Sandwich-structured electrospun polyvinylidene difluoride sensor for structural health monitoring of glass fiber reinforced polymer composites

Haokun Lin , Yunsong Peng , Fengjia Zhang , Xucheng Ke , Liman Sai , Feifei Wang , Helezi Zhou , Nan Zheng , Zhigao Huang , Huamin Zhou

Microstructures ›› 2024, Vol. 4 ›› Issue (4) : 2024053

PDF
Microstructures ›› 2024, Vol. 4 ›› Issue (4) :2024053 DOI: 10.20517/microstructures.2024.30
Research Article

Sandwich-structured electrospun polyvinylidene difluoride sensor for structural health monitoring of glass fiber reinforced polymer composites

Author information +
History +
PDF

Abstract

Stress monitoring and interlaminar failure detection attract much attention in glass fiber reinforced polymer (GFRP) structural health monitoring area. However, due to limitations of sensing or electrode materials, existing embedding sensors cannot be designed to have both of the abilities without sacrificing mechanical properties. This work fabricated a sandwich-structured sensor, which is composed of three layers of electrospun polyvinylidene difluoride membranes. The upper and lower electrodes are flexible membranes that ensure stable signal collection in the rigid GFRP material system. The sensor can quantitatively monitor the stress based on piezoelectric effect, and interlaminar crack propagation based on parallel plate capacitors. The voltage and capacitance values have a linear relationship with the stress level and crack length (R-square of the functions is 0.999 and 0.933), respectively. Due to the porous microstructure of electrospun membranes, polymer matric can well infiltrate the polyvinylidene difluoride nanofibers while preparing the sensor embedded GFRP. Thus, the perfect bonding of the sensor within GFRP ensures the effective sensing abilities until sample failure and negligible effect (< -7%) on the mechanical properties of GFRP.

Keywords

Glass fiber reinforced polymer composites / electrospun PVDF / sandwich-structured sensor / stress monitoring / interlaminar crack monitoring

Cite this article

Download citation ▾
Haokun Lin, Yunsong Peng, Fengjia Zhang, Xucheng Ke, Liman Sai, Feifei Wang, Helezi Zhou, Nan Zheng, Zhigao Huang, Huamin Zhou. Sandwich-structured electrospun polyvinylidene difluoride sensor for structural health monitoring of glass fiber reinforced polymer composites. Microstructures, 2024, 4(4): 2024053 DOI:10.20517/microstructures.2024.30

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ghori SW,Rasheed M,Jawaid M.2 - The role of advanced polymer materials in aerospace. In: Jawaid M, Thariq M, editors. Sustainable composites for aerospace applications. Elsevier; 2018, pp. 19-34.

[2]

Sathishkumar T,Naveen J.Glass fiber-reinforced polymer composites - a review.J Reinf Plast Compos2014;33:1258-75

[3]

Mouritz A,Burchill P.Review of advanced composite structures for naval ships and submarines.Compos Struct2001;53:21-42

[4]

Talreja R.Transverse cracking and stiffness reduction in composite laminates.J Compos Mater1985;19:355-75

[5]

Li J,Fu J,Ramakrishnan KR.Mechanical properties and structural health monitoring performance of carbon nanotube-modified FRP composites: a review.Nanotechnol Rev2021;10:1438-68

[6]

Silversides I,LaPlante G.Acoustic emission monitoring of interlaminar delamination onset in carbon fibre composites.Struct Heal Monit2013;12:126-40

[7]

Safri SNAB,Jawaid M.7 - Damage analysis of glass fiber reinforced composites. In: Durability and life prediction in biocomposites, fibre-reinforced composites and hybrid composites. Elsevier; 2019. pp. 133-47.

[8]

Wu S,Ravindran AR.Aligning carbon nanofibres in glass-fibre/epoxy composites to improve interlaminar toughness and crack-detection capability.Compos Sci Technol2017;152:46-56

[9]

Senthil K,Palaninathan R,Usha KM.Defects in composite structures: its effects and prediction methods - a comprehensive review.Compos Struct2013;106:139-49

[10]

Dong H,Nishimura A.Monitoring strain response of epoxy resin during curing and cooling using an embedded strain gauge.Sensors2020;21:172 PMCID:PMC7795896

[11]

Dawood TA,Sahin M.A procedure to embed fibre Bragg grating strain sensors into GFRP sandwich structures.Compos Part A Appl Sci Manuf2007;38:217-26

[12]

Di Sante R. Fibre optic sensors for structural health monitoring of aircraft composite structures: recent advances and applications.Sensors2015;15:18666-713 PMCID:PMC4570341

[13]

Ramakrishnan M,Semenova Y.Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials.Sensors2016;16:99 PMCID:PMC4732132

[14]

Tuloup C,Aboura Z,Khellil K.On the use of in-situ piezoelectric sensors for the manufacturing and structural health monitoring of polymer-matrix composites: a literature review.Compos Struct2019;215:127-49

[15]

Rocha H,Nunes JP.Sensors for process and structural health monitoring of aerospace composites: a review.Eng Struct2021;237:112231

[16]

Su Y,Zhou P.In situ cure monitoring and in-service impact localization of FRPs using pre-implanted nanocomposite sensors.Compos Part A Appl Sci Manuf2022;154:106799

[17]

Konka HP,Lian K.On mechanical properties of composite sandwich structures with embedded piezoelectric fiber composite sensors.J Eng Mater Technol2012;134:011010

[18]

Xiao Y,Fukuda H.The effect of embedded devices on structural integrity of composite laminates.Compos Struct2016;153:21-9

[19]

Zhang F,Wang F.Embedded Pt-PVDF sensor without compromising mechanical properties of GFRP for on-line sensing.Thin-Walled Struct2023;187:110702

[20]

Wang Q,Duongthipthewa A.An embedded non-intrusive graphene/epoxy broadband nanocomposite sensor co-cured with GFRP for in situ structural health monitoring.Compos Sci Technol2023;236:109995

[21]

Yang G,Wang W,Liu L.Effective interlaminar reinforcing and delamination monitoring of carbon fibrous composites using a novel nano-carbon woven grid.Compos Sci Technol2021;213:108959

[22]

Kravchenko OG,Kovtun D,Manas-Zloczower I.Incorporation of plasma-functionalized carbon nanostructures in composite laminates for interlaminar reinforcement and delamination crack monitoring.J Phys Chem Solids2018;112:163-70

[23]

Du X,Sun W.Graphene/epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fibre/epoxy composite laminates.Compos Sci Technol2017;140:123-33

[24]

Zhang H,Bilotti E.In-situ monitoring of interlaminar shear damage in carbon fibre composites.Adv Compos Lett2015;24:096369351502400

[25]

Li M,Xiao J,Zhu W.An integrated nanofiller spray and nanosecond pulse electrically-assisted method for synergistically interlaminar toughening and in-situ damage monitoring of CFRP composites.Compos Part B Eng2024;275:111355

[26]

Liu H,Yu S,Jia Y.Low-cost carbon black-loaded functional films for interlaminar toughening and in-situ delamination monitoring of carbon fiber/epoxy composites.J Appl Polym Sci2022;139:52170

[27]

Wan Y,Tian Z.Mode I interlaminar crack length prediction by the resistance signal of the integrated MWCNT sensor in WGF/epoxy composites during DCB test.J Mater Res Technol2020;9:5922-33

[28]

Kravchenko OG,Bonab VS.Conductive interlaminar interfaces for structural health monitoring in composite laminates under fatigue loading.Mater Des2018;160:1217-25

[29]

Liu Y,Xie H.Trilayer PVDF nanocomposites with significantly enhanced energy density and energy efficiency using 0.55Bi0.5Na0.5TiO3-0.45(Sr0.7Bi0.2)TiO3 nanofibers.Microstructures2023;3:2023008

[30]

Yang W,Zhao S.A breathable and screen-printed pressure sensor based on nanofiber membranes for electronic skins.Adv Mater Technol2018;3:1700241

[31]

Rani SD,Sheet S.NiMoO4 nanoparticles decorated carbon nanofiber membranes for the flexible and high performance glucose sensors.Sensors Actuat B Chem2020;312:127886

[32]

Lin L,Kim Y.Wearable and stretchable conductive polymer composites for strain sensors: how to design a superior one?.Nano Mater Sci2023;5:392-403

[33]

Cao T,Zou J.Advances in conducting polymer-based thermoelectric materials and devices.Microstructures2021;1:2021007

[34]

Ding B,Yu J.Gas sensors based on electrospun nanofibers.Sensors2009;9:1609-24 PMCID:PMC3345829

[35]

Zheng N,Lan M,Zhou H.Improved interlaminar property of carbon fiber/epoxy composites with polyurethane/RGO core-shell structure fibrous mat.Compos Commun2023;44:101748

[36]

Cheng WH,Huang HH.Electrospun polyvinylidene fluoride piezoelectric fiber glass/carbon hybrid self-sensing composites for structural health monitoring.Sensors2023;23:3813 PMCID:PMC10146493

[37]

Leung CM,Wang T.Enhanced electromechanical response in PVDF-BNBT composite nanofibers for flexible sensor applications.Materials2022;15:1769 PMCID:PMC8911346

[38]

Chen X,Wen K.In-situ damage self-monitoring of fiber-reinforced composite by integrating self-powered ZnO nanowires decorated carbon fabric.Compos Part B Eng2023;248:110368

[39]

Dubois D,Garcia P,De Màntaras RL.Case-based reasoning: a fuzzy approach. In: Ralescu AL, Shanahan JG, editors. Fuzzy logic in artificial intelligence. Berlin: Springer; 1999. pp. 79-90.

[40]

Chen X,Wang S.Embedding stretchable, mesh-structured piezoresistive sensor for in-situ damage detection of glass fiber-reinforced composite.Compos Sci Technol2023;233:109926

[41]

Sánchez-Romate X, González C, Jiménez-Suárez A, Prolongo SG. Novel approach for damage detection in multiscale CNT-reinforced composites via wireless Joule heating monitoring.Compos Sci Technol2022;227:109614

[42]

Kang J,Lu Y.Polyvinylidene fluoride piezoelectric yarn for real-time damage monitoring of advanced 3D textile composites.Compos Part B Eng2022;245:110229

[43]

Rubio-González C,Rodríguez-González JA.Damage progression monitoring using self-sensing capability and acoustic emission on glass fiber / epoxy composites and damage classification through principal component analysis.Compos Part B Eng2023;254:110608

[44]

De Rosa IM, Sarasini F. Use of PVDF as acoustic emission sensor for in situ monitoring of mechanical behaviour of glass/epoxy laminates.Polym Test2010;29:749-58

[45]

Bae JH,Chang SH.Characterization of low-velocity impact-induced damages in carbon/epoxy composite laminates using a poly(vinylidene fluoride-trifluoroethylene) film sensor.Compos Part B Eng2018;135:189-200

[46]

Masmoudi S,Turki S.Fatigue behaviour and structural health monitoring by acoustic emission of E-glass/epoxy laminates with piezoelectric implant.Appl Acoust2016;108:50-8

[47]

Feng T.Structural integrity assessment of composites plates with embedded PZT transducers for structural health monitoring.Materials2021;14:6148 PMCID:PMC8540291

[48]

Konka HP,Lian K.The effects of embedded piezoelectric fiber composite sensors on the structural integrity of glass-fiber-epoxy composite laminate.Smart Mater Struct2012;21:015016

[49]

Buggisch C,Felmet N,Fiedler B.Strain sensing in GFRP via fully integrated carbon nanotube epoxy film sensors.Compos Part C Open Access2021;6:100191

[50]

Reghat M,Tan AM.Graphene as a piezo-resistive coating to enable strain monitoring in glass fiber composites.Compos Sci Technol2021;211:108842

[51]

Han S,Cui Z.Non-destructive testing and structural health monitoring technologies for carbon fiber reinforced polymers: a review.Nondestruct Test Eval2024;39:725-61

AI Summary AI Mindmap
PDF

57

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/