Catalyst design for the electrochemical reduction of carbon dioxide: from copper nanoparticles to copper single atoms

Qianwen Li , Jingjing Jiang , Shanshan Jiang , Di Liu , Donghao Xu , Yongjia Chen , Dunru Zhu , Xiangwen Liu

Microstructures ›› 2025, Vol. 5 ›› Issue (1) : 2025003

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (1) :2025003 DOI: 10.20517/microstructures.2024.69
Review

Catalyst design for the electrochemical reduction of carbon dioxide: from copper nanoparticles to copper single atoms

Author information +
History +
PDF

Abstract

Carbon dioxide reduction reaction (CO2RR) is an efficacious method to mitigate carbon emissions and simultaneously convert CO2 into high-value carbon products. The efficiency of CO2RR depends on the development of highly active and selective catalysts. Copper (Cu)-based catalysts can effectively reduce CO2 to hydrocarbons and oxygen-containing compounds because of their unique geometric and electronic structures. Most importantly, Cu can reduce CO2 to multiple carbon products (C2+). Therefore, this review aims to outline recent research progress in Cu-based catalysts for CO2RR. After introducing the mechanism of this electroreduction reaction, we summarize the influence of the size, morphology, and coordination environment of single component Cu-based catalysts on their performance, especially the performance control of catalysts that contain nano Cu or Cu single-atom sites. Then, the synergistic regulation strategies of doping other metals into Cu-based catalysts are summarized. Finally, the research on the supports used for Cu-based catalysts is reviewed. The prospects and challenges of Cu-based catalysts are discussed.

Keywords

CO2RR / copper / nanoparticles / single atoms / electrocatalyst

Cite this article

Download citation ▾
Qianwen Li, Jingjing Jiang, Shanshan Jiang, Di Liu, Donghao Xu, Yongjia Chen, Dunru Zhu, Xiangwen Liu. Catalyst design for the electrochemical reduction of carbon dioxide: from copper nanoparticles to copper single atoms. Microstructures, 2025, 5(1): 2025003 DOI:10.20517/microstructures.2024.69

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ringe S,Resasco J.Understanding cation effects in electrochemical CO2 reduction.Energy Environ Sci2019;12:3001-14

[2]

Kim D,Yu Y,Yang P.Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles.Nat Commun2014;5:4948

[3]

Yang D,Sun X.Nanoporous Cu/Ni oxide composites: efficient catalysts for electrochemical reduction of CO2 in aqueous electrolytes.Green Chem2018;20:3705-10

[4]

Lu L,Wang T,Jin F.A new strategy for CO2 utilization with waste plastics: conversion of hydrogen carbonate into formate using polyvinyl chloride in water.Green Chem2020;22:352-8

[5]

Sun H,Yan Z.Superhydrophilic amorphous Co-B-P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction.J Mater Chem A2018;6:22062-9

[6]

Wang Y,Lv X,Zheng G.Defect and interface engineering for aqueous electrocatalytic CO2 reduction.Joule2018;2:2551-82

[7]

Zhang H,Zhao Z.The synthesis of atomic Fe embedded in bamboo-CNTs grown on graphene as a superior CO2 electrocatalyst.Green Chem2018;20:3521-9

[8]

Liu M,Zhang B.Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration.Nature2016;537:382-6

[9]

Xie H,Liang J,Sun S.Cu-based nanocatalysts for electrochemical reduction of CO2.Nano Today2018;21:41-54

[10]

Woldu AR,Zhao P,Astruc D.Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts.Coord Chem Rev2022;454:214340

[11]

Ren D,Yeo BS.Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts.ACS Catal2016;6:8239-47

[12]

Kuhl KP,Abram DN.New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces.Energy Environ Sci2012;5:7050

[13]

Iijima G,Yamaguchi H,Masuda H.Role of a hydroxide layer on Cu electrodes in electrochemical CO2 reduction.ACS Catal2019;9:6305-19

[14]

Carroll T, Yang X, Gordon KJ, Fei L, Wu G. Ethylene electrosynthesis via selective CO2 reduction: fundamental considerations, strategies, and challenges.Adv Energy Mater2024;14:2401558

[15]

Qin Q,Chen L.Emerging Cu-based tandem catalytic systems for CO2 electroreduction to multi-carbon products.Adv Mater Interfaces2024;11:2301049

[16]

Zheng W,Li Z.Designs of tandem catalysts and cascade catalytic systems for CO2 upgrading.Angew Chem Int Ed2023;62:e202307283

[17]

Chen H,Zhu J.Anionic coordination control in building Cu-based electrocatalytic materials for CO2 reduction reaction.Small2024;20:e2400661

[18]

Machado AS, Nunes da Ponte M. CO2 capture and electrochemical conversion.Curr Opin Green Sustain Chem2018;11:86-90

[19]

Li L,Sun Y.Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network.Chem Soc Rev2022;51:1234-52

[20]

Hori Y,Suzuki S.Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution.Chem Lett1985;14:1695-8

[21]

Hori Y,Yoshinami Y.Electrochemical reduction of CO at a copper electrode.J Phys Chem B1997;101:7075-81

[22]

Murata A.Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode.Bull Chem Soc Jpn1991;64:123-7

[23]

Kortlever R,Schouten KJ,Koper MT.Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide.J Phys Chem Lett2015;6:4073-82

[24]

Zhang L,Gong J.Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms.Angew Chem Int Ed2017;56:11326-53

[25]

Jones J,Olah GA.Electrochemical CO2 reduction: recent advances and current trends.Isr J Chem2014;54:1451-66

[26]

Benson EE,Sathrum AJ.Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels.Chem Soc Rev2009;38:89-99

[27]

Hori Y,Takahashi R.Electroreduction of carbon monoxide to methane and ethylene at a copper electrode in aqueous solutions at ambient temperature and pressure.J Am Chem Soc1987;109:5022-3

[28]

Handoko AD,Jenndy ,Seh ZW.Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques.Nat Catal2018;1:922-34

[29]

Li C,Wang Y.Applications of metal-organic frameworks and their derivatives in electrochemical CO2 reduction.Nanomicro Lett2023;15:113

[30]

Wang K,Liu L.Tuning the local electronic structure of oxygen vacancies over copper-doped zinc oxide for efficient CO2 electroreduction.eScience2022;2:518-28

[31]

Albo J,Beobide G,Castaño P.Copper-based metal-organic porous materials for CO2 electrocatalytic reduction to alcohols.ChemSusChem2017;10:1100-9

[32]

Merino-garcia I,Solla-gullón J,Irabien A.Cu oxide/ZnO-based surfaces for a selective ethylene production from gas-phase CO2 electroconversion.J CO2 Util2019;31:135-42

[33]

Nitopi S,Scott SB.Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte.Chem Rev2019;119:7610-72

[34]

Christensen O,Sun Z.Can the CO2 reduction reaction be improved on Cu: selectivity and intrinsic activity of functionalized Cu surfaces.ACS Catal2022;12:15737-49

[35]

Tomboc GM,Kwon T,Lee K.Potential link between Cu surface and selective CO2 electroreduction: perspective on future electrocatalyst designs.Adv Mater2020;32:e1908398

[36]

Hori Y,Tsukamoto T.Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media.Electrochim Acta1994;39:1833-9

[37]

Lum Y,Goddard WA III.Electrochemical CO reduction builds solvent water into oxygenate products.J Am Chem Soc2018;140:9337-40

[38]

Feaster JT,Cave ER.Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes.ACS Catal2017;7:4822-7

[39]

Göttle AJ.Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: prediction of sequential vs. concerted pathways using DFT.Chem Sci2017;8:458-65 PMCID:PMC5298188

[40]

Han J,Xu X.Advances and challenges in the electrochemical reduction of carbon dioxide.Chem Sci2024;15:7870-907 PMCID:PMC11134526

[41]

Li YC,Yuan T.Binding site diversity promotes CO2 electroreduction to ethanol.J Am Chem Soc2019;141:8584-91

[42]

Farrell AE,Turner BT,O'Hare M.Ethanol can contribute to energy and environmental goals.Science2006;311:506-8

[43]

Ren D,Handoko AD,Malkhandi S.Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts.ACS Catal2015;5:2814-21

[44]

Yang H,Xu Q.Efficient strategies for promoting the electrochemical reduction of CO2 to C2+ products over Cu-based catalysts.Chin J Catal2023;48:32-65

[45]

Wang Y,Livi KJT.Copper nanocubes for CO2 reduction in gas diffusion electrodes.Nano Lett2019;19:8461-8

[46]

Song Y,Hensley DK.High-selectivity electrochemical conversion of CO2 to ethanol using a copper nanoparticle/N-doped graphene electrode.ChemistrySelect2016;1:6055-61

[47]

Birdja YY,Figueiredo MC,Calle-vallejo F.Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels.Nat Energy2019;4:732-45

[48]

Roberts FS,Nilsson A.High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts.Angew Chem Int Ed2015;54:5179-82

[49]

Jiang K,Akey AJ.Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO2 reduction.Nat Catal2018;1:111-9

[50]

Feijóo J,Fonseca Guzman MV.Operando high-energy-resolution X-ray spectroscopy of evolving Cu nanoparticle electrocatalysts for CO2 reduction.J Am Chem Soc2023;145:20208-13

[51]

Yin Z,Zhao Z.Cu3N nanocubes for selective electrochemical reduction of CO2 to ethylene.Nano Lett2019;19:8658-63

[52]

Zhou L,Lv J.Synergistic regulation of hydrophobicity and basicity for copper hydroxide‐derived copper to promote the CO2 electroreduction reaction.Carbon Energy2023;5:e328

[53]

Su Y,Li Z.Exploring the impact of nafion modifier on electrocatalytic CO2 reduction over Cu catalyst.J Energy Chem2024;88:543-51

[54]

Pellessier J,Li B.PTFE nanocoating on Cu nanoparticles through dry processing to enhance electrochemical conversion of CO2 towards multi-carbon products.J Mater Chem A2023;11:26252-64

[55]

Lin Y,Zhang L.Tunable CO2 electroreduction to ethanol and ethylene with controllable interfacial wettability.Nat Commun2023;14:3575 PMCID:PMC10275897

[56]

Rabiee H,Zhao J.Regulating the reaction zone of electrochemical CO2 reduction on gas-diffusion electrodes by distinctive hydrophilic-hydrophobic catalyst layers.Appl Catal B: Environ2022;310:121362

[57]

Zhang Y,Chen F.Mass-transfer-enhanced hydrophobic Bi microsheets for highly efficient electroreduction of CO2 to pure formate in a wide potential window.Appl Catal B: Environ2023;322:122127

[58]

Zhao T,Liu J.Functionalizing Cu nanoparticles with fluoric polymer to enhance C2+ product selectivity in membraned CO2 reduction.Appl Catal B: Environ2024;340:123281

[59]

Reske R,Behafarid F,Strasser P.Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles.J Am Chem Soc2014;136:6978-86

[60]

Manthiram K,Alivisatos AP.Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst.J Am Chem Soc2014;136:13319-25

[61]

Jung H,Lee CW.Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C-C coupling from CO2 reduction reaction.J Am Chem Soc2019;141:4624-33

[62]

Yang Y,Yu S.Operando studies reveal active Cu nanograins for CO2 electroreduction.Nature2023;614:262-9

[63]

Zhang J,Gao Z.Electrochemical CO2 reduction over copper phthalocyanine derived catalysts with enhanced selectivity for multicarbon products.ACS Catal2023;13:9326-35

[64]

Zi X,Zhu L.Breaking K+ concentration limit on Cu nanoneedles for acidic electrocatalytic CO2 reduction to multi-carbon products.Angew Chem Int Ed2023;62:e202309351

[65]

Fu W,Wang T.Promoting C2+ production from electrochemical CO2 reduction on shape-controlled cuprous oxide nanocrystals with high-index facets.ACS Sustain Chem Eng2020;8:15223-9

[66]

Luo H,Ma JG.Surface modification of nano-Cu2O for controlling CO2 electrochemical reduction to ethylene and syngas.Angew Chem Int Ed2022;61:e202116736

[67]

Periasamy AP,Senthil Kumar SM,Jian TR.Facet- and structure-dependent catalytic activity of cuprous oxide/polypyrrole particles towards the efficient reduction of carbon dioxide to methanol.Nanoscale2018;10:11869-80

[68]

Wu Q,Wang P.Nanograin-boundary-abundant C2O-Cu nanocubes with high C2+ selectivity and good stability during electrochemical CO2 reduction at a current density of 500 mA/cm2.ACS Nano2023;17:12884-94

[69]

Geng Q,Chen H.Revolutionizing CO2 electrolysis: fluent gas transportation within hydrophobic porous Cu2O.J Am Chem Soc2024;146:10599-607

[70]

Frese KW.Electrochemical reduction of CO2 at solid electrodes. In: Sullivan BP, Krist K, Guard HE, editors. Electrochemical and electrocatalytic reactions of carbon dioxide.Amsterdam: Elsevier; 1993.pp.145-216.

[71]

Hori Y,Koga O.Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes.J Mol Catal A: Chem2003;199:39-47

[72]

Schouten KJ,Pérez Gallent E.Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes.J Am Chem Soc2012;134:9864-7

[73]

Gao Y,Liang X.Cu2O nanoparticles with both {100} and {111} facets for enhancing the selectivity and activity of CO2 electroreduction to ethylene.Adv Sci2020;7:1902820

[74]

Wu ZZ,Niu ZZ.Identification of Cu(100)/Cu(111) interfaces as superior active sites for CO dimerization during CO2 electroreduction.J Am Chem Soc2022;144:259-69

[75]

Ma Z,Toe CY.Reconstructing Cu nanoparticle supported on vertical graphene surfaces via electrochemical treatment to tune the selectivity of CO2 reduction toward valuable products.ACS Catal2022;12:4792-805

[76]

Chen S,Wang Z.Selective CO2 reduction to ethylene mediated by adaptive small-molecule engineering of copper-based electrocatalysts.Angew Chem Int Ed2023;62:e202315621

[77]

Liu B,Yang B.Intermediate enrichment effect of porous Cu catalyst for CO2 electroreduction to C2 fuels.Electrochim Acta2021;388:138552

[78]

Zhang J,Zhu S.Steering CO2 electroreduction pathway toward ethanol via surface-bounded hydroxyl species-induced noncovalent interaction.Proc Natl Acad Sci U S A2023;120:e2218987120

[79]

Liu C,Li J.Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C-C coupling.Angew Chem Int Ed2022;61:e202113498

[80]

Yang PP,Gao FY.Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels.J Am Chem Soc2020;142:6400-8

[81]

Chen X,Alghoraibi NM.Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes.Nat Catal2021;4:20-7

[82]

Wakerley D,Ozanam F.Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface.Nat Mater2019;18:1222-7

[83]

Qu Y,Chen W.Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms.Nat Catal2018;1:781-6

[84]

Lang R,Huang Y.Single-atom catalysts based on the metal-oxide interaction.Chem Rev2020;120:11986-2043

[85]

Ji S,Wang X,Wang D.Chemical synthesis of single atomic site catalysts.Chem Rev2020;120:11900-55

[86]

Zhao Z.Cu-based single-atom catalysts boost electroreduction of CO2 to CH3OH: first-principles predictions.J Phys Chem C2019;123:4380-7

[87]

Cai Y,Zhou Y.Insights on forming N,O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane.Nat Commun2021;12:586 PMCID:PMC7838205

[88]

Li Z,Song Y.Engineering single-atom active sites anchored covalent organic frameworks for efficient metallaphotoredox CN cross-coupling reactions.Sci Bull2022;67:1971-81

[89]

Li X,Yu Q.Research progress on electrochemical CO2 reduction for Cu-based single-atom catalysts.Sci China Mater2023;66:3765-81

[90]

Li X,Zhang J,Li Y.Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance.Nano Res2020;13:1842-55

[91]

Zhu Y,Song X,Mei Y.Engineering local coordination environments of atomically dispersed and heteroatom-coordinated single metal site electrocatalysts for clean energy-conversion.Adv Energy Mater2020;10:1902844

[92]

Dong J,Pei J.Continuous electroproduction of formate via CO2 reduction on local symmetry-broken single-atom catalysts.Nat Commun2023;14:6849 PMCID:PMC10611760

[93]

Wang X,Liang L.Electrochemical CO2 activation and valorization on metallic copper and carbon-embedded N-coordinated single metal MNC catalysts.Angew Chem Int Ed2024;63:e202401821

[94]

Han L,Liu M.Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4.J Am Chem Soc2020;142:12563-7

[95]

Zhao J,Zhao J.Metal-free graphdiyne doped with sp-hybridized boron and nitrogen atoms at acetylenic sites for high-efficiency electroreduction of CO2 to CH4 and C2H4.J Mater Chem A2019;7:4026-35

[96]

He F,Lu B.Ni-based catalysts derived from Ni-Zr-Al ternary hydrotalcites show outstanding catalytic properties for low-temperature CO2 methanation.Appl Catal B: Environ2021;293:120218

[97]

Liu X,Tian Y.Graphdiyne-supported single iron atom: a promising electrocatalyst for carbon dioxide electroreduction into methane and ethanol.J Phys Chem C2020;124:3722-30

[98]

Zhao P,Shen H.Construction of low-coordination Cu-C2 single-atoms electrocatalyst facilitating the efficient electrochemical CO2 reduction to methane.Angew Chem Int Ed2023;62:e202314121

[99]

Shi G,Du L.Constructing Cu-C bonds in a graphdiyne-regulated Cu single-atom electrocatalyst for CO2 reduction to CH4.Angew Chem Int Ed2022;61:e202203569

[100]

Li M,Kuang M.Atomic Cu sites engineering enables efficient CO2 electroreduction to methane with high CH4/C2H4 ratio.Nanomicro Lett2023;15:238 PMCID:PMC10603021

[101]

Chen S,Bu Z.Boosting CO2-to-CO conversion on a robust single-atom copper decorated carbon catalyst by enhancing intermediate binding strength.J Mater Chem A2021;9:1705-12

[102]

Chen S,Zhang X.Guanosine-derived atomically dispersed Cu-N3-C sites for efficient electroreduction of carbon dioxide.J Colloid Interface Sci2023;646:863-71

[103]

Purbia R,Woo CH.Highly selective and low-overpotential electrocatalytic CO2 reduction to ethanol by Cu-single atoms decorated N-doped carbon dots.Appl Catal B: Environ2024;345:123694

[104]

Pan F,Li B.N and OH-immobilized Cu3 clusters in situ reconstructed from single-metal sites for efficient CO2 electromethanation in bicontinuous mesochannels.J Am Chem Soc2024;146:1423-34

[105]

Xia W,Jia S.Adjacent copper single atoms promote C-C coupling in electrochemical CO2 reduction for the efficient conversion of ethanol.J Am Chem Soc2023;145:17253-64

[106]

Xu C,Vasileff A.Highly selective two-electron electrocatalytic CO2 reduction on single-atom Cu catalysts.Small Struct2021;2:2000058

[107]

Cheng H,Li X.Construction of atomically dispersed Cu-N4 sites via engineered coordination environment for high-efficient CO2 electroreduction.Chem Eng J2021;407:126842

[108]

Karapinar D,Ranjbar Sahraie N.Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: selective formation of ethanol and reversible restructuration of the metal sites.Angew Chem Int Ed2019;58:15098-103

[109]

Zhao K,Wang H.Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon.Nat Commun2020;11:2455 PMCID:PMC7229121

[110]

Roy S,Chen Z.Cooperative copper single-atom catalyst in 2D carbon nitride for enhanced CO2 electrolysis to methane.Adv Mater2024;36:e2300713

[111]

Wu QJ,Sun PP.Atomically precise copper nanoclusters for highly efficient electroreduction of CO2 towards hydrocarbons via breaking the coordination symmetry of Cu site.Angew Chem Int Ed2023;62:e202306822

[112]

Lv Z,Liu Y.Improving CO2-to-C2 conversion of atomic CuFONC electrocatalysts through F, O-codrived optimization of local coordination environment.Adv Energy Mater2024;14:2400057

[113]

Chen C,Yu S.Cu-Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons.Joule2020;4:1688-99

[114]

Shen S,Song L.AuCu alloy nanoparticle embedded Cu submicrocone arrays for selective conversion of CO2 to ethanol.Small2019;15:e1902229

[115]

Cao B,Gu J.Designing Cu-based tandem catalysts for CO2 electroreduction based on mass transport of CO intermediate.ACS Catal2022;12:9735-52

[116]

Ji Y,Zheng G.Copper-based catalysts for electrochemical carbon monoxide reduction.Cell Rep Phys Sci2022;3:101072

[117]

Luc W,Wang S.Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction.J Am Chem Soc2017;139:1885-93

[118]

Ross MB,Li Y.Tunable Cu enrichment enables designer syngas electrosynthesis from CO2.J Am Chem Soc2017;139:9359-63

[119]

Peng L,Wang Y.Separated growth of Bi-Cu bimetallic electrocatalysts on defective copper foam for highly converting CO2 to formate with alkaline anion-exchange membrane beyond KHCO3 electrolyte.Appl Catal B: Environ2021;288:120003

[120]

Hou C,Li C.From metal-organic frameworks to single/dual-atom and cluster metal catalysts for energy applications.Energy Environ Sci2020;13:1658-93

[121]

Xu Y,Xiao Y.Tuning the selectivity of liquid products of CO2RR by Cu-Ag alloying.ACS Appl Mater Interfaces2022;14:11567-74

[122]

Yang Z,Fei X.MOF derived bimetallic CuBi catalysts with ultra-wide potential window for high-efficient electrochemical reduction of CO2 to formate.Appl Catal B: Environ2021;298:120571

[123]

Hoang TTH,Ma S.Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol.J Am Chem Soc2018;140:5791-7

[124]

Ouyang Y,Bai X,Li Q.Selectivity of electrochemical CO2 reduction toward ethanol and ethylene: the key role of surface-active hydrogen.ACS Catal2023;13:15448-56

[125]

Morales-guio CG,Nitopi SA.Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst.Nat Catal2018;1:764-71

[126]

Wei Z,Gao S,Cao R.Synergetic effects of gold-doped copper nanowires with low Au content for enhanced electrocatalytic CO2 reduction to multicarbon products.Nano Res2023;16:7777-83

[127]

Zheng Y,Ma Z.Seeded growth of gold-copper janus nanostructures as a tandem catalyst for efficient electroreduction of CO2 to C2+ products.Small2022;18:e2201695

[128]

Ma Y,Sun M.Confined growth of silver-copper janus nanostructures with {100} facets for highly selective tandem electrocatalytic carbon dioxide reduction.Adv Mater2022;34:e2110607

[129]

Wei C,Ma H.Nanoscale management of CO transport in CO2 electroreduction: boosting faradaic efficiency to multicarbon products via nanostructured tandem electrocatalysts.Adv Funct Mater2023;33:2214992

[130]

Choi C,Lee C,Xu M.Intimate atomic Cu-Ag interfaces for high CO2RR selectivity towards CH4 at low over potential.Nano Res2021;14:3497-501

[131]

Li P,Liu J.In situ dual doping for constructing efficient CO2-to-methanol electrocatalysts.Nat Commun2022;13:1965 PMCID:PMC9005706

[132]

Du C,Yohannes AG.Cascade electrocatalysis via AgCu single-atom alloy and Ag nanoparticles in CO2 electroreduction toward multicarbon products.Nat Commun2023;14:6142 PMCID:PMC10556094

[133]

Qi K,Onofrio N.Unlocking direct CO2 electrolysis to C3 products via electrolyte supersaturation.Nat Catal2023;6:319-31

[134]

Li J,Yao B.Cascade dual sites modulate local CO coverage and hydrogen-binding strength to boost CO2 electroreduction to ethylene.J Am Chem Soc2024;146:5693-701

[135]

Kattel S,Chen JG,Liu P.Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts.Science2017;355:1296-99.

[136]

Zhu J,Liu L,Kosinov N.Flame synthesis of Cu/ZnO-CeO2 catalysts: synergistic metal-support interactions promote CH3OH selectivity in CO2 hydrogenation.ACS Catal2021;11:4880-92

[137]

Amann P,Degerman D.The state of zinc in methanol synthesis over a Zn/ZnO/Cu(211) model catalyst.Science2022;376:603-8

[138]

Wan L,Cheng J.Bimetallic Cu-Zn catalysts for electrochemical CO2 reduction: phase-separated versus core-shell distribution.ACS Catal2022;12:2741-8

[139]

Zhen S,Cheng D.Nature of the active sites of copper zinc catalysts for carbon dioxide electroreduction.Angew Chem Int Ed2022;61:e202201913

[140]

Zhang Z,Bian L,Liu Y.Cu-Zn-based alloy/oxide interfaces for enhanced electroreduction of CO2 to C2+ products.J Energy Chem2023;83:90-7

[141]

Liu M,Luo T.Potential alignment in tandem catalysts enhances CO2-to-C2H4 conversion efficiencies.J Am Chem Soc2024;146:468-75

[142]

Song J,Sun R.Local CO generator enabled by a CO-producing core for kinetically enhancing electrochemical CO2 reduction to multicarbon products.ACS Nano2024;18:11416-24

[143]

Wei B,Zhang Z,Li L.Efficient electrocatalytic reduction of CO2 to HCOOH by bimetallic In-Cu nanoparticles with controlled growth facet.Appl Catal B: Environ2021;283:119646

[144]

Wang Z,Liu S.Enhancing the selectivity of CO2-to-HCOOH conversion by constructing tensile-strained Cu catalyst.Mater Today Phys2023;38:101247

[145]

Li X,Wu X.Enhanced CO affinity on Cu facilitates CO2 electroreduction toward multi-carbon products.Small2023;19:e2302530

[146]

Zheng T,Guo C.Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying.Nat Nanotechnol2021;16:1386-93

[147]

Cao Y,Bo S.Single atom Bi decorated copper alloy enables C-C coupling for electrocatalytic reduction of CO2 into C2+ products.Angew Chem Int Ed2023;62:e202303048

[148]

Hu S,Zhang Z.Ampere-level current density CO2 reduction with high C2+ selectivity on La(OH)3-modified Cu catalysts.Small2024;20:e2308226

[149]

Li P,Liu J.p-d orbital hybridization induced by p-block metal-doped Cu promotes the formation of C2+ products in ampere-level CO2 electroreduction.J Am Chem Soc2023;145:4675-82

[150]

Xie M,Ma W.Fast screening for copper-based bimetallic electrocatalysts: efficient electrocatalytic reduction of CO2 to C2+ products on magnesium-modified copper.Angew Chem Int Ed2022;61:e202213423

[151]

Hao J,Li Y.Tuning the electronic structure of AuNi homogeneous solid-solution alloy with positively charged Ni center for highly selective electrochemical CO2 reduction.Chem Eng J2021;404:126523

[152]

Liu A,Ren X.Current progress of electrocatalysts for ammonia synthesis through electrochemical nitrogen reduction under ambient conditions.ChemSusChem2020;13:3766-88

[153]

Xu H,He H.Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper.Nat Energy2020;5:623-32

[154]

Pan F,O'carroll T,Chen K.Carbon catalysts for electrochemical CO2 reduction toward multicarbon products.Adv Energy Mater2022;12:2200586

[155]

Yan Y,Ding Y.Recent advances in Cu-based catalysts for electroreduction of carbon dioxide.Mater Chem Front2021;5:2668-83

[156]

Su X,Zhao F,Zhao D.Size effects of supported Cu-based catalysts for the electrocatalytic CO2 reduction reaction.J Mater Chem A2023;11:23188-210

[157]

Yang H,Li G.Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol.J Am Chem Soc2019;141:12717-23

[158]

Wu Y,Lu X,Wang H.Domino electroreduction of CO2 to methanol on a molecular catalyst.Nature2019;575:639-42

[159]

Zheng W,Chen H.Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction.Adv Funct Mater2020;30:1907658

[160]

Feng Z,Ma Y.Theoretical investigation of CO2 electroreduction on N (B)-doped graphdiyne mononlayer supported single copper atom.Appl Surf Sci2021;538:148145

[161]

Xu F,Shen Z.Oxygen-bridged Cu binuclear sites for efficient electrocatalytic CO2 reduction to ethanol at ultralow overpotential.J Am Chem Soc2024;146:9365-74

[162]

Jiao Y,Chen P,Qiao SZ.Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol.J Am Chem Soc2017;139:18093-100

[163]

Li H,Sun H.CuNCN derived Cu-based/CxNy catalysts for highly selective CO2 electroreduction to hydrocarbons.Appl Catal B: Environ2023;320:121948

[164]

Li Q,Fu J,Wu G.Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene.Nano Energy2016;24:1-9

[165]

Waugh K.Methanol synthesis.Catal Today1992;15:51-75

[166]

Chen S,Dyballa M.Raising the COx methanation activity of a Ru/γ-Al2O3 catalyst by activated modification of metal-support interactions.Angew Chem Int Ed2020;59:22763-70

[167]

Chen J,Caporaso L,Chen EY.Selective reduction of CO2 to CH4 by tandem hydrosilylation with mixed Al/B catalysts.J Am Chem Soc2016;138:5321-33

[168]

Sampson MD.Manganese electrocatalysts with bulky bipyridine ligands: utilizing lewis acids to promote carbon dioxide reduction at low overpotentials.J Am Chem Soc2016;138:1386-93

[169]

Kim YE,Lee Y.Formation of a nickel carbon dioxide adduct and its transformation mediated by a lewis acid.Chem Commun2014;50:11458-61

[170]

Chen S,Zhu J.Lewis acid site-promoted single-atomic Cu catalyzes electrochemical CO2 methanation.Nano Lett2021;21:7325-31

[171]

Yuan J,Yang M,Wang H.CuO nanoparticles supported on TiO2 with high efficiency for CO2 electrochemical reduction to ethanol.Catalysts2018;8:171

[172]

Chu D,Yuan X,Zheng P.Fixation of CO2 by electrocatalytic reduction and electropolymerization in ionic liquid-H2O solution.ChemSusChem2008;1:205-9

[173]

Thompson TL,Yates JT.CO2 as a probe for monitoring the surface defects on TiO2(110)-temperature-programmed desorption.J Phys Chem B2003;107:11700-4

[174]

Cueto LF,Sánchez EM.Thin-film TiO2 electrode surface characterization upon CO2 reduction processes.J Sol-Gel Sci Technol2006;37:105-9

[175]

Abdinejad M,Motlagh MK.Insertion of MXene-based materials into Cu-Pd 3D aerogels for electroreduction of CO2 to formate.Adv Energy Mater2023;13:2300402

[176]

Lin L,Xiao J.Enhancing CO2 electroreduction to methane with a cobalt phthalocyanine and zinc-nitrogen-carbon tandem catalyst.Angew Chem Int Ed2020;59:22408-13

[177]

Chen S,Jiang W.MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis.Angew Chem Int Ed2022;61:e202114450

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/