Cathode architecture and active site engineering in lithium-CO2 batteries

Haobo Sun , Chuanli Di , Zeyi Wu , Ying Jiang , Iftikhar Hussain , Zhengqing Ye

Microstructures ›› 2025, Vol. 5 ›› Issue (1) : 2025014

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (1) :2025014 DOI: 10.20517/microstructures.2024.45
Review

Cathode architecture and active site engineering in lithium-CO2 batteries

Author information +
History +
PDF

Abstract

Secondary lithium-carbon dioxide (Li-CO2) batteries possess great application potential for CO2 fixation and electrochemical energy storage. Nevertheless, the formation of stable and insulating discharge intermediates and the complexity of multiphase interfacial reactions lead to large potential polarization and inferior redox reversibility. In this review, we systematically discuss the charge/discharge mechanisms of Li-CO2 redox reaction. Latest research achievements about cathode architecture and active site engineering are summarized in detail. In particular, representative engineering strategies (i.e., morphological modulation, dimensional hybridization, defect, single atoms, heterostructure, and synergy engineering) of cathode materials for high-performance Li-CO2 batteries are systematically introduced. Lastly, the current research progress is briefly summarized and the future challenge and potential opportunities for further development of advanced Li-CO2 batteries are proposed.

Keywords

Cathode architecture / active site engineering / carbon dioxide conversion / Li-CO2 batteries

Cite this article

Download citation ▾
Haobo Sun, Chuanli Di, Zeyi Wu, Ying Jiang, Iftikhar Hussain, Zhengqing Ye. Cathode architecture and active site engineering in lithium-CO2 batteries. Microstructures, 2025, 5(1): 2025014 DOI:10.20517/microstructures.2024.45

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nejat P,Taheri MM,Abd. Majid MZ.A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries).Renew Sustain Energy Rev2015;43:843-62

[2]

Li H,Luo H,Zhu W.Recent developments in metal nanocluster-based catalysts for improving photocatalytic CO2 reduction performance.Microstructures2023;3:2023024

[3]

Zou J,Zhang F,Davey K.Revisiting the role of discharge products in Li-CO2 batteries.Adv Mater2023;35:e2210671

[4]

Ye Z,Li L,Chen R.Rational design of MOF-based materials for next-generation rechargeable batteries.Nanomicro Lett2021;13:203 PMCID:PMC8492800

[5]

Guo Y,Lu J,Deng Y.The concept, structure, and progress of seawater metal-air batteries.Microstructures2023;3:2023034

[6]

Liang S,Song LN,Tu WB.Accelerated confined mass transfer of MoS2 1D nanotube in photo-assisted metal-air batteries.Adv Mater2024;36:e2307790

[7]

Fetrow CJ,Zhou XD.Electrochemistry of metal-CO2 batteries: opportunities and challenges.Energy Storage Mater2022;45:911-33

[8]

Rabiee H,Wang H,Ge L.Electrochemical CO2 reduction integrated with membrane/adsorption-based CO2 capture in gas-diffusion electrodes and electrolytes.EcoEnergy2024;2:3-21

[9]

Ahmadiparidari A,Majidi L.A long-cycle-life lithium-CO2 battery with carbon neutrality.Adv Mater2019;31:e1902518

[10]

Liu B,Liu L.Recent advances in understanding Li-CO2 electrochemistry.Energy Environ Sci2019;12:887-922

[11]

Chen J,Liu Y.Recent progress of transition metal-based catalysts as cathodes in O2/H2O-involved and pure Li-CO2 batteries.Energy Environ Sci2023;16:792-829

[12]

Takechi K,Asaoka T.A Li-O2/CO2 battery.Chem Commun2011;47:3463-5

[13]

Xu S,Archer LA.The Li-CO2 battery: a novel method for CO2 capture and utilization.RSC Adv2013;3:6656

[14]

Liu F,Wang Y.Rational engineering of 2D materials as advanced catalyst cathodes for high-performance metal-carbon dioxide batteries.Small Struct2023;4:2300025

[15]

Ma Z,Li L.A review of cathode materials and structures for rechargeable lithium-air batteries.Energy Environ Sci2015;8:2144-98

[16]

Zhang Z,Zhu X.Addressing transport issues in non-aqueous Li-air batteries to achieving high electrochemical performance.Electrochem Energy Rev2023;6:157

[17]

Zhang Z,Yan A,Yu J.A quantitative understanding of electron and mass transport coupling in lithium-oxygen batteries.Adv Energy Mater2023;13:2302816

[18]

Goodarzi M,Illas F.Assessing the performance of cobalt phthalocyanine nanoflakes as molecular catalysts for Li-promoted oxalate formation in Li-CO2-oxalate batteries.J Phys Chem C2018;122:25776-84

[19]

Németh K.CO2/oxalate cathodes as safe and efficient alternatives in high energy density metal-air type rechargeable batteries.RSC Adv2014;4:1879-85

[20]

Ma S,Yao H,Liu Q.Regulating the nucleation of Li2CO3 and C by anchoring Li-containing carbonaceous species towards high performance Li-CO2 batteries.J Energy Chem2022;65:472-9

[21]

Qiao Y,Wu S.Li-CO2 electrochemistry: a new strategy for CO2 fixation and energy storage.Joule2017;1:359-70

[22]

Angamuthu R,Lutz M,Bouwman E.Electrocatalytic CO2 conversion to oxalate by a copper complex.Science2010;327:313-5

[23]

Ye Z,Gao H.Intrinsic activity regulation of metal chalcogenide electrocatalysts for lithium-sulfur batteries.Energy Storage Mater2023;60:102855

[24]

Li W,Sun X.Boosting a practical Li-CO2 battery through dimerization reaction based on solid redox mediator.Nat Commun2024;15:803 PMCID:PMC11258291

[25]

Wang YF,Zheng LJ,Wu JY.Reversible carbon dioxide/lithium oxalate regulation toward advanced aprotic lithium carbon dioxide battery.Angew Chem Int Ed2024;63:e202400132

[26]

Zhao Z,Peng Z.Probing lithium carbonate formation in trace-O2-assisted aprotic Li-CO2 batteries using in situ surface-enhanced Raman spectroscopy.J Phys Chem Lett2019;10:322-8

[27]

Xue H,Lu X.Aqueous formate-based Li-CO2 battery with low charge overpotential and high working voltage.Adv Energy Mater2021;11:2101630

[28]

Zhang F.Direct evidence of local pH change and the role of alkali cation during CO2 electroreduction in aqueous media.Angew Chem Int Ed2020;59:1674-81

[29]

Hou Y,Liu L.Mo2C/CNT: an efficient catalyst for rechargeable Li-CO2 batteries.Adv Funct Mater2017;27:1700564

[30]

Tang Z,Zhu H.Promoting the performance of Li-CO2 batteries via constructing three-dimensional interconnected K+ doped MnO2 nanowires networks.Front Chem2021;9:670612 PMCID:PMC8082424

[31]

Pipes R,Bhargav A.Freestanding vanadium nitride nanowire membrane as an efficient, carbon-free gas diffusion cathode for Li-CO2 batteries.Energy Storage Mater2020;31:95-104

[32]

Xie H,Hu C,Liu D.Boosting Li-CO2 battery performances by creating holey structure on CNT cathodes.Electrochim Acta2022;417:140310

[33]

Qi G,Chen L,Cheng J.Binder-free MoN nanofibers catalysts for flexible 2-electron oxalate-based Li-CO2 batteries with high energy efficiency.Adv Funct Mater2022;32:2112501

[34]

Chen Y,Wang J.Ethylene selectivity in electrocatalytic CO2 reduction on Cu nanomaterials: a crystal phase-dependent study.J Am Chem Soc2020;142:12760-6

[35]

Zhou J,Chen L.Boosting the reaction kinetics in aprotic lithium-carbon dioxide batteries with unconventional phase metal nanomaterials.Proc Natl Acad Sci USA2022;119:e2204666119 PMCID:PMC9546633

[36]

Guo L,Xu A.Highly efficient two-dimensional Ag2Te cathode catalyst featuring a layer structure derived catalytic anisotropy in lithium-oxygen batteries.Energy Storage Mater2022;50:96-104

[37]

Wang Y,Lin C.Decreasing the overpotential of aprotic Li-CO2 batteries with the in-plane alloy structure in ultrathin 2D Ru-based nanosheets.Adv Funct Mater2022;32:2202737

[38]

Fan L,Ji D.Biaxially compressive strain in Ni/Ru core/shell nanoplates boosts Li-CO2 batteries.Adv Mater2022;34:e2204134

[39]

Zhao W,Deng Q.Toward an understanding of bimetallic MXene solid-solution in binder-free electrocatalyst cathode for advanced Li-CO2 batteries.Adv Funct Mater2023;33:2210037

[40]

Yu W,Yoshii T.Hierarchically porous and minimally stacked graphene cathodes for high-performance lithium-oxygen batteries.Adv Energy Mater2024;14:2303055

[41]

Zhou X,Chen B.Synthesis of 2H/fcc-heterophase AuCu nanostructures for highly efficient electrochemical CO2 Reduction at industrial current densities.Adv Mater2023;35:e2304414

[42]

Pipes R,Bhargav A.Efficient Li-CO2 batteries with molybdenum disulfide nanosheets on carbon nanotubes as a catalyst.ACS Appl Energy Mater2019;2:8685-94

[43]

Jiang C,Zhang M.Exfoliation of covalent organic frameworks into MnO2-loaded ultrathin nanosheets as efficient cathode catalysts for Li-CO2 batteries.Cell Rep Phys Sci2021;2:100392

[44]

Xing Y,Li N.Ultrathin RuRh alloy nanosheets enable high-performance lithium-CO2 battery.Matter2020;2:1494-508

[45]

Xu Y,Ren H.Highly efficient Cu-porphyrin-based metal-organic framework nanosheet as cathode for high-rate Li-CO2 battery.Small2022;18:e2203917

[46]

Dong LZ,Lu YF.A well-defined dual Mn-site based metal-organic framework to promote CO2 reduction/evolution in Li-CO2 batteries.Chem Commun2021;57:8937-40

[47]

Li S,Zhou J.Carbon dioxide in the cage: manganese metal-organic frameworks for high performance CO2 electrodes in Li-CO2 batteries.Energy Environ Sci2018;11:1318-25

[48]

Wang JH,Chen Y.Phthalocyanine based metal-organic framework ultrathin nanosheet for efficient photocathode toward light-assisted Li-CO2 battery.Adv Funct Mater2022;32:2210259

[49]

Zhang Y,Lu M.Single metal site and versatile transfer channel merged into covalent organic frameworks facilitate high-performance Li-CO2 batteries.ACS Cent Sci2021;7:175-82 PMCID:PMC7845012

[50]

Huang S,Meng C.CO2 Nanoenrichment and nanoconfinement in cage of imine covalent organic frameworks for high-performance CO2 cathodes in Li-CO2 batteries.Small2019;15:e1904830

[51]

Li X,Chen Z.Covalent-organic-framework-based Li-CO2 batteries.Adv Mater2019;31:e1905879

[52]

Chen Y,Chen Z.Efficient multicarbon formation in acidic CO2 reduction via tandem electrocatalysis.Nat Nanotechnol2024;19:311-8

[53]

Cheng Z,Yang Y.Hydrogen-bonded organic framework to upgrade cycling stability and rate capability of Li-CO2 batteries.Angew Chem Int Ed2023;62:e202311480

[54]

Yang S,He P.A reversible lithium-CO2 battery with Ru nanoparticles as a cathode catalyst.Energy Environ Sci2017;10:972-8

[55]

Baek K,Woo S.Synergistic effect of quinary molten salts and ruthenium catalyst for high-power-density lithium-carbon dioxide cell.Nat Commun2020;11:456 PMCID:PMC6978343

[56]

Zhang K,Zhai W.Boosting cycling stability and rate capability of Li-CO2 batteries via synergistic photoelectric effect and plasmonic interaction.Angew Chem Int Ed2022;61:e202201718

[57]

Wang Z,Yang X.Dual catalytic sites of alloying effect bloom CO2 catalytic conversion for highly stable Li-CO2 battery.Adv Funct Mater2023;33:2213931

[58]

Cheng Z,Chen J.Mo2N-ZrO2 heterostructure engineering in freestanding carbon nanofibers for upgrading cycling stability and energy efficiency of Li-CO2 batteries.Small2023;19:e2301685

[59]

Deng Q,Mao C.Electronic state modulation and reaction pathway regulation on necklace-like MnOx-CeO2@polypyrrole hierarchical cathode for advanced and flexible Li-CO2 batteries.Adv Energy Mater2022;12:2103667

[60]

Zhai Y,Deng J.Super-assembled atomic Ir catalysts on Te substrates with synergistic catalytic capability for Li-CO2 batteries.Energy Storage Mater2021;43:391-401

[61]

Zhang X,Yang Y.Breaking the stable triangle of carbonate via W-O bonds for Li-CO2 batteries with low polarization.ACS Energy Lett2021;6:3503-10

[62]

Ye Z,Yang T,Wu F.Engineering catalytic CoSe-ZnSe heterojunctions anchored on graphene aerogels for bidirectional sulfur conversion reactions.Adv Sci2022;9:e2103456 PMCID:PMC8728854

[63]

Ye Z,Li L,Chen R.Self-assembly of 0D-2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction.Adv Mater2021;33:e2101204

[64]

Jiang Y,Ye Z.Confining CoTe2-ZnTe heterostructures on petal-like nitrogen-doped carbon for fast and robust sodium storage.Chem Eng J2023;451:138430

[65]

Lian Z,Wang C.Single-atom Ru implanted on Co3O4 nanosheets as efficient dual-catalyst for Li-CO2 batteries.Adv Sci2021;8:e2102550 PMCID:PMC8655220

[66]

Hao Y,Zhao L.Bimetallic antimony-vanadium oxide nanoparticles embedded in graphene for stable lithium and sodium storage.ACS Appl Mater Interfaces2021;13:21127-37

[67]

Wang H,You Y.Realizing interfacial electronic interaction within ZnS quantum Dots/N-rGO heterostructures for efficient Li-CO2 batteries.Adv Energy Mater2019;9:1901806

[68]

Wang K,Liu L.Isolated metalloid tellurium atomic cluster on nitrogen-doped carbon nanosheet for high-capacity rechargeable lithium-CO2 battery.Adv Sci2023;10:e2205959 PMCID:PMC9982571

[69]

Jiang Y,Ye Z.Superimposed effect of hollow carbon polyhedron and interconnected graphene network to achieve CoTe2 anode for fast and ultralong sodium storage.J Power Sources2023;554:232174

[70]

Hu C,Xiao Y.High-performance, long-life, rechargeable Li-CO2 batteries based on a 3D holey graphene cathode implanted with single iron atoms.Adv Mater2020;32:e1907436

[71]

Jin Y,Song L.Interfacial engineering in hollow NiS2/FeS2-NSGA heterostructures with efficient catalytic activity for advanced Li-CO2 battery.Chem Eng J2022;430:133029

[72]

Liu Y,Wang D.Toward an understanding of the reversible Li-CO2 batteries over metal-N4-functionalized graphene electrocatalysts.ACS Nano2022;16:1523-32

[73]

Guo C,Han X.Intrinsic descriptor guided noble metal cathode design for Li-CO2 battery.Adv Mater2023;35:e2302325

[74]

Liu L,Wang K.Rational design of nanostructured metal/C interface in 3D self-supporting cellulose carbon aerogel facilitating high-performance Li-CO2 batteries.Adv Energy Mater2022;12:2103681

[75]

Ye Z,Li L,Chen R.Enhanced catalytic conversion of polysulfide using 1D CoTe and 2D MXene for heat-resistant and lean-electrolyte Li-S batteries.Chem Eng J2022;430:132734

[76]

Zhang X,Li H.High performance Li-CO2 batteries with NiO-CNT cathodes.J Mater Chem A2018;6:2792-6

[77]

Chen CJ,Huang YC.Catalytically active site identification of molybdenum disulfide as gas cathode in a nonaqueous Li-CO2 battery.ACS Appl Mater Interfaces2021;13:6156-67

[78]

Liu W,Li A.Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays.Nat Commun2022;13:1877 PMCID:PMC8986799

[79]

Liu Q,Li L.Facile synthesis of birnessite δ-MnO2 and carbon nanotube composites as effective catalysts for Li-CO2 batteries.ACS Appl Mater Interfaces2021;13:16585-93

[80]

Xing Y,Li D.Crumpled Ir nanosheets fully covered on porous carbon nanofibers for long-life rechargeable lithium-CO2 batteries.Adv Mater2018;30:e1803124

[81]

Xiao Y,Hu C.High-performance Li-CO2 batteries from free-standing, binder-free, bifunctional three-dimensional carbon catalysts.ACS Energy Lett2020;5:916-21

[82]

Guan DH,Li ML.Light/electricity energy conversion and storage for a hierarchical porous In2S3@CNT/SS cathode towards a flexible Li-CO2 battery.Angew Chem Int Ed2020;59:19518-24

[83]

Shi Z,Sun J.Defect engineering for expediting Li-S chemistry: strategies, mechanisms, and perspectives.Adv Energy Mater2021;11:2100332

[84]

Wang C,Lu S.Boosting Li-CO2 battery performances by engineering oxygen vacancy on NiO nanosheets array.J Power Sources2021;495:229782

[85]

Li X,Qi G,Wang B.Vertically aligned N-doped carbon nanotubes arrays as efficient binder-free catalysts for flexible Li-CO2 batteries.Energy Storage Mater2021;35:148-56

[86]

Chen B,Tan J.Designing electrophilic and nucleophilic dual centers in the ReS2 plane toward efficient bifunctional catalysts for Li-CO2 batteries.J Am Chem Soc2022;144:3106-16

[87]

Wang Y,Zeng J.Single atom catalysts for fuel cells and rechargeable batteries: principles, advances, and opportunities.ACS Nano2021;15:210-39

[88]

Zhou AW,Li YD.Hollow microstructural regulation of single-atom catalysts for optimized electrocatalytic performance.Microstructures2022;2:2022005

[89]

Zhong DC,Zhang C.Dinuclear metal synergistic catalysis for energy conversion.Chem Soc Rev2023;52:3170-214

[90]

Liu H,Arbiol J,Tang P.Catalytic reactivity descriptors of metal-nitrogen-doped carbon catalysts for electrocatalysis.EcoEnergy2023;1:154-85

[91]

Cheng J,Lian Y.Homogenizing Li2CO3 nucleation and growth through high-density single-atomic Ru loading toward reversible Li-CO2 reaction.ACS Appl Mater Interfaces2022;14:18561-9

[92]

Rho YJ,Shin K,Ryu WH.Atomically miniaturized bi-phase IrOx/Ir catalysts loaded on N-doped carbon nanotubes for high-performance Li-CO2 batteries.J Mater Chem A2022;10:19710-21

[93]

Zheng H,Zhang Z.Dispersed nickel phthalocyanine molecules on carbon nanotubes as cathode catalysts for Li-CO2 batteries.Small2023;19:e2302768

[94]

Zhu K,Choi J.Single-atom cadmium-N4 sites for rechargeable Li-CO2 batteries with high capacity and ultra-long lifetime.Adv Funct Mater2023;33:2213841

[95]

Wang M,Tian Y.Atomically dispersed manganese on carbon substrate for aqueous and aprotic CO2 electrochemical reduction.Adv Mater2023;35:e2210658

[96]

Zhou L,Zhang K.Fast decomposition of Li2CO3/C actuated by single-atom catalysts for Li-CO2 batteries.Sci China Mater2021;64:2139-47

[97]

Ding J,Xiao R.Atomically dispersed Fe-Nx species within a porous carbon framework: an efficient catalyst for Li-CO2 batteries.Nanoscale2022;14:4511-8

[98]

Shi Y,Legut D,Francisco JS.Highly stable single-atom modified MXenes as cathode-active bifunctional catalysts in Li-CO2 battery.Adv Funct Mater2022;32:2210218

[99]

Xu Y,Song L.A highly efficient and free-standing copper single atoms anchored nitrogen-doped carbon nanofiber cathode toward reliable Li-CO2 batteries.Mater Today Energy2022;25:100967

[100]

Xu Y,Gong H.Single atom site conjugated copper polyphthalocyanine assisted carbon nanotubes as cathode for reversible Li-CO2 batteries.Nano Res2022;15:4100-7

[101]

Li J,Zhao Y.High-efficiency and stable Li-CO2 battery enabled by carbon nanotube/carbon nitride heterostructured photocathode.Angew Chem Int Ed2022;61:e202114612

[102]

Deng Q,Yin K,Zhou Y.Boosting active species Ru-O-Zr/Ce construction at the interface of phase-transformed zirconia-ceria isomerism toward advanced catalytic cathodes for Li-CO2 batteries.Adv Energy Mater2023;13:2302398

[103]

Wu C,Zhang J,Wang B.Porous Mo3P/Mo nanorods as efficient mott-schottky cathode catalysts for low polarization Li-CO2 battery.Small2023;19:e2302078

[104]

Jian T,Hou J,Xu C.From Ru to RuAl intermetallic/Ru heterojunction: enabling high reversibility of the CO2 redox reaction in Li-CO2 battery based on lowered interface thermodynamic energy barrier.Nano Energy2023;118:108998

[105]

Zhang PF,Sheng T.Synergetic effect of Ru and NiO in the electrocatalytic decomposition of Li2CO3 to enhance the performance of a Li-CO2/O2 battery.ACS Catal2020;10:1640-51

[106]

Hao Y,Zhu S.MXene-regulated metal-oxide interfaces with modified intermediate configurations realizing nearly 100% CO2 electrocatalytic conversion.Angew Chem Int Ed2023;62:e202304179

[107]

Lu B,Xiao X.Recycled tandem catalysts promising ultralow overpotential Li-CO2 batteries.Adv Mater2024;36:e2309264

[108]

Zou L,Wang Z,Chi B.Synergistic effect of Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ heterostructure and oxygen vacancy engineering for high-performance Li-CO2 batteries.Electrochim Acta2021;395:139209

[109]

Lin J,Wang H.Boosting energy efficiency and stability of Li-CO2 battery via synergy between Ru atom cluster and single atom Ru-N4 site in electrocatalyst cathode.Adv Mater2022;34:2200559

[110]

Lu B,Xiao X.Energy band engineering guided design of bidirectional catalyst for reversible Li-CO2 batteries.Adv Mater2024;36:e2308889

[111]

Liu Y,Zhang M.Uncovering the geometry activity of spinel oxides in Li-CO2 battery reactions.ACS Energy Lett2024;9:2173-81

[112]

Liu Y,Tan J.Deciphering the contributing motifs of reconstructed cobalt (II) sulfides catalysts in Li-CO2 batteries.Nat Commun2024;15:2167 PMCID:PMC10924882

[113]

Liu L,Zhao N.Revealing the indispensable role of in situ electrochemically reconstructed Mn(II)/Mn(III) in improving the performance of lithium-carbon dioxide batteries.Adv Mater2024;36:e2403229

[114]

Khurram A,Gallant BM.Tailoring the discharge reaction in Li-CO2 batteries through incorporation of CO2 capture chemistry.Joule2018;2:2649-66

[115]

Wang XG,Xie Z.Improving electrochemical performances of rechargeable Li-CO2 batteries with an electrolyte redox mediator.ChemElectroChem2017;4:2145-9

[116]

Pipes R,Manthiram A.Phenyl disulfide additive for solution-mediated carbon dioxide utilization in Li-CO2 batteries.Adv Energy Mater2019;9:1900453

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/