Heterostructured multi-principal element alloys prepared by laser-based techniques

Jiani Huang , Wenqing Yang , Zhenguang Gao , Xu Hou , Xu-Sheng Yang

Microstructures ›› 2025, Vol. 5 ›› Issue (2) : 2025021

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (2) :2025021 DOI: 10.20517/microstructures.2024.86
Review

Heterostructured multi-principal element alloys prepared by laser-based techniques

Author information +
History +
PDF

Abstract

Heterostructured materials, featured by two or more distinct zones with unique properties and intricate interactions at hetero-zone boundaries, showcase a remarkable strength-ductility synergistic effect for achieving superior mechanical properties surpassing their conventional homogeneous counterparts. Benefiting from the basic characteristics, such as complex composition, high configurational entropy and local distortion, multi-principal element alloys offer a fruitful playground for creating diverse heterostructures. Laser-based techniques such as laser surface treatment and laser additive manufacturing provide facile solutions with advantages such as high-energy density, rapid solidification rate, and precise control over processed zones and shapes, making them promising for the advancement of heterostructured multi-principal-element alloys. This review primarily highlights the nanoscale microstructural characteristics of various heterostructured multi-principal element alloys fabricated by laser-based techniques, along with their enhanced mechanical properties and other relevant service attributes. Moreover, it sheds light on the challenges and opportunities in harmonizing microstructural features to optimize the mechanical behavior of heterostructured multi-principal element alloys for industrial applications.

Keywords

Heterostructures / multi-principal-element alloys / laser surface treatment / additive manufacturing / mechanical properties / microstructures.

Cite this article

Download citation ▾
Jiani Huang, Wenqing Yang, Zhenguang Gao, Xu Hou, Xu-Sheng Yang. Heterostructured multi-principal element alloys prepared by laser-based techniques. Microstructures, 2025, 5(2): 2025021 DOI:10.20517/microstructures.2024.86

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ma Y,Yuan F.A review on heterogeneous nanostructures: a strategy for superior mechanical properties in metals.Metals2019;9:598

[2]

Yeh J,Lin S.Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes.Adv Eng Mater2004;6:299-303

[3]

Zhu Y.Heterostructured materials.Prog Mater Sci2023;131:101019

[4]

Cheng Z,Lu Q,Lu L.Extra strengthening and work hardening in gradient nanotwinned metals.Science2018;362:eaau1925

[5]

Pan Q,Feng R.Gradient cell-structured high-entropy alloy with exceptional strength and ductility.Science2021;374:984-9

[6]

Shang Z,Ding J.Gradient nanostructured steel with superior tensile plasticity.Sci Adv2023;9:eadd9780 PMCID:PMC10413645

[7]

Zhang Y,Yu Q.Nacre-like surface nanolaminates enhance fatigue resistance of pure titanium.Nat Commun2024;15:6917 PMCID:PMC11319618

[8]

Bai H,Delattre B,Ritchie RO.Bioinspired large-scale aligned porous materials assembled with dual temperature gradients.Sci Adv2015;1:e1500849 PMCID:PMC4730847

[9]

Han T,Zhao Z.Simultaneous enhancement of strength and conductivity via self-assembled lamellar architecture.Nat Commun2024;15:1863 PMCID:PMC10904369

[10]

Wang H,An X.Deformation-induced crystalline-to-amorphous phase transformation in a CrMnFeCoNi high-entropy alloy.Sci Adv2021;7:eabe3105 PMCID:PMC8011962

[11]

Gu L,Li Y.Ultrastrong and ductile medium-entropy alloys via hierarchical ordering.Sci Adv2024;10:eadn7553 PMCID:PMC11135427

[12]

Duan F,Jiang Z.An order-disorder core-shell strategy for enhanced work-hardening capability and ductility in nanostructured alloys.Nat Commun2024;15:6832 PMCID:PMC11316040

[13]

Ameyama K,Couque H.Harmonic structure, a promising microstructure design.Mater Res Lett2022;10:440-71

[14]

Yang W,Bao WK,You ZS.Light, strong, and stable nanoporous aluminum with native oxide shell.Sci Adv2021;7:eabb9471 PMCID:PMC8270488

[15]

Vajpai SK,Zhang Z.Three-dimensionally gradient harmonic structure design: an integrated approach for high performance structural materials.Mater Res Lett2016;4:191-7

[16]

Fang TH,Tao NR.Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper.Science2011;331:1587-90

[17]

Ritchie RO.The conflicts between strength and toughness.Nat Mater2011;10:817-22

[18]

Espinosa HD,Barthelat F.Merger of structure and material in nacre and bone - perspectives on de novo biomimetic materials.Prog Mater Sci2009;54:1059-100

[19]

Zhao F,Li X,Li M.The manufacturing technology of iron swords from the capital of the Han Empire in China.SN Appl Sci2020;2:3312

[20]

Yin Z,Ma X.Strength and ductility of gradient structured copper obtained by surface mechanical attrition treatment.Mater Des2016;105:89-95

[21]

Gopalan H.The mechanical behavior of nacre across length scales.J Mech Behav Biomed Mater2018;78:96-107

[22]

Li J,Lu K,Zhu Y.Unusual deformation mechanisms evoked by hetero-zone interaction in a heterostructured FCC high-entropy alloy.Acta Mater2025;282:120516

[23]

Wu X,Yuan F.Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility.Proc Natl Acad Sci USA2015;112:14501-5 PMCID:PMC4664339

[24]

Wu X.Gradient and lamellar heterostructures for superior mechanical properties.MRS Bull2021;46:244-9

[25]

Zhu Y.Introduction to heterostructured materials: a fast emerging field.Metall Mater Trans A2021;52:4715-26

[26]

Zhu Y.Perspective on hetero-deformation induced (HDI) hardening and back stress.Mater Res Lett2019;7:393-8

[27]

Zhu YT.Nanostructured metals: retaining ductility.Nat Mater2004;3:351-2

[28]

Zhu Y,Xiong Z,Xue Y.Enabling stronger eutectic high-entropy alloys with larger ductility by 3D printed directional lamellae.Addit Manuf2021;39:101901

[29]

Liu C,Wang Q.Nano-dual-phase metallic glass film enhances strength and ductility of a gradient nanograined magnesium alloy.Adv Sci2020;7:2001480 PMCID:PMC7539178

[30]

Zhu W,Yao Y.Nanostructured high entropy alloys as structural and functional materials.ACS Nano2024;18:12672-706

[31]

Ma QX,Wang Z,Liaw PK.High strength and ductility in partially recrystallized Fe40Mn20Cr20Ni20 high-entropy alloys at cryogenic temperature.Microstructures2022;2:2022015

[32]

Xiao B,Zhang J.Environmental embrittlement behavior of high-entropy alloys.Microstructures2023;3:2023006

[33]

Xu N,Cao Y,Wang .Novel casting CoCrNiAl eutectic high entropy alloys with high strength and good ductility.Microstructures2023;3:2023015

[34]

Ying H,He H.Formation of strong and ductile FeNiCoCrB network-structured high-entropy alloys by fluxing.Microstructures2023;3:2023018

[35]

Ren J,Zhao D.Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing.Nature2022;608:62-8

[36]

Cao B,Jing L.Heterostructure high-entropy alloys with exceptional thermal stability and resistance towards intermediate temperature embrittlement.J Mater Sci Technol2024;188:228-33

[37]

Zhu Y,Anderson PM.Heterostructured materials: superior properties from hetero-zone interaction.Mater Res Lett2021;9:1-31

[38]

Ye Y,Lu J,Yang Y.High-entropy alloy: challenges and prospects.Mater Today2016;19:349-62

[39]

Wang Q,Jiang H,Ruan HH.Superior tensile ductility in bulk metallic glass with gradient amorphous structure.Sci Rep2014;4:4757 PMCID:PMC3996486

[40]

Liu Z,Liu X.Micromechanical characterization of casting-induced inhomogeneity in an Al0.8CoCrCuFeNi high-entropy alloy.Scr Mater2011;64:868-71

[41]

Sarakinos K,Konstantinidis S.High power pulsed magnetron sputtering: a review on scientific and engineering state of the art.Surf Coat Technol2010;204:1661-84

[42]

Ma Y,Qian J.Materials and structure engineering by magnetron sputtering for advanced lithium batteries.Energy Storage Mater2021;39:203-24

[43]

Liang J,Li T.Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis.Green Chem2021;23:2834-67

[44]

Costa JM.Ultrasound-assisted electrodeposition and synthesis of alloys and composite materials: a review.Ultrason Sonochem2020;68:105193

[45]

Kale MB,Gomaa Abdelkader Mohamed A.Electrocatalysts by electrodeposition: recent advances, synthesis methods, and applications in energy conversion.Adv Funct Mater2021;31:2101313

[46]

Shi Y,Tan X.Atomic-level metal electrodeposition: synthetic strategies, applications, and catalytic mechanism in electrochemical energy conversion.Small Struct2022;3:2100185

[47]

Lu Y,Guo S.A promising new class of high-temperature alloys: eutectic high-entropy alloys.Sci Rep2014;4:6200 PMCID:PMC4145285

[48]

Shi P,Li Y.Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys.Science2021;373:912-8

[49]

Zheng S,Carpenter JS.High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces.Nat Commun2013;4:1696

[50]

Majumdar J, Manna I. Laser material processing.Int Mater Rev2011;56:341-88

[51]

Lee H,Low MJ,Murukeshan VM.Lasers in additive manufacturing: a review.Int J Precis Eng Manuf Green Technol2017;4:307-22

[52]

Brighenti R,Marsavina L,Terzano M.Laser-based additively manufactured polymers: a review on processes and mechanical models.J Mater Sci2021;56:961-98

[53]

Zhang J,Wei Q,Shi Y.A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends.J Mater Sci Technol2019;35:270-84

[54]

Liu H,Hong M.Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications.Light Sci Appl2021;10:162 PMCID:PMC8342541

[55]

Gu D,Poprawe R,Setchi R.Material-structure-performance integrated laser-metal additive manufacturing.Science2021;372:eabg1487

[56]

Jia X,Liu L,Duan J.Combined pulse laser: reliable tool for high-quality, high-efficiency material processing.Opt Laser Technol2022;153:108209

[57]

Ji W,Vivegananthan P,Gao H.Recent progress in gradient-structured metals and alloys.Prog Mater Sci2023;140:101194

[58]

Yang T,Chen H.Mechanical design of the highly porous cuttlebone: a bioceramic hard buoyancy tank for cuttlefish.Proc Natl Acad Sci USA2020;117:23450-9 PMCID:PMC7519314

[59]

Huang W.Laser additive manufacturing of high-performance metal components.Sci Sin Inf2015;45:1111-26

[60]

Harish V,Tewari D.Nanoparticle and nanostructure synthesis and controlled growth methods.Nanomaterials2022;12:3226 PMCID:PMC9503496

[61]

Zhu K,Brisset F,Lu J.Nanostructure formation mechanism of α-titanium using SMAT.Acta Mater2004;52:4101-10

[62]

Zuo J.High-power laser systems.Laser Photonics Rev2022;16:2100741

[63]

Quazi MM,Haseeb ASMA,Masjuki HH.Laser-based surface modifications of aluminum and its alloys.Crit Rev Solid State Mater Sci2016;41:106-31

[64]

Vorobyev AY.Direct femtosecond laser surface nano/microstructuring and its applications.Laser Photonics Rev2013;7:385-407

[65]

Zhang Z,Zhou H.Microstructure, hardness, and thermal fatigue behavior of H21 steel processed by laser surface remelting.Appl Surf Sci2013;276:62-7

[66]

Wang Z,Cao Y.Microstructure evolution in laser surface remelting of Ni-33wt.%Sn alloy.J Alloys Compd2013;577:309-14

[67]

Siddiqui AA.Recent trends in laser cladding and surface alloying.Opt Laser Technol2021;134:106619

[68]

Arif ZU,ur Rehman E,Atif M.A review on laser cladding of high-entropy alloys, their recent trends and potential applications.J Manuf Process2021;68:225-73

[69]

Braisted W.Finite element simulation of laser shock peening.Int J Fatigue1999;21:719-24

[70]

Liao Y,Ye C.The mechanisms of thermal engineered laser shock peening for enhanced fatigue performance.Acta Mater2012;60:4997-5009

[71]

Huang D,Chen H,Zhang M.Effects of processing parameters on a β-solidifying TiAl alloy fabricated by laser-based additive manufacturing.Microstructures2022;2:2022019

[72]

Dela Cruz ML,Li X,Zhang M.Microstructure evolution in laser powder bed fusion-built Fe-Mn-Si shape memory alloy.Microstructures2023;3:2023012

[73]

Liu Z,Zhou Z.Hot isostatic pressing induced precipitation strengthening at room and high temperature of Ni-Fe-Cr-Al-V high-entropy alloy manufactured by laser powder bed fusion.Microstructures2024;4:2024024

[74]

Sefene EM.State-of-the-art of selective laser melting process: a comprehensive review.J Manu Syst2022;63:250-74

[75]

Yadroitsev I,Yadroitsava I.Single track formation in selective laser melting of metal powders.J Manuf Process2010;210:1624-31

[76]

Zhu C,Qian F.3D printed functional nanomaterials for electrochemical energy storage.Nano Today2017;15:107-20

[77]

Halani PR,Shin YC.Phase transformation characteristics and mechanical characterization of nitinol synthesized by laser direct deposition.Mater Sci Eng A2013;559:836-43

[78]

Eisenbarth D,Wirth F.Spatial powder flow measurement and efficiency prediction for laser direct metal deposition.Surf Coat Technol2019;362:397-408

[79]

Wilson JM,Shin YC,Ramani K.Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis.J Clean Prod2014;80:170-8

[80]

Bailey NS,Shin YC.Laser direct deposition of AISI H13 tool steel powder with numerical modeling of solid phase transformation, hardness, and residual stresses.J Mater Process Technol2017;247:223-33

[81]

Zhang Z,Yang M.Improving ductility by coherent nanoprecipitates in medium entropy alloy.Int J Plasticity2024;172:103821

[82]

Liu H,Chen P.Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding.Opt Laser Technol2019;118:140-50

[83]

Thevamaran R,Yazdi S,Lee JH.Dynamic creation and evolution of gradient nanostructure in single-crystal metallic microcubes.Science2016;354:312-6

[84]

Lou L,Li X.Directional magnetization reversal enables ultrahigh energy density in gradient nanostructures.Adv Mater2021;33:e2102800

[85]

Gou S,Hu H.Surface hardening of CrCoFeNi high-entropy alloys via Al laser alloying.Mater Res Lett2021;9:437-44

[86]

Fu W,Sun J.Strengthening CrFeCoNiMn0.75Cu0.25 high entropy alloy via laser shock peening.Int J Plasticity2022;154:103296

[87]

Yuan S,Fu H,Yang X.Superior corrosion-resistant nanostructured hypoeutectic CrCoNi-based medium-entropy alloy processed by laser surface remelting.J Alloys Compd2023;967:171802

[88]

Zhang B,Wang P,Cao Y.Enhanced strength-ductility of CoCrFeMnNi high-entropy alloy with inverse gradient-grained structure prepared by laser surface heat-treatment technique.J Mater Sci Technol2022;111:111-9

[89]

Shen J,Yang J.Fabrication of spatially-variable heterostructured CoCrFeMnNi high entropy alloy by laser processing.Mater Sci Eng A2024;896:146272

[90]

Gu GH,Kwon H.Fabrication of multi-gradient heterostructured CoCrFeMnNi high-entropy alloy using laser metal deposition.Mater Sci Eng A2022;836:142718

[91]

Dobbelstein H,George EP,Laplanche G.Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends.Addit Manuf2019;25:252-62

[92]

Guan Y,Cui X.A novel W/FeCoCrNi-based in-situ formed high-entropy alloy gradient coating with Laves-FCC dual-phase structure and synergistic friction behavior.Tribol Int2024;192:109228

[93]

Luo J,Duan R.Laser surface treatment-introduced gradient nanostructured TiZrHfTaNb refractory high-entropy alloy with significantly enhanced wear resistance.J Mater Sci Technol2022;110:43-56

[94]

Zhang Q,Dong Y,Wang Y.High strength and ductility eutectic high entropy alloy with unique core-shell structure.J Alloys Compd2024;976:173141

[95]

Kumar P,Cook DH.A strong fracture-resistant high-entropy alloy with nano-bridged honeycomb microstructure intrinsically toughened by 3D-printing.Nat Commun2024;15:841 PMCID:PMC10825177

[96]

Mu Y,Deng S.A high-entropy alloy with dislocation-precipitate skeleton for ultrastrength and ductility.Acta Mater2022;232:117975

[97]

Huang L,Chen N.Simultaneously enhanced strength-ductility of AlCoCrFeNi2.1 eutectic high-entropy alloy via additive manufacturing.Mater Sci Eng A2022;830:142327

[98]

Sun Y,Ning Z,Ngan AH.Additively manufactured low-gradient interfacial heterostructured medium-entropy alloy multilayers with superior strength and ductility synergy.Compos Part B Eng2024;280:111522

[99]

Mu Y,Jia Y.3D-printed strong and ductile high-entropy alloys with orientation arranged nanostructure complex.J Alloys Compd2023;968:171824

[100]

Miao J,Wang J,Wang T.Surface modification for AlCoCrFeNi2.1 eutectic high-entropy alloy via laser remelting technology and subsequent aging heat treatment.J Alloys Compd2022;894:162380

[101]

Luo J,Liang D.An ultra-strong and ductile crystalline-amorphous nanostructured surface layer on TiZrHfTaNb0.2 high-entropy alloy by laser surface processing.Mater Des2023;227:111710

[102]

Park JM,Zargaran A.Nano-scale heterogeneity-driven metastability engineering in ferrous medium-entropy alloy induced by additive manufacturing.Acta Mater2021;221:117426

[103]

Wu Y,Wang T.A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties.Mater Lett2014;130:277-80

[104]

He J,Wang H.Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system.Acta Mater2014;62:105-13

[105]

Gludovatz B,Catoor D,George EP.A fracture-resistant high-entropy alloy for cryogenic applications.Science2014;345:1153-8

[106]

Lu Y,Gan Y.Investigation on the microstructure, mechanical property and corrosion behavior of the selective laser melted CoCrW alloy for dental application.Mater Sci Eng C Mater Biol Appl2015;49:517-25

[107]

Senkov O.Microstructure and properties of a refractory high-entropy alloy after cold working.J Alloys Compd2015;649:1110-23

[108]

Liu W,Huang H,Lu Z.Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys.Intermetallics2015;60:1-8

[109]

Brif Y,Todd I.The use of high-entropy alloys in additive manufacturing.Scr Mater2015;99:93-6

[110]

Niu S,Guo T,Wang J.Strengthening of nanoprecipitations in an annealed Al0.5CoCrFeNi high entropy alloy.Mater Sci Eng A2016;671:82-6

[111]

Yoshida S,Bai Y.Friction stress and hall-petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing.Sc Mater2017;134:33-6

[112]

Huang H,He J.Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering.Adv Mater2017;29:1701678

[113]

Zhu Z,Ng F.Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting.Scr Mater2018;154:20-4

[114]

Peyrouzet F,Soulas R,Godet S.Selective laser melting of Al0.3CoCrFeNi high-entropy alloy: printability, microstructure, and mechanical properties.JOM2019;71:3443-51

[115]

Zhu ZG,Lu WJ.Selective laser melting enabling the hierarchically heterogeneous microstructure and excellent mechanical properties in an interstitial solute strengthened high entropy alloy.Mater Res Lett2019;7:453-9

[116]

Yao H,He D.High strength and ductility AlCrFeNiV high entropy alloy with hierarchically heterogeneous microstructure prepared by selective laser melting.J Alloys Compd2020;813:152196

[117]

Kim Y,Yang S.In-situ formed oxide enables extraordinary high-cycle fatigue resistance in additively manufactured CoCrFeMnNi high-entropy alloy.Addit Manuf2021;38:101832

[118]

Yao N,Feng K.Ultrastrong and ductile additively manufactured precipitation-hardening medium-entropy alloy at ambient and cryogenic temperatures.Acta Mater2022;236:118142

[119]

Wu Y,Chen Q.Strengthening and fracture mechanisms of a precipitation hardening high-entropy alloy fabricated by selective laser melting.Virtual Phys Prototyp2022;17:451-67

[120]

Lu Y,Fu Z.Ductile and ultrahigh-strength eutectic high-entropy alloys by large-volume 3D printing.J Mater Sci Technol2022;126:15-21

[121]

Liu X,Lu W.Temperature-dependent tensile deformation and plasticity loss mechanism of a novel Ni-Cr-W-based superalloy prepared by laser powder bed fusion.Addit Manuf2023;78:103883

[122]

Fu W,Fan G.Strain delocalization in a gradient-structured high entropy alloy under uniaxial tensile loading.Int J Plasticity2023;171:103808

[123]

Kim RE,Choi YT,Kim HS.Superior tensile properties and formability synergy of high-entropy alloys through inverse-gradient structures via laser surface treatment.Scr Mater2023;234:115587

[124]

Jiao M,Wu Y.Manipulating the ordered oxygen complexes to achieve high strength and ductility in medium-entropy alloys.Nat Commun2023;14:806 PMCID:PMC9925791

[125]

Ren J,Li C.Deformation mechanisms in an additively manufactured dual-phase eutectic high-entropy alloy.Acta Mater2023;257:119179

[126]

Zhang W,Wang H.Ultra-strong and ductile precipitation-strengthened high entropy alloy with 0.5% Nb addition produced by laser additive manufacturing.J Mater Sci Technol2024;187:195-211

[127]

Singh P,Tiarks J.Theory-guided design of duplex-phase multi-principal-element alloys.Acta Mater2024;272:119952

[128]

Li X,Li J,Gao H.Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys.Nat Rev Mater2020;5:706-23

[129]

Sathiyamoorthi P.High-entropy alloys with heterogeneous microstructure: processing and mechanical properties.Prog Mater Sci2022;123:100709

[130]

Ma E.Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals.Mater Today2017;20:323-31

[131]

Hart E.Theory of the tensile test.Acta Metall1967;15:351-5

[132]

Hutchinson J.Influence of strain-rate sensitivity on necking under uniaxial tension.Acta Metall1977;25:839-46

[133]

Peng J,Li F.The predicted rate-dependent deformation behaviour and multistage strain hardening in a model heterostructured body-centered cubic high entropy alloy.Int J Plasticity2021;145:103073

[134]

Yang L.The influence of sample thickness on the tensile properties of pure Cu with different grain sizes.Scr Mater2013;69:242-5

[135]

Jin M,Holdsworth S.Thermally activated dependence of fatigue behaviour of CrMnFeCoNi high entropy alloy fabricated by laser powder-bed fusion.Addit Manuf2022;51:102600

[136]

Chen Y,Chen B.High-cycle fatigue induced twinning in CoCrFeNi high-entropy alloy processed by laser powder bed fusion additive manufacturing.Addit Manuf2023;61:103319

[137]

Nagarjuna C,Ahn S.Worn surface and subsurface layer structure formation behavior on wear mechanism of CoCrFeMnNi high entropy alloy in different sliding conditions.App Surf Sci2021;549:149202

[138]

Joseph J,Shamlaye K,Barnett M.The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures.Wear2019;428-9:32-44

[139]

Poulia A,Lekatou A.Dry-sliding wear response of MoTaWNbV high entropy alloy.Adv Eng Mater2017;19:1600535

[140]

Sadeghilaridjani M,Jha S,Ghodki N.Deformation and tribological behavior of ductile refractory high-entropy alloys.Wear2021;478-9:203916

[141]

Chen L,Han B.Effect of laser remelting on wear behavior of HVOF-sprayed FeCrCoNiTiAl0.6 high entropy alloy coating.Appl Sci2020;10:7211

[142]

Jin B,Yu H,Ma Y.AlxCoCrFeNiSi high entropy alloy coatings with high microhardness and improved wear resistance.Surf Coat Technol2020;402:126328

[143]

Du J,Zhang H.Microstructure and wear resistance of CoCrFeNiMn coatings prepared by extreme-high-speed laser cladding.Surf Coat Technol2023;470:129821

[144]

Li Y,Nie Q.Microstructures and wear resistance of CoCrFeNi2V0.5Tix high-entropy alloy coatings prepared by laser cladding.Crystals2020;10:352

[145]

Shi F,Xu C.In-situ synthesis of NiCoCrMnFe high entropy alloy coating by laser cladding.Opt Laser Technol2022;151:108020

[146]

Peng Y,Li T.Microstructures and mechanical properties of FeCoCrNi high entropy alloy/WC reinforcing particles composite coatings prepared by laser cladding and plasma cladding.Int J Refract Metals Hard Mater2019;84:105044

[147]

Liu H,Li X,Yang H.Effect of heat treatment on phase stability and wear behavior of laser clad AlCoCrFeNiTi0.8 high-entropy alloy coatings.Surf Coat Technol2020;392:125758

[148]

Rui H,Chen C,Yuling G.Microstructure evolution, mechanical properties of FeCrNiMnAl high entropy alloy coatings fabricated by laser cladding.Surf Coat Technol2022;447:128851

[149]

Meyers S,Kinds Y.On the use of slurry as an alternative to dry powder for laser powder bed fusion of 316L stainless steel.Addit Manuf Lett2024;11:100230

[150]

Hu X,Huang Y.Liquid-induced healing of cracks in nickel-based superalloy fabricated by laser powder bed fusion.Acta Mater2024;267:119731

[151]

Yang M,Yuan F,Ma E.Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength.Proc Natl Acad Sci USA2018;115:7224-9 PMCID:PMC6048477

[152]

Chen X,Cheng Z.Direct observation of chemical short-range order in a medium-entropy alloy.Nature2021;592:712-6

[153]

Han Y,Sun Y.Ubiquitous short-range order in multi-principal element alloys.Nat Commun2024;15:6486 PMCID:PMC11294451

[154]

Karthik GM.Heterogeneous aspects of additive manufactured metallic parts: a review.Met Mater Int2021;27:1-39

[155]

Yang Y,Bai Y,Xu B.3D non-isothermal phase-field simulation of microstructure evolution during selective laser sintering.NPJ Comput Mater2019;5:219

[156]

Qian L,Luo J,Chan KC.Amorphous thickness-dependent strengthening-softening transition in crystalline-amorphous nanocomposites.Nano Lett2023;23:11288-96

[157]

Qian L,Fu H.Atomistic simulations of the enhanced creep resistance and underlying mechanisms of nanograined-nanotwinned copper.Mater Sci Eng A2022;855:143912

[158]

Chen X,Gao R,Fu T.Molecular dynamics simulation of the heterostructure of the CoCrFeMnNi high entropy alloy under an impact load.Model Simul Mater Sci Eng2023;31:085020

AI Summary AI Mindmap
PDF

81

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/