Thermoelectric transport properties of BaFe2Fe16O27 hexaferrites

Xiaozhi Zhang , Ling Fu , Zhenyu Pan , Shun Wan , Tian-Ran Wei

Microstructures ›› 2025, Vol. 5 ›› Issue (1) : 2025005

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (1) :2025005 DOI: 10.20517/microstructures.2024.81
Research Article

Thermoelectric transport properties of BaFe2Fe16O27 hexaferrites

Author information +
History +
PDF

Abstract

Exploring new materials with earth-abundant and low-toxicity elements has been a long-standing goal in thermoelectrics. Hexaferrites, a family of environmentally friendly oxides, exhibit complex and tunable structures and excellent magnetic properties, but receive limited attention as potential thermoelectric materials. Here in this study, we systematically investigated the thermoelectric transport properties of W-type hexaferrites BaFe2Fe16O27 and the cobalt-substituted derivatives prepared by sintering in the nitrogen atmosphere. These materials exhibit an n-type conduction behavior and cobalt substitution can tune the electrical transport properties effectively. Low-temperature specific heat capacity analysis unravels the existence of low-energy optical phonons that contribute to damping the heat transport. Low room temperature thermal conductivity of 1.27 W m-1 K-1 is obtained, and the role of cobalt substitution on the thermal conductivity reduction is rationalized by the Debye-Callaway model. This study ‌enlightens the investigation of the thermoelectric transport properties of W-type hexaferrites BaFe2Fe16O27 and extends the scope of new thermoelectric compounds.

Keywords

Oxide thermoelectric materials / hexaferrite / BaFe2Fe16O27 / thermal conductivity

Cite this article

Download citation ▾
Xiaozhi Zhang, Ling Fu, Zhenyu Pan, Shun Wan, Tian-Ran Wei. Thermoelectric transport properties of BaFe2Fe16O27 hexaferrites. Microstructures, 2025, 5(1): 2025005 DOI:10.20517/microstructures.2024.81

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

He J.Advances in thermoelectric materials research: looking back and moving forward.Science2017;357:eaak9997

[2]

Snyder GJ.Complex thermoelectric materials.Nat Mater2008;7:105-14

[3]

Yang J,Zhang W,Yang J.Ab initio-based band engineering and rational design of thermoelectric materials. In: Materials, preparation, and characterization in thermoelectrics. New York: CRC press. 2012.

[4]

Lin S,Wang X.Revealing the promising near-room-temperature thermoelectric performance in Ag2Se single crystals.J Mater2023;9:754-61

[5]

Wei TR,Yu J,Chen L.How to measure thermoelectric properties reliably.Joule2018;2:2183-8

[6]

Tan G,Kanatzidis MG.Rationally designing high-performance bulk thermoelectric materials.Chem Rev2016;116:12123-49

[7]

Zhu T,Fu C,Snyder JG.Compromise and synergy in high-efficiency thermoelectric materials.Adv Mater2017;29:1605884

[8]

Liu WD,Zou J.Eco-friendly higher manganese silicide thermoelectric materials: progress and future challenges.Adv Energy Mater2018;8:1800056

[9]

Lu X,Xia Y.High performance thermoelectricity in earth-abundant compounds based on natural mineral tetrahedrites.Adv Energy Mater2013;3:342-8

[10]

Wei TR,Zhao K,Chen L.Ag2Q-based (Q = S, Se, Te) silver chalcogenide thermoelectric materials.Adv Mater2023;35:e2110236

[11]

Liu Y,Li W,Zhang L.Oxide materials for thermoelectric conversion.Molecules2023;28:5894 PMCID:PMC10421396

[12]

Zhao Z,Zhao LD.Strategies for manipulating thermoelectric properties of layered oxides.Matter2023;6:3274-95

[13]

Terasaki I,Uchinokura K.Large thermoelectric power in NaCo2O4 single crystals.Phys Rev B1997;56:R12685

[14]

Van Nong N, Pryds N, Linderoth S, Ohtaki M. Enhancement of the thermoelectric performance of p-type layered oxide Ca3Co4O9+δ through heavy doping and metallic nanoinclusions.Adv Mater2011;23:2484-90

[15]

Combe E,Savary E.Microwave sintering of Ge-doped In2O3 thermoelectric ceramics prepared by slip casting process.J Eur Ceram Soc2015;35:145-51

[16]

Li Y,Zhang P,Huang M.Theoretical insights into the Peierls plasticity in SrTiO3 ceramics via dislocation remodelling.Nat Commun2022;13:6925 PMCID:PMC9663548

[17]

Zhao LD,Berardan D.BiCuSeO oxyselenides: new promising thermoelectric materials.Energy Environ Sci2014;7:2900-24

[18]

Li F,Zhao LD.Polycrystalline BiCuSeO oxide as a potential thermoelectric material.Energy Environ Sci2012;5:7188-95

[19]

Li Q,Yu C,Spector J.Emerging magnetodielectric materials for 5G communications: 18H hexaferrites.Acta Mater2022;231:117854

[20]

Jasrotia R,Himanshi .Advancements in doping strategies for enhancing applications of M-type hexaferrites: a comprehensive review.Prog Solid State Chem2023;72:100427

[21]

Hu C,Qian Q,Wu F.Rare earth Nd3+ ions-doped W-type barium ferrite for efficient microwave absorption and its optimization mechanism.J Mater Sci Mater Electron2023;34:2295

[22]

Shan S,Zhao X.Magnetic properties of Sm-doped M-type barium ferrite by high-energy ball mill-assisted solid-phase reaction method.J Magn Magn Mater2024;589:171558

[23]

Jasrotia R,Kumar R,Chandel M.Analysis of Cd2+ and In3+ ions doping on microstructure, optical, magnetic and mossbauer spectral properties of sol-gel synthesized BaM hexagonal ferrite based nanomaterials.Res Phy2019;12:1933-41

[24]

Nikmanesh H,Hadi-Sichani B.Study of the structural, magnetic, and microwave absorption properties of the simultaneous substitution of several cations in the barium hexaferrite structure.J Alloys Compd2019;775:1101-8

[25]

Pullar RC.Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics.Prog Mater Sci2012;57:1191-334

[26]

Ebnabbasi K,Vittoria C.Room temperature magnetoelectric effects in bulk poly-crystalline materials of M- and Z-type hexaferrites.J Appl Phys2013;113:17C703

[27]

Kitagawa Y,Honda T,Nakamura H.Low-field magnetoelectric effect at room temperature.Nat Mater2010;9:797-802

[28]

Liu Y,Wu J.Non-layered InSe nanocrystalline bulk materials with ultra-low thermal conductivity.J Mater2024;10:448-55

[29]

Al-Hammadi AH.Investigations on optical and electrical conductivity of Ba/Ni/Zn/Fe16O27 Ferrite nanoparticles.Biointerface Res Appl Chem2022;13:168

[30]

Janu Y,Singhal N.Tuning of electromagnetic properties in Ba(MnZn)xCo2(1-x)Fe16O27/NBR flexible composites for wide band microwave absorption in 6-18 GHz.J Magn Magn Mater2021;527:167666

[31]

Zi ZF,Liu QC,Zhu XB.Magnetic and microwave absorption properties of W-type Ba(ZnxCo1-x)2Fe16O27 hexaferrite platelets.J Appl Phys2011;109:07E536

[32]

Kresse G.Ab initio molecular dynamics for liquid metals.Phys Rev B1993;192-3:222-9

[33]

Perdew JP,Ernzerhof M.Generalized gradient approximation made simple.Phys Rev Lett1996;77:3865

[34]

Blöchl PE,Andersen OK.Improved tetrahedron method for Brillouin-zone integrations.Phys Rev B Condens Matter1994;49:16223

[35]

Wang L,Ceder G.Oxidation energies of transition metal oxides within the GGA+U framework.Phys Rev B2006;73:195107

[36]

Hill R.The elastic behaviour of a crystalline aggregate.Proc Phys Soc A1952;65:349-54

[37]

Momma K.VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data.J Appl Crystallog2011;44:1272-6

[38]

Collomb A,Obradors X.Neutron diffraction studies of some hexagonal ferrites: BaFe12O19, BaMg2-W and BaCo2-W.J Magn Magn Mater1986;62:57-67

[39]

Lisjak D,Sztanislav A.A two-step synthesis of NiZn-W hexaferrites.J Eur Ceram Soc2008;28:2057-62

[40]

Yosif M,Rasool RT.Impact of Gd-substitution on structural, dielectric, spectroscopic, Raman, and photo luminance properties of Ba0.4Sr0.6Co2Fe16O27 ceramics.Mater Chem Phys2024;324:129701

[41]

Ri CH,Qi Y.Anisotropy of the electrical conductivity in W-type hexagonal ferrites BaFe18O27 and BaCo2Fe16O27 from first principles.J Magn Magn Mater2012;324:1498-502

[42]

Henkelman G,Jónsson H.A fast and robust algorithm for Bader decomposition of charge density.Comp Mater Sci2006;36:354-60

[43]

Kreisel J,Vincent H.Raman spectra and vibrational analysis of BaFe12O19 hexagonal ferrite.J Solid State Chem1998;137:127-37

[44]

Koide M,Kamishima K.Synthesis and magnetic properties of Fe2W and Fe2Y hexaferrites.J Magn Soc Jpn2015;39:147-50

[45]

May AF.Introduction to modeling thermoelectric transport at high temperatures. In: Materials, Preparation, and Characterization in Thermoelectrics. New York: CRC Press; 2012. pp. 1-18.

[46]

Hanus R,Rettie AJE.Lattice softening significantly reduces thermal conductivity and leads to high thermoelectric efficiency.Adv Mater2019;31:e1900108

[47]

Ma Y,Liu Y.Remarkable plasticity and softness of polymorphic InSe van der Waals crystals.J Mater2023;9:709-16

[48]

Deng T,Huang H.Number mismatch between cations and anions as an indicator for low lattice thermal conductivity in chalcogenides.NPJ Comput Mater2020;6:81

[49]

Wu J,Shu M.Uncovering the phonon spectra and lattice dynamics of plastically deformable InSe van der Waals crystals.Nat Commun2024;15:6248 PMCID:PMC11269642

[50]

Lin JH,Sie FR.Preparation and thermoelectric properties of Nd and Dy co-doped SrTiO3 bulk materials.Mater Res Bull2020;122:110650

[51]

Butt S,He WQ.Enhancement of thermoelectric performance in Cd-doped Ca3Co4O9 via spin entropy, defect chemistry and phonon scattering.J Mater Chem A2014;2:19479-87

[52]

Schlichting KW,Klemens PG.Thermal conductivity of dense and porous yttria-stabilized zirconia.J Mater Sci2001;36:3003-10

[53]

Callaway J.Effect of point imperfections on lattice thermal conductivity.Phys Rev1960;120:1149

AI Summary AI Mindmap
PDF

67

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/