Micro-electromechanical system-based cryogenic and heating in situ transmission electron microscopy for investigating phase transitions and domain evolution in single-crystal BaTiO3

Tianshu Jiang , Yevheniy Pivak , Fan Ni , Gijs van der Gugten , Junjie Li , Fangping Zhuo , Leopoldo Molina-Luna

Microstructures ›› 2024, Vol. 4 ›› Issue (4) : 2024058

PDF
Microstructures ›› 2024, Vol. 4 ›› Issue (4) :2024058 DOI: 10.20517/microstructures.2024.50
Research Article

Micro-electromechanical system-based cryogenic and heating in situ transmission electron microscopy for investigating phase transitions and domain evolution in single-crystal BaTiO3

Author information +
History +
PDF

Abstract

Investigating phase transitions between ferroelectric states is crucial for understanding the nucleation, dynamics, and kinetics of domains, both before and after transformation. Here, we assess all phase transitions and domain evolutions in single-crystal BaTiO3 by implementing microelectromechanical systems (MEMS)-based in situ cryogenic (cryo-) and heating transmission electron microscopy (TEM) by continuously varying sample temperatures from -175 °C to 200 °C. Every possible phase-cubic, tetragonal, orthorhombic, and rhombohedral - was identified. An ultra-stable imaging condition was achieved with a mean drift speed of 1.52 nm/min, providing unique opportunities for atomic resolution in situ scanning TEM with a wide temperature range. Furthermore, domain nucleation and evolution across phase transitions were investigated using complementary dielectric measurements, optical microscopy, and a phenomenological model. This study underscores the effectiveness and utility of MEMS-based in situ cryo-/heating TEM in revealing phase transitions and domain structures in ferroelectric materials.

Keywords

in situ heating/cryogenic TEM / phase transitions / ferroelectrics / domain nucleation

Cite this article

Download citation ▾
Tianshu Jiang, Yevheniy Pivak, Fan Ni, Gijs van der Gugten, Junjie Li, Fangping Zhuo, Leopoldo Molina-Luna. Micro-electromechanical system-based cryogenic and heating in situ transmission electron microscopy for investigating phase transitions and domain evolution in single-crystal BaTiO3. Microstructures, 2024, 4(4): 2024058 DOI:10.20517/microstructures.2024.50

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Knoll M.Das Elektronenmikroskop.Z Physik1932;78:318-39

[2]

Leisegang S. Versuch mit einer kuehlbaren objektpatrone. In: Ross R, editors. Proceedings of the third international congress on electron microscopy. Royal Society London; 1954. pp. 184-88. Available from:https://scholar.google.com/scholar?hl=zh-CN&as_sdt=0%2C5&q=Leisegang+S.+Versuch+mit+einer+Kuehlbaren+Objektpatrone.+In%3A+Ross+R%2C+editors.+The+third+International+Congress+on+Electron+Microscopy%3A+Proceedings+of+the+Third+International+Congress+on+Electron+Microscopy%3B+1954&btnG= [Last accessed on 8 Oct 2024]

[3]

Whelan MJ.A high temperature stage for the Elmiskop I. In: Bargmann W, Möllenstedt G, Niehrs H, Peters D, Ruska E, Wolpers C, editors. Verhandlungen. Berlin: Springer Berlin Heidelberg; 1960. p. 96-100.

[4]

Butler EP.In situ experiments in the transmission electron microscope.Rep Prog Phys1979;42:833-95

[5]

Martin CJ.A method for calibrating a specimen-heating stage in the electron microscope.J Phys E: Sci Instrum1973;6:21-2

[6]

Clark JB. High-temperature, high-resolution metallography. Metallurgical society conference 1965,38:347. Available from: https://cir.nii.ac.jp/crid/1570291224290647040 [Last accessed on 8 Oct 2024]

[7]

Jouffrey B. Microscopie électronique à haute tension 1975: textes des communications présentées au 4e congrès international, toulouse, 1-4 september 1975. Societe Francaise de Microscopie Electronique; 1976. p. 345. Available from:https://scholar.google.com/scholar?hl=zh-CN&as_sdt=0%2C5&q=Jouffrey+B%2C+Favard+P.+Microscopie+%C3%89lectronique+%C3%80+Haute+Tension+1975%3A+Textes+Des+Communications+Pr%C3%A9sent%C3%A9es+Au+4e+Congr%C3%A8s+International%2C+Toulouse%2C+1-4+September+1975.+Societe+Francaise+de+Microscopie+Electronique%3B+1976.+pp.+345&btnG= [Last accessed on 8 Oct 2024]

[8]

Swann PR,Goringe MJ. High voltage electron microscopy. In:Peter Roland Swann, editors. Blackwell Scientific Publications; 1973. p.365. Available from: https://web.cecs.pdx.edu/~cgshirl/Glenns%20Publications/02%201974%20Critical%20Voltage%20Effect%20and%20Applications%20Thomas%20Shirley%20Lally%20Fisher.pdf [Last accessed on 8 Oct 2024]

[9]

Tejada A.A comparison between minimum variance control and other online compensation methods for specimen drift in transmission electron microscopy.Multidim Syst Sign Process2014;25:247-71

[10]

Baker R,Harris P.Continuous electron microscopic observation of carbonaceous deposits formed on graphite and silica surfaces.Carbon1972;10:93-6

[11]

Baker R.Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene.Journal of Catalysis1972;26:51-62

[12]

Baker RTK.Controlled atmosphere electron microscopy.J Phys E: Sci Instrum1972;5:793-7

[13]

Fujita H,Ishikawa I.A universal environmental cell for a 3MV-class electron microscope and its applications to metallurgical subjects.Jpn J Appl Phys1976;15:2221-8

[14]

Hashimoto H,Eto T.High temperature gas reaction specimen chamber for an electron microscope.Jpn J Appl Phys1968;7:946

[15]

Hiziya K,Watanabe M.Gas reaction on the specimen. In: Bargmann W, Möllenstedt G, Niehrs H, Peters D, Ruska E, Wolpers C, editors. Verhandlungen physikalisch-technischer teil. Berlin: Springer Berlin, Heidelberg; 1960. pp. 80-2.

[16]

Hashimoto H,Eto T.Drops of oxides on tungsten oxide needles and nuclei of dendritic crystals.Journal of Crystal Growth1970;7:113-6

[17]

Venables JA,Thomas GJ.An electron microscope liquid helium stage for use with accessories.J Sci Instrum1968;1:121-6

[18]

Bostanjoglo O.Elektronenmikroskopische untersuchungen am kondensierten wasserstoff, stickstoff und sauerstoff.Zeitschrift für Naturforschung A1967;22:1620-2

[19]

Honjo G,Shimaoka K.Low temperature specimen method for electron diffraction and electron microscopy.J Phys Soc Jpn1956;11:527-36

[20]

Venables JA.Liquid helium cooled tilting stage for an electron microscope.Review of Scientific Instruments1963;34:582-3

[21]

Piercy GR,Howe LM.A liquid helium cooled finger for the Siemens electron microscope.J Sci Instrum1963;40:487-9

[22]

Goringe MJ.Use of the bright field shadow technique to study superconductivity in the electron microscope.Philosophical Magazine1963;8:1999-2003

[23]

Boersch H,Niedrig H.Temperaturabhängigkeit der transparenz dünner schichten für schnelle elektronen.Z Physik1964;180:407-14

[24]

Boersch H,Yersin H.Temperature dependence of large angle electron scattering at polycrystalline gold foils.Physics Letters A1967;25:195-6

[25]

Watanabe H.A liquid helium cooled stage for an electron microscope.Jpn J Appl Phys1967;6:83

[26]

Heide HG.A novel specimen stage permitting high-resolution electron microscopy at low temperatures.J Phys E: Sci Instrum1972;5:803-8

[27]

Chlebek HG.A liquid helium stage for the Philips EM 300 electron microscope.J Phys E: Sci Instrum1973;6:1105-6

[28]

Nogales E.The development of cryo-EM into a mainstream structural biology technique.Nat Methods2016;13:24-7 PMCID:PMC4913480

[29]

Fernández-Morán H.Low-temperature preparation techniques for electron microscopy of biological specimens based on rapid freezing with liquid helium II.Ann N Y Acad Sci1960;85:689-713

[30]

Taylor KA.Electron diffraction of frozen, hydrated protein crystals.Science1974;186:1036-7

[31]

Chiu W.Electron microscopy of frozen, hydrated biological specimens.Annu Rev Biophys Biophys Chem1986;15:237-57

[32]

Dubochet J.Vitrification of pure water for electron microscopy.Journal of Microscopy1981;124:3-4

[33]

Dubochet J,Chang JJ.Cryo-electron microscopy of vitrified specimens.Q Rev Biophys1988;21:129-228

[34]

Adrian M,Lepault J.Cryo-electron microscopy of viruses.Nature1984;308:32-6

[35]

Bostanjoglo O.Superferromagnetism in thin Gd and Gd-Au films.Phys Stat Sol (a)1971;7:387-92

[36]

Gai PL.In-situ environmental transmission electron microscopy. In: Kirkland A, Haigh S, Kroto H, O’brien P, Craighead H, editors. Nanocharacterisation. The Royal Society of Chemistry; 2007. pp. 268-290.

[37]

Gai PL.Dynamic in situ experiments in a 1Å double aberration corrected environment. In: Luysberg M, Tillmann K, Weirich T, editors. EMC 2008 14th european microscopy congress 1–5 september 2008, Aachen, Germany. Berlin: Springer Berlin Heidelberg; 2008. pp. 479-80.

[38]

Kamino T.A newly developed high resolution hot stage and its application to materials characterization.Microsc Microanal Microstruct1993;4:127-35

[39]

Gai PL.Advances in atomic resolution in situ environmental transmission electron microscopy and 1A aberration corrected in situ electron microscopy.Microsc Res Tech2009;72:153-64

[40]

Tai K,Dillon SJ.In situ cryogenic transmission electron microscopy for characterizing the evolution of solidifying water ice in colloidal systems.Microsc Microanal2014;20:330-7

[41]

Bell D.A JEOL-based cooling holder with a low specimen drift allowing sub 1Å STEM imaging. European Microscopy Congress 2016: Proceedings. Wiley; 2016. p. 352-3.

[42]

Hotz MT,Dellby N.Optimizing the Nion STEM for in-situ experiments.Microsc Microanal2018;24:1132-3

[43]

Goodge BH,Schnitzer N,Kourkoutis LF.Atomic-resolution cryo-STEM across continuously variable temperatures.Microsc Microanal2020;26:439-46

[44]

Fernandez-Leiro R.Unravelling biological macromolecules with cryo-electron microscopy.Nature2016;537:339-46 PMCID:PMC5074357

[45]

Ross FM.Opportunities and challenges in liquid cell electron microscopy.Science2015;350:aaa9886

[46]

Dubochet J.On the development of electron cryo-microscopy (nobel lecture).Angew Chem Int Ed Engl2018;57:10842-6

[47]

Cui Y.Imaging sensitive materials, interfaces, and quantum materials with cryogenic electron microscopy.Acc Chem Res2021;54:3619-20

[48]

Zachman MJ,Choudhury S,Kourkoutis LF.Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries.Nature2018;560:345-9

[49]

Fan Z,Baumann D.In situ transmission electron microscopy for energy materials and devices.Adv Mater2019;31:e1900608

[50]

Liang J,Chou TM.Analytical cryo-scanning electron microscopy of hydrated polymers and microgels.Acc Chem Res2021;54:2386-96

[51]

Gong X,Chen Z.Insights into the structure and dynamics of metal-organic frameworks via transmission electron microscopy.J Am Chem Soc2020;142:17224-35

[52]

Li Y,Li Y.Unravelling atomic structure and degradation mechanisms of organic-inorganic halide perovskites by cryo-EM.Joule2019;3:2854-66 PMCID:PMC8186345

[53]

Hart JL.Seeing quantum materials with cryogenic transmission electron microscopy.Nano Lett2021;21:5449-52

[54]

El Baggari I,Admasu AS.Nature and evolution of incommensurate charge order in manganites visualized with cryogenic scanning transmission electron microscopy.Proc Natl Acad Sci U S A2018;115:1445-50 PMCID:PMC5816166

[55]

Bianco E.Atomic-resolution cryogenic scanning transmission electron microscopy for quantum materials.Acc Chem Res2021;54:3277-87

[56]

Jiang T,Recalde-benitez O.Observation of dislocation-controlled domain nucleation and domain-wall pinning in single-crystal BaTiO3.Applied Physics Letters2023;123:202901

[57]

Ignatans R,Tileli V.Local hard and soft pinning of 180° domain walls in BaTiO3 probed by in situ transmission electron microscopy.Phys Rev Materials2020;4:104403

[58]

Ignatans R,Tileli V.Individual barkhausen pulses of ferroelastic nanodomains.Phys Rev Lett2021;127:167601

[59]

O’Reilly T,Arredondo M. Investigating BaTiO3 via in situ heating TEM. Microsc. Electron Ion Microsc 2021. Available from: https://analyticalscience.wiley.com/content/article-do/investigating-batio3-via-situ-heating-tem [Last accessed on 21 Sep 2024].

[60]

O’Reilly T,Zhang X.The effect of chemical environment and temperature on the domain structure of free-standing BaTiO3 via in situ STEM.Adv Sci (Weinh)2023;10:e2303028 PMCID:PMC10582436

[61]

Tsuda K,Tanaka M.Nanoscale local structures of rhombohedral symmetry in the orthorhombic and tetragonal phases of BaTiO3 studied by convergent-beam electron diffraction.Phys Rev B2012;86:214106

[62]

Mun J,Roh CJ.In situ cryogenic HAADF-STEM observation of spontaneous transition of ferroelectric polarization domain structures at low temperatures.Nano Lett2021;21:8679-86

[63]

Tyukalova E,Ignatans R.Challenges and applications to operando and in situ TEM imaging and spectroscopic capabilities in a cryogenic temperature range.Acc Chem Res2021:3125-35

[64]

Wang YL,Damjanovic D,Deng GC.Unusual dielectric behavior and domain structure in rhombohedral phase of BaTiO3 single crystals.Journal of Applied Physics2011;110:014101

[65]

Recalde-Benitez O,Jiang T.Weld-free mounting of lamellae for electrical biasing operando TEM.Ultramicroscopy2024;260:113939

[66]

Pivak Y,van Omme T.Development of a stable cryogenic in situ biasing system for atomic resolution (s)TEM.Microsc Microanal2023;29:1695

[67]

Omme JT, Zakhozheva M, Spruit RG, Sholkina M, Pérez Garza HH. Advanced microheater for in situ transmission electron microscopy; enabling unexplored analytical studies and extreme spatial stability.Ultramicroscopy2018;192:14-20

[68]

Krisper R,Pivak Y,Grogger W.The performance of EDXS at elevated sample temperatures using a MEMS-based in situ TEM heating system.Ultramicroscopy2022;234:113461

[69]

Yang Y,Yesibolati MN.Standard calibrations and prediction for thermal gradients during in situ transmission electron microscopy heating experiments.Microscopy and Microanalysis2024;30:ozae044.824

[70]

Vijayan S,Kong Z.Quantification of extreme thermal gradients during in situ transmission electron microscope heating experiments.Microsc Res Tech2022;85:1527-37

[71]

Molina-Luna L,Pivak Y.Enabling nanoscale flexoelectricity at extreme temperature by tuning cation diffusion.Nat Commun2018;9:4445 PMCID:PMC6202390

[72]

Merz WJ.The electric and optical behavior of BaTiO3 single-domain crystals.Phys Rev1949;76:1221

[73]

Zhuo F,Gao S.Anisotropic dislocation-domain wall interactions in ferroelectrics.Nat Commun2022;13:6676 PMCID:PMC9637100

[74]

Fujii I.Temperature dependence of dielectric nonlinearity of BaTiO3 ceramics.Microstructures2023;3

[75]

Hershkovitz A,Barzilay M,Ivry Y.Mesoscopic origin of ferroelectric-ferroelectric transition in BaTiO3: orthorhombic-to-tetragonal domain evolution.Acta Materialia2020;187:186-90

[76]

Zhuo F,Gao S.Intrinsic-strain engineering by dislocation imprint in bulk ferroelectrics.Phys Rev Lett2023;131:016801

[77]

Wu H,Zhang T.Pseudo-first-order phase transition for ultrahigh positive/negative electrocaloric effects in perovskite ferroelectrics.Nano Energy2015;16:419-27

[78]

Li YL,Choudhury S.Influence of interfacial dislocations on hysteresis loops of ferroelectric films.Journal of Applied Physics2008;104:104110

[79]

Zhang S,Jiang X,Luo J.Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers - a review.Prog Mater Sci2015;68:1-66 PMCID:PMC4267134

[80]

Marton P,Hlinka J.Domain walls of ferroelectric BaTiO3 within the ginzburg-landau-devonshire phenomenological model.Phys Rev B2010;81:144125

[81]

Chou J,Lu H.Ferroelectric domains in pressureless-sintered barium titanate.Acta Materialia2000;48:3569-79

[82]

Williams DB.Transmission electron microscopy: a textbook for materials science. 2nd ed. Springer; 2008.

[83]

Höfling M,Riemer LM.Control of polarization in bulk ferroelectrics by mechanical dislocation imprint.Science2021;372:961-4

[84]

Everhardt AS,Zorn JA.Periodicity-doubling cascades: direct observation in ferroelastic materials.Phys Rev Lett2019;123:087603

[85]

Acosta M,Rojas V.BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives.Applied Physics Reviews2017;4:041305

[86]

Qiu C,Zhang N.Transparent ferroelectric crystals with ultrahigh piezoelectricity.Nature2020;577:350-4

[87]

Nataf GF,Gregg JM.Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials.Nat Rev Phys2020;2:634-48

[88]

Hlinka J.Phenomenological model of a 90° domain wall in BaTiO3-type ferroelectrics.Phys Rev B2006;74:104104

[89]

Erhart J.Permissible symmetries of multi-domain configurations in perovskite ferroelectric crystals.Journal of Applied Physics2003;94:3436-45

[90]

Gao J,Liu W,Ren X.Recent progress on BaTiO3-based piezoelectric ceramics for actuator applications.Actuators2017;6:24

[91]

Ren X.Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching.Nat Mater2004;3:91-4

[92]

Zhuo F,Dietrich F.Dislocation density-mediated functionality in single-crystal BaTiO3.Adv Sci (Weinh)2024;11:e2403550 PMCID:PMC11336959

[93]

Jiang T,Recalde-benitez O,Molina-luna L.Atomic-scale analysis of dislocation-controlled domain nucleation and domain-wall pinning in single-crystal BaTiO3 by cryo/heating MEMS-based in situ TEM.Microscopy and Microanalysis2024;30:ozae044.675

AI Summary AI Mindmap
PDF

62

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/