitro responses.Results Eng2023;20:101526

[131]

Moravej M.Biodegradable metals for cardiovascular stent application: interests and new opportunities.Int J Mol Sci2011;12:4250-70 PMCID:PMC3155349

[132]

Bin SJB,Chua BW.Mg-based bulk metallic glasses: a review of recent developments.J Magnes Alloys2022;10:899-914

[133]

Manescu Paltanea V,Antoniac A.Bone regeneration induced by patient-adapted Mg alloy-based scaffolds for bone defects: present and future perspectives.Biomimetics2023;8:618 PMCID:PMC10742271

[134]

Vahidgolpayegani A,Hodgson P. 2-Production methods and characterization of porous Mg and Mg alloys for biomedical applications. Available from: https://www.sciencedirect.com/science/article/pii/B9780081012895000020. [Last accessed on 6 Mar 2025]

[135]

Uppal G,Chauhan A.Magnesium based implants for functional bone tissue regeneration-a review.J Magnes Alloys2022;10:356-86

[136]

Zheng K,Boccaccini AR.Protein interactions with bioactive glass surfaces: a review.Appl Mater Today2019;15:350-71

[137]

Oliver JN,Lu X,Du J.Bioactive glass coatings on metallic implants for biomedical applications.Bioact Mater2019;4:261-70 PMCID:PMC6812334

[138]

Yang Y,Yang M.Copper-doped mesoporous bioactive glass endows magnesium-based scaffold with antibacterial activity and corrosion resistance.Mater Chem Front2021;5:7228-40

[139]

Yazdimamaghani M,Vashaee D,Rajadas J.Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications.Appl Surf Sci2015;338:137-45

[140]

Metal magnesium market (by application: die casting, aluminum alloys, titanium reduction, iron & steel making) - global industry analysis, size, share, growth, trends, revenue, regional outlook 20222030. Available from: https://www.visionresearchreports.com/metal-magnesium-market/39159. [Last accessed on 6 Mar 2025]

[141]

Li M,Derra T.Microstructure, mechanical properties, corrosion resistance and cytocompatibility of WE43 Mg alloy scaffolds fabricated by laser powder bed fusion for biomedical applications.Mater Sci Eng C2021;119:111623

[142]

Wu C,Man H.Additive manufacturing of ZK60 magnesium alloy by selective laser melting: parameter optimization, microstructure and biodegradability.Mater Today Commun2021;26:101922

[143]

Yang Y,Peng S.Laser additive manufacturing of Mg-based composite with improved degradation behaviour.Virt Phys Prototyp2020;15:278-93

[144]

Yao X,Zhou Y.Surface modification of biomedical Mg-Ca and Mg-Zn-Ca alloys using selective laser melting: corrosion behaviour, microhardness and biocompatibility.J Magnes Alloys2021;9:2155-68

[145]

Xu R,Zhao Y.Improved biodegradation resistance by grain refinement of novel antibacterial ZK30-Cu alloys produced via selective laser melting.Mater Lett2019;237:253-7

[146]

Yin Y,Liang L.In vitro degradation behavior and cytocompatibility of ZK30/bioactive glass composites fabricated by selective laser melting for biomedical applications.J Alloys Compd2019;785:38-45

[147]

Shuai C,Zhao M.Microstructure, biodegradation, antibacterial and mechanical properties of ZK60-Cu alloys prepared by selective laser melting technique.J Mater Sci Technol2018;34:1944-52

[148]

Sezer N,Kayhan SM,Koç M.Review of magnesium-based biomaterials and their applications.J Magnes Alloys2018;6:23-43

[149]

Zivic F,Manivasagam G,Landoulsi J.The potential of magnesium alloys as bioabsorbable/ biodegradable implants for biomedical applications.Tribol Ind2014;36:67-73Available from: https://www.tribology.rs/journals/2014/2014-1/8.pdf. [Last accessed on 24 Mar 2025]

[150]

Agarwal S,Duffy B.Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface modifications.Mater Sci Eng C2016;68:948-63

[151]

Alaneme KK,Olajide JL,Bodunrin MO.Computational biomechanical and biodegradation integrity assessment of Mg-based biomedical devices for cardiovascular and orthopedic applications: a review.Int J Lightweight Mater Manufacture2022;5:251-66

[152]

Bowen PK,Zhao S.Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn-alloys.Adv Healthc Mater2016;5:1121-40

[153]

Jiang J,Huang H,Yuan G.Biodegradable Zn-Cu-Mn alloy with suitable mechanical performance and in vitro degradation behavior as a promising candidate for vascular stents.Biomater Adv2022;133:112652

[154]

Borhani S,Ahmadi Tafti SH.Cardiovascular stents: overview, evolution, and next generation.Prog Biomater2018;7:175-205 PMCID:PMC6173682

[155]

Negrescu A,Costache M.In vitro and in vivo biological performance of Mg-based bone implants.Rev Biol Biomed Sci2020;3:11-41

[156]

Rahim SA,Sampath Kumar TS.Recent progress in surface modification of Mg alloys for biodegradable orthopedic applications.Front Mater2022;9:848980

[157]

Tian P.Surface modification of biodegradable magnesium and its alloys for biomedical applications.Regen Biomater2015;2:135-51 PMCID:PMC4669019

[158]

Papenberg NP,Weißensteiner I,Pogatscher S.Mg-alloys for forging applications-a review.Materials2020;13:985; PMCID:PMC7079650

[159]

Riaz U,Haider W.The current trends of Mg alloys in biomedical applications-a review.J Biomed Mater Res B Appl Biomater2019;107:1970-96

[160]

Bedair TM,Ryu J,Park W.Biocompatible and functional inorganic magnesium ceramic particles for biomedical applications.Biomater Sci2021;9:1903-23

[161]

Canales DA,Saavedra M.Electrospun fibers of poly (lactic acid) containing bioactive glass and magnesium oxide nanoparticles for bone tissue regeneration.Int J Biol Macromol2022;210:324-36

[162]

Babaremu KO,Mfoh U,Okokpujie IP.Behavioral characteristics of magnesium as a biomaterial for surface engineering application.J Bio Tribo Corros2021;7:579

[163]

Dieringa H,Letzig D.Mg alloys: challenges and achievements in controlling performance, and future application perspectives. In: Orlov D, Joshi V, Solanki KN, Neelameggham NR, editors. Magnesium technology 2018. Cham: Springer International Publishing; 2018. pp. 3-14.

[164]

Laws KJ,Granata D,Löffler JF.Electron-band theory inspired design of magnesium-precious metal bulk metallic glasses with high thermal stability and extended ductility.Sci Rep2017;7:3400 PMCID:PMC5469752

[165]

Sarac B.Microstructure-property optimization in metallic glasses. Springer; 2015. p. 89.

[166]

Axinte E.Metallic glasses from “alchemy” to pure science: present and future of design, processing and applications of glassy metals.Mater Des2012;35:518-56

[167]

Bonithon R,Roldo M.Open-porous magnesium-based scaffolds withstand in vitro corrosion under cyclic loading: a mechanistic study.Bioact Mater2023;19:406-17 PMCID:PMC9062748

[168]

Yusop AHM,Kadir MRA,Nur H.Corrosion of porous Mg and Fe scaffolds: a review of mechanical and biocompatibility responses.Corros Eng Sci Technol2021;56:310-26

[169]

Kulekci MK.Magnesium and its alloys applications in automotive industry.Int J Adv Manuf Technol2008;39:851-65

[170]

Rahman M,Wen C.HA coating on Mg alloys for biomedical applications: a review.J Magnes Alloys2020;8:929-43

[171]

Kaya AA.A review on developments in magnesium alloys.Front Mater2020;7:198

[172]

Gao J. Design of new metallic glass composites and nanostructured alloys with improved mechanical properties. University of Sheffield; 2016. Available from: https://etheses.whiterose.ac.uk/12404/. [Last accessed on 6 Mar 2025]

[173]

Zhang T,Liu J,Tang Y.A review on magnesium alloys for biomedical applications.Front Bioeng Biotechnol2022;10:953344 PMCID:PMC9424554

[174]

Yi J,Zhao DQ,Bai HY.Micro‐and nanoscale metallic glassy fibers.Adv Eng Mater2010;12:1117-22

[175]

Zberg B,Uggowitzer PJ.Tensile properties of glassy MgZnCa wires and reliability analysis using Weibull statistics.Acta Mater2009;57:3223-31

[176]

Lin CH,Chuang JF,Jang JS.Rapid screening of potential metallic glasses for biomedical applications.Mater Sci Eng C2013;33:4520-6

[177]

Balasubramanian S.Magnetron sputtered magnesium-based thin film metallic glasses for bioimplants.Biointerphases2021;16:011005

[178]

Kiani F,Li Y.Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites-a review.Acta Biomater2020;103:1-23

[179]

Rajan ST.Thin film metallic glasses for bioimplants and surgical tools: a review.J Alloys Compd2021;876:159939

[180]

Butt MA.Thin-film coating methods: a successful marriage of high-quality and cost-effectiveness-a brief exploration.Coatings2022;12:1115

[181]

Gibson DR,Waddell EM.Closed field magnetron sputtering: new generation sputtering process for optical coatings.Adv Opt Thin Films III2008;7101:107-18

[182]

Baptista A,Porteiro J,Pinto G.Sputtering physical vapour deposition (PVD) coatings: a critical review on process improvement and market trend demands.Coatings2018;8:402

[183]

Mcclanahan ED.Production of thin films by controlled deposition of sputtered material. In: Behrisch R, Wittmaack K, editors. Sputtering by particle bombardment III. Berlin: Springer Berlin Heidelberg; 1991. pp. 339-77.

[184]

Safi I.Recent aspects concerning DC reactive magnetron sputtering of thin films: a review.Surf Coat Technol2000;127:203-18

[185]

Maissel LI.Thin films deposited by bias sputtering.J Appl Phys1965;36:237-42

[186]

Wasa K,Adachi H. Thin film materials technology: sputtering of control compound materials. Springer Science & Business Media; 2004. p. 518. Available from: https://books.google.com/books?hl=zh-CN&lr=&id=dTmAsG07D00C&oi=fnd&pg=PA1&dq=Wasa+K,+Kitabatake+M,+Adachi+H.+Thin+film+materials+technology:+sputtering+of+control+compound+materials.+Springer+Science+%26+Business+Media%3B+2004.+p.+518.%5B&ots=ck7T0a6jiV&sig=lE6YIkL9Fq0YKB51_09tjoQerFE#v=onepage&q&f=false. [Last accessed on 6 Mar 2025]

[187]

Garg R,Sk S.Sputtering thin films: materials, applications, challenges and future directions.Adv Colloid Interface Sci2024;330:103203

[188]

Aissani L,Zia A,Rtimi S.Magnetron sputtering of transition metal nitride thin films for environmental remediation.Coatings2022;12:1746

[189]

Wu EA. Materials engineering for compatible chemistries in sodium solid-state-batteries and thin-film solid oxide fuel cells. ProQuest; 2024. Available from: https://www.proquest.com/openview/7565d4c01aad601bfa8ec8b32ec14c2f/1?pq-origsite=gscholar&cbl=18750&diss=y. [Last accessed on 6 Mar 2025]

[190]

Li Z,Ma X.Review of thin-film resistor sensors: exploring materials, classification, and preparation techniques.Chem Eng J2023;477:147029

[191]

Haque MM,Islam MA.Modulation of optoelectronic properties of WO3 thin film via Cr doping through RF co-sputtering.Inorg Chem Commun2025;114300

[192]

Liu J,Tang Y.Thickness dependent structural evolution in Mg-Zn-Ca thin film metallic glasses.J Alloys Compd2018;742:524-35

[193]

Yu H,Shi X,Wu H.Ductile biodegradable Mg-based metallic glasses with excellent biocompatibility.Adv Funct Mater2013;23:4793-800

[194]

Xu Z,Chen S.Development and microstructural characterizations of Mg-Zn-Ca alloys for biomedical applications.Mater Sci Eng B2011;176:1660-5

[195]

Zhang S,Zhao C.Research on an Mg-Zn alloy as a degradable biomaterial.Acta Biomater2010;6:626-40

[196]

Zhang B,Wang X,Geng L.Mechanical properties, degradation performance and cytotoxicity of Mg-Zn-Ca biomedical alloys with different compositions.Mater Sci Eng C2011;31:1667-73

[197]

Ortega Y,Pareja R.The precipitation process in Mg-Ca-(Zn) alloys investigated by positron annihilation spectroscopy.J Alloys Compd2008;463:62-6

[198]

Farahany S,Idris MH,Lotfabadi AF.In-situ thermal analysis and macroscopical characterization of Mg-xCa and Mg-0.5Ca-xZn alloy systems.Thermochim Acta2012;527:180-9

[199]

Xu X,Guo M.Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release.Appl Surf Sci2010;256:2367-71

[200]

Zhang X,Yuan G.Improvement of mechanical properties and corrosion resistance of biodegradable Mg-Nd-Zn-Zr alloys by double extrusion.Mater Sci Eng B2012;177:1113-9

[201]

Olugbade TO,Farayibi PK.Electrochemical properties of MgZnCa-based thin film metallic glasses fabricated by magnetron sputtering deposition coated on a stainless steel substrate.Anal Lett2020;54:1588-602

[202]

Han Y.Novel Mg2Zr5O12/Mg2Zr5O12-ZrO2-MgF2 gradient layer coating on magnesium formed by microarc oxidation.J Am Ceram Soc2009;92:1813-6

[203]

Zhang W,Chen Q,Zhang W.Effects of Sr and Sn on microstructure and corrosion resistance of Mg-Zr-Ca magnesium alloy for biomedical applications.Mater Des2012;39:379-83

[204]

Lu W,Yu D.Ductile behavior and excellent corrosion resistance of Mg-Zn-Yb-Ag metallic glasses.Mater Des2021;210:110027

[205]

Tsai P,Song S.Improved mechanical properties and corrosion resistance of Mg-based bulk metallic glass composite by coating with Zr-based metallic glass thin film.Coatings2020;10:1212

[206]

Li J,Liu Y.Exploring a wider range of Mg-Ca-Zn metallic glass as biocompatible alloys using combinatorial sputtering.Chem Commun2017;53:8288-91

[207]

Zhao S,Mahdireza yarigarravesh.A review of magnesium corrosion in bio-applications: mechanism, classification, modeling, in-vitro, and in-vivo experimental testing, and tailoring Mg corrosion rate.J Mater Sci2023;58:12158-81

[208]

Tong P,Hou R,Chen L.Recent progress on coatings of biomedical magnesium alloy.Smart Mater Med2022;3:104-16

[209]

Kania A,Szindler M.Structure and corrosion behavior of TiO2 thin films deposited by ALD on a biomedical magnesium alloy.Coatings2021;11:70

[210]

Rahman M,Choudhury NR.Microroughness induced biomimetic coating for biodegradation control of magnesium.Mater Sci Eng C2021;121:111811

[211]

Heimann RB.Magnesium alloys for biomedical application: advanced corrosion control through surface coating.Surf Coat Technol2021;405:126521

[212]

Vance A,Arjunan A.Compressive performance of an arbitrary stiffness matched anatomical Ti64 implant manufactured using direct metal laser sintering.Mater Des2018;160:1281-94

[213]

Nasello G,Pitocchi J.Mechano-driven regeneration predicts response variations in large animal model based on scaffold implantation site and individual mechano-sensitivity.Bone2021;144:115769

[214]

Bashkuev M,Postigo S,Schmidt H.Computational analyses of different intervertebral cages for lumbar spinal fusion.J Biomech2015;48:3274-82

[215]

Md Saad AP,Harun MN.The influence of flow rates on the dynamic degradation behaviour of porous magnesium under a simulated environment of human cancellous bone.Mater Des2017;122:268-79

[216]

Pobloth AM,Razi H.Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep.Sci Transl Med2018;10:eaam8828

[217]

Reddy TH,Kumar KC,Kokol V.Finite element analysis for mechanical response of magnesium foams with regular structure obtained by powder metallurgy method.Procedia Eng2016;149:425-30

[218]

Cho SM,Kim WH.Biomechanical stability of magnesium plate and screw fixation systems in LeFort I osteotomy: a three-dimensional finite element analysis. Maxillofac Plast Reconstr Surg 2024;46:40.

[219]

Alshammari A,Wang W.Virtual design of 3D-printed bone tissue engineered scaffold shape using mechanobiological modeling: relationship of scaffold pore architecture to bone tissue formation.Polymers2023;15:3918 PMCID:PMC10575293

[220]

Jain S,Fuoco T.Engineering 3D degradable, pliable scaffolds toward adipose tissue regeneration; optimized printability, simulations and surface modification.J Tissue Eng2020;11:2041731420954316 PMCID:PMC7498972

[221]

Loerakker S.Computational modeling for cardiovascular tissue engineering: the importance of including cell behavior in growth and remodeling algorithms.Curr Opin Biomed Eng2020;15:1-9 PMCID:PMC8105589

[222]

Post JN,Merks RMH.Implementing computational modeling in tissue engineering: where disciplines meet.Tissue Eng Part A2022;28:542-54

[223]

Donnaloja F,Soncini M.Natural and synthetic polymers for bone scaffolds optimization.Polymers2020;12:905 PMCID:PMC7240703

[224]

Wang L,Wu S,Li X.Influence of the mechanical properties of biomaterials on degradability, cell behaviors and signaling pathways: current progress and challenges.Biomater Sci2020;8:2714-33

[225]

Pina S,Marques CF.Scaffolding strategies for tissue engineering and regenerative medicine applications.Materials2019;12:1824 PMCID:PMC6600968

[226]

Ghosh R,Chakraborty D.Application of finite element analysis to tissue differentiation and bone remodelling approaches and their use in design optimization of orthopaedic implants: a review.Int J Numer Method Biomed Eng2022;38:e3637

[227]

Verma R,Singh NK,Saxena KK.Design and analysis of biomedical scaffolds using TPMS-based porous structures inspired from additive manufacturing.Coatings2022;12:839

[228]

Gryko A,Sajewicz E.Finite element analysis of the influence of porosity and pore geometry on mechanical properties of orthopaedic scaffolds.J Mech Behav Biomed Mater2022;132:105275

[229]

Noordin MA, Saad APB, Ngadiman NHA, Mustafa NS, bin Mohd Yusof N, Ma’aram A. Finite element analysis of porosity effects on mechanical properties for tissue engineering scaffold.Biointerface Res Appl Chem2020;11:8836-43

[230]

Kakarla AB,Nukala SG.Mechanical behaviour evaluation of porous scaffold for tissue-engineering applications using finite element analysis.J Compos Sci2022;6:46

[231]

Putra RU,Nugrasyah A.Fatigue prediction of porous magnesium bone scaffold using finite element method. 4th Forum in Research, Science, and Technology (FIRST-T1-T2-2020). Palembang Indonesia. Atlantis Press; 2021

[232]

Maslov LB.Biomechanical model and numerical analysis of tissue regeneration within a porous scaffold.Mech Solids2020;55:1115-34

[233]

Jahir-hussain MJ,Esa NEF.The effect of pore geometry on the mechanical properties of 3D-printed bone scaffold due to compressive loading.IOP Conf Ser Mater Sci Eng2021;1051:012016

[234]

Joshi A,Staiger MP.In silico modelling of the corrosion of biodegradable magnesium-based biomaterials: modelling approaches, validation and future perspectives.Biomater Transl2021;2:257-71 PMCID:PMC9255808

[235]

Boland EL,Kelly N,McHugh PE.A review of material degradation modelling for the analysis and design of bioabsorbable stents.Ann Biomed Eng2016;44:341-56

[236]

Kovacevic S,Martínez-Pañeda E.Phase-field modeling of pitting and mechanically-assisted corrosion of Mg alloys for biomedical applications.Acta Biomater2023;164:641-58

[237]

Liu B,Wang C.High temperature oxidation treated 3D printed anatomical WE43 alloy scaffolds for repairing periarticular bone defects: In vitro and in vivo studies. Bioact Mater 2024;32:177-89.

[238]

Liebl H,Holzner F.In-vivo assessment of femoral bone strength using finite element analysis (FEA) based on routine MDCT imaging: a preliminary study on patients with vertebral fractures.PLoS One2015;10:e0116907 PMCID:PMC4344329

[239]

Xu J,Gao M,Zhang S.Biomechanical performance design of joint prosthesis for medical rehabilitation via generative structure optimization.Comput Methods Biomech Biomed Engin2020;23:1163-79

[240]

Nourisa J. The application of agent-based modeling and fuzzy-logic controllers for the study of magnesium biomaterials. Available from: https://macau.uni-kiel.de/receive/macau_mods_00004014. [Last accessed on 6 Mar 2025]

[241]

Nourisa J,Helmholz H,Ivannikov V.Magnesium ions regulate mesenchymal stem cells population and osteogenic differentiation: a fuzzy agent-based modeling approach.Comput Struct Biotechnol J2021;19:4110-22 PMCID:PMC8346546

[242]

Perier-Metz C,Hutmacher DW,Checa S.An in silico model predicts the impact of scaffold design in large bone defect regeneration.Acta Biomater2022;145:329-41

[243]

Pant A,Niebur GL.Integration of mechanics and biology in computer simulation of bone remodeling.Prog Biophys Mol Biol2021;164:33-45

[244]

Lee PS,Dawson J,Appali R.Mathematical models on bone cell homeostasis and kinetics in the presence of electric fields: a review.Prog Biomed Eng2024;7:012004

[245]

Gaziano P.Computational modeling of cell motility and clusters formation in enzyme-sensitive hydrogels.Meccanica2024;59:1335-49

[246]

Santos BC, Noritomi PY, da Silva JVL, Maia IA, Manzini BM. Biological multiscale computational modeling: a promising tool for 3D bioprinting and tissue engineering.Bioprinting2022;28:e00234

[247]

Gaziano P.A phase-field model of cell motility in biodegradable hydrogel scaffolds for tissue engineering applications.Comput Mech2024;74:45-66

[248]

Pires T,Fernandes PR.Challenges in computational fluid dynamics applications for bone tissue engineering.Proc Math Phys Eng Sci2022;478:20210607 PMCID:PMC8791047

[249]

Omar AM,Daskalakis E.Geometry-based computational fluid dynamic model for predicting the biological behavior of bone tissue engineering scaffolds.J Funct Biomater2022;13:104 PMCID:PMC9397055

[250]

Kumar M,Sharma V.A computational approach from design to degradation of additively manufactured scaffold for bone tissue engineering application.RPJ2022;28:1956-67

[251]

d’Adamo A,Corda G.Experimental measurements and CFD modelling of hydroxyapatite scaffolds in perfusion bioreactors for bone regeneration.Regen Biomater2023;10:rbad002 PMCID:PMC9893872

[252]

Channasanon S,Chantaweroad S.Scaffold geometry and computational fluid dynamics simulation supporting osteogenic differentiation in dynamic culture.Comput Methods Biomech Biomed Engin2024;27:587-98

[253]

Manescu Paltanea V,Antoniac A.Mechanical and computational fluid dynamic models for magnesium-based implants.Materials2024;17:830 PMCID:PMC10890492

[254]

Wu C,Zheng K.A machine learning-based multiscale model to predict bone formation in scaffolds.Nat Comput Sci2021;1:532-41

[255]

Li H,Pang S,Zhang T.Corrosion fatigue behavior of a Mg-based bulk metallic glass in a simulated physiological environment.Intermetallics2016;73:31-9

[256]

Jiang L,Dong Y,Zhou X.Processing, production and anticorrosion behavior of metallic glasses: a critical review.J Non-Cryst Solids2023;612:122355

[257]

Cao JD,Laws KJ,Ferry M.Ca-Mg-Zn bulk metallic glasses as bioresorbable metals.Acta Biomater2012;8:2375-83

[258]

rajendran R, Aggarwal D, Bonvalet Rolland M, Gruescu C, Shabadi R. Design and development of large-diameter Mg-Zn-Ca bulk metallic glass for biomedical applications: a mechanical and corrosion perspective.Intermetallics2024;175:108520

[259]

García-Aznar JM,Hervas-Raluy S,Gómez-Benito MJ.Multiscale modeling of bone tissue mechanobiology.Bone2021;151:116032

[260]

Kendall JJ,Marques FC.An in silico micro-multiphysics agent-based approach for simulating bone regeneration in a mouse femur defect model.Front Bioeng Biotechnol2023;11:1289127 PMCID:PMC10757951

[261]

Shen J,Chen B.Effect of biocomposite mediated magnesium ionic micro-homeostasis on cell fate regulation and bone tissue regeneration.Compos Part B Eng2023;265:110961

[262]

Zhang X.Computational models of magnesium medical implants degradation: a review.J Phys Conf Ser2021;1838:012012

[263]

Cai Z,Li K,Xie G.A review of the development of titanium-based and magnesium-based metallic glasses in the field of biomedical materials.Materials2024;17:4587 PMCID:PMC11433194

[264]

Dutta S.Recent developments in engineered magnesium scaffolds for bone tissue engineering.ACS Biomater Sci Eng2023;9:3010-31

[265]

Yao X,Zhou Y.Selective laser melting of an Mg/metallic glass hybrid for significantly improving chemical and mechanical performances.Appl Surf Sci2022;580:152229

[266]

Lebrun N,Bruhier H.Metallic glasses for biological applications and opportunities opened by laser surface texturing: a review.Appl Surf Sci2024;670:160617

[267]

Ramya M.Advances in biodegradable orthopaedic implants: optimizing magnesium alloy corrosion resistance for enhanced bone repair.Biomed Mater Devices2025;3:396-414

[268]

Zhou H,Jiang H,Yu K.Magnesium-based biomaterials as emerging agents for bone repair and regeneration: from mechanism to application.J Magnes Alloys2021;9:779-804

[269]

Wang H,Wang J.Influence of the second phase on protein adsorption on biodegradable Mg alloys’ surfaces: comparative experimental and molecular dynamics simulation studies.Acta Biomater2021;129:323-32

[270]

Cerqueira A,García-Arnáez I.Characterization of magnesium doped sol-gel biomaterial for bone tissue regeneration: the effect of Mg ion in protein adsorption.Mater Sci Eng C2021;125:112114

[271]

Wang X,Chu C,Li J.Structure-function integrated biodegradable Mg/polymer composites: design, manufacturing, properties, and biomedical applications.Bioact Mater2024;39:74-105 PMCID:PMC11112617

[272]

Zhao Y.Understanding and design of metallic alloys guided by phase-field simulations.npj Comput Mater2023;9:1038

[273]

Wang J,Xie W.Corrosion and in vitro cytocompatibility investigation on the designed Mg-Zn-Ag metallic glasses for biomedical application.J Magnes Alloys2024;12:1566-80

[274]

Xu L,Sun K,Wang G.Corrosion behavior in magnesium-based alloys for biomedical applications.Materials2022;15:2613 PMCID:PMC9000648

[275]

Rout PK,Ganguly S.A review on properties of magnesium-based alloys for biomedical applications.Biomed Phys Eng Express2022;8:042002

[276]

Wang P,Zhou X,He M.Surface microstructure and corrosion resistance characterization of Mg-based amorphous alloys.J Mater Sci2024;59:20050-67

[277]

Guo JL,Longaker MT.Machine learning in tissue engineering.Tissue Eng Part A2023;29:2-19 PMCID:PMC9885550

[278]

Salem DA,Hashem EM.Development of machine learning regression models for predicting the performance of nanofibrous scaffolds for skin tissue engineering.J Bio-X Res2024;7:0008

[279]

Gharibshahian M,Bavisi M,Alizadeh A.Recent advances in artificial intelligent strategies for tissue engineering and regenerative medicine.Skin Res Technol2024;30:e70016 PMCID:PMC11348508

[280]

Nosrati H.Artificial intelligence in regenerative medicine: applications and implications.Biomimetics2023;8:442 PMCID:PMC10526210

[281]

Li Z.Predicting bone regeneration from machine learning.Nat Comput Sci2021;1:509-10

[282]

Fan J,Wen X.The future of bone regeneration: artificial intelligence in biomaterials discovery.Mater Today Commun2024;40:109982

[283]

Mai TT,Haque NANMM.Exploring regression models to enable monitoring capability of local energy communities for self-management in low-voltage distribution networks.IET Smart Grid2022;5:25-41

[284]

Chen J,Li S,Wang T.Eutectic and bulk metallic glasses interpretation of Ca(Zr,Ti,Mg,Fe)-based binary biomedical materials via dual-cluster formulas model.Appl Phys A2024;130:8034

[285]

Zhang JY,Zhang ZB.Recent development of chemically complex metallic glasses: from accelerated compositional design, additive manufacturing to novel applications.Mater Futures2022;1:012001

[286]

Wang J,Rao W.Design and characterization of biodegradable Mg-Zn-Ag metallic glasses.Trans Nonferrous Met Soc China2024;34:2814-27

[287]

Musthafa H, Walker J, Domagala M. Computational modelling and simulation of scaffolds for bone tissue engineering.Computation2024;12:74

[288]

Bin SJB,Chua BW.Development of biocompatible bulk MgZnCa metallic glass with very high corrosion resistance in simulated body fluid.Materials2022;15:8989 PMCID:PMC9784780

[289]

Zhang P,Tian Y,Yu Z.Research progress on selective laser melting (SLM) of bulk metallic glasses (BMGs): a review.Int J Adv Manuf Technol2022;118:2017-57

[290]

Addissouky TA.Transforming toxicity assessment through microphysiology, bioprinting, and computational modeling.ACT2024;9:1-14

[291]

Jabed A,Haider W.Distinctive features and fabrication routes of metallic-glass systems designed for different engineering applications: a review.Coatings2023;13:1689

[292]

Rajan S, Karthika M, Bendavid A, Subramanian B. Apatite layer growth on glassy Zr48Cu36Al8Ag8 sputtered titanium for potential biomedical applications.Appl Surf Sci2016;369:501-9

[293]

Rajan ST,Kumar PS,Subramanian B.Biological performance of metal metalloid (TiCuZrPd:B) TFMG fabricated by pulsed laser deposition.Colloids Surf B Biointerfaces2021;202:111684

[294]

Yiu P,Bönninghoff N,Lai B.Thin film metallic glasses: properties, applications and future.J Appl Phys2020;127:030901

[295]

Celarek A,Tschegg EK.PHB, crystalline and amorphous magnesium alloys: promising candidates for bioresorbable osteosynthesis implants?.Mater Sci Eng C2012;32:1503-10

[296]

Hua N,Liao Z.Dry wear behavior and mechanism of a Fe-based bulk metallic glass: description by Hertzian contact calculation and finite-element method simulation.J Non-Cryst Solids2020;543:120065

[297]

Li Y. Laser welding of metallic glass to crystalline metal in laser- foil-printing additive manufacturing. ProQuest. 2019. Available from: https://www.proquest.com/openview/968eddffd4c9393dc4440afe1475f31a/1?pq-origsite=gscholar&cbl=51922&diss=y. [Last accessed on 6 Mar 2025]

AI Summary AI Mindmap
PDF

68

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/