Recent research progress of bismuth-based electrocatalysts for electrochemical reduction of carbon dioxide

Chen Zhang , Fei Liu , Jia-Jun Wang , Guang-Jin Wang , Zhao-Yong Sun , Qiang Chen , Xiao-Peng Han , Yi-Da Deng , Wen-Bin Hu

Microstructures ›› 2025, Vol. 5 ›› Issue (1) : 2025016

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (1) :2025016 DOI: 10.20517/microstructures.2024.28
Review

Recent research progress of bismuth-based electrocatalysts for electrochemical reduction of carbon dioxide

Author information +
History +
PDF

Abstract

With modern science and technology developing, the concentration of atmospheric carbon oxide (CO2) has increased substantially. CO2 electroreduction reaction (CO2RR) can efficiently utilize sustainable power to produce value-added chemicals and implement energy storage. Previous researches have proved bismuth metal and bismuth-based materials can transfer CO2 to formate selectively. However, in this paper, the latest progress in the synthesis of advanced electrocatalysts with bismuth-based CO2RR catalysts is reviewed from the aspects of catalyst material design, synthesis, reaction mechanism and performance verification/optimization. Some methods of designing catalysts are discussed and analyzed from different angles, including catalyst morphology, defects and heterogeneous structures. In particular, the application of in situ characterization technique in catalyst characterization is introduced. Subsequently, some views and expectations regarding the current challenges and future potential of CO2RR research are presented.

Keywords

Bismuth-based catalysts / CO2RR / in situ characterization technique / formate / reconstruction

Cite this article

Download citation ▾
Chen Zhang, Fei Liu, Jia-Jun Wang, Guang-Jin Wang, Zhao-Yong Sun, Qiang Chen, Xiao-Peng Han, Yi-Da Deng, Wen-Bin Hu. Recent research progress of bismuth-based electrocatalysts for electrochemical reduction of carbon dioxide. Microstructures, 2025, 5(1): 2025016 DOI:10.20517/microstructures.2024.28

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

De Luna P,Higgins D.What would it take for renewably powered electrosynthesis to displace petrochemical processes?.Science2019;6438:evva3506.

[2]

Rogelj J,Hohne N.Paris agreement climate proposals need a boost to keep warming well below 2 °C.Nature2016;7609:631-9.

[3]

Shen C,Zou R.Boosted sacrificial-agent-free selective photoreduction of CO2 to CH3OH by rhenium atomically dispersed on indium oxide.Angew Chem Int Ed Engl2024;63:e202402369

[4]

Ren X,Wu H.Reconstructed bismuth oxide through in situ carbonation by carbonate-containing electrolyte for highly active electrocatalytic CO2 reduction to formate.Angew Chem Int Ed Engl2024;63:e202316640.

[5]

Liu F,Zhao J.Inhibiting sulfur dissolution and enhancing activity of sns for CO2 electroreduction via electronic state modulation.ACS Catal2022;12:13533-41.

[6]

Liu F,Ren X.In-situ reconstructed in doped SnO2 amorphous-crystalline heterostructure for highly efficient CO2 electroreduction with a dynamic structure-function relationship.Appl Catal B-Environ2024;352:124004.

[7]

Jiao J,Liu S,Zhang C.Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2.Nat Chem2019;3:222-8.

[8]

Cai Y,Zhou Y.Insights on forming NO-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane.Nat Commun2021;1:586. PMCID:PMC7838205

[9]

Zhang T,Huang K.et al. Regulation of functional groups on graphene quantum dots directs selective CO2 to CH4 conversion.Nat Commun2021;1:5265. PMCID:PMC8421353

[10]

Liu XC,Wu Y.Tailoring the electrochemical protonation behavior of CO2 by tuning surface noncovalent interactions.ACS Catalysis2021;24:14986-94.

[11]

Zhang Z,Zhao W.Enhanced electrocatalytic reduction of CO2 via chemical coupling between indium oxide and reduced graphene oxide.Nano Lett2019;6:4029-34.

[12]

Zhao Q,Hu R.Selective etching quaternary MAX phase toward single atom copper immobilized mxene (Ti3C2Clx) for efficient CO2 electroreduction to methanol.ACS Nano2021;3:4927-36.

[13]

Francke R,Roemelt M.Homogeneously catalyzed electroreduction of carbon dioxide - methods mechanisms and catalysts.Chem Rev2018;9:4631-701.

[14]

Yin Z,Zhao Z.et al.Cu3N nanocubes for selective electrochemical reduction of CO2 to ethylene.Nano Lett2019;12:8658-63.

[15]

Yin J,Wei F.Customizable CO2 electroreduction to C1 or C2+ products through Cuy/CeO2 interface engineering.ACS Catalysis2022;2:1004-11.

[16]

Gao D,Divins NJ.Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols.ACS Nano2017;5:4825-31.

[17]

Ma W,Liu T.Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper.Nature Catalysis2020;6:478-87.

[18]

Fan L,Yang F,Wang H.Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products.Sci Adv2020;6:eaay3111 PMCID:PMC7034982

[19]

Guzmán H,Hernández S.CO2 valorisation towards alcohols by Cu-based electrocatalysts: challenges and perspectives.Green Chem2021;5:1896-1920.

[20]

Nitopi S,Scott SB.Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte.Chem Rev2019;12:7610-72.

[21]

Gu J,Bai L,Hu X.Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO.Science2019;364:1091-4.

[22]

Ross MB,Li Y.Designing materials for electrochemical carbon dioxide recycling.Nat Catal2019;8:648-58.

[23]

Singh MR,Lum Y.Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu.J Am Chem Soc2016;39:13006-12.

[24]

Huang Y,Yeo BS.Effects of electrolyte anions on the reduction of carbon dioxide to ethylene and ethanol on copper (100) and (111) surfaces.ChemSusChem2018;18:3299-306.

[25]

Kortlever R,Schouten KJ,Koper MT.Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide.J Phys Chem Lett2015;20:4073-82.

[26]

Benson EE,Sathrum AJ.Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels.Chem Soc Rev2009;1:89-99.

[27]

Zhang H,Quan F.Selective electro-reduction of CO2 to formate on nanostructured Bi from reduction of BiOCl nanosheets.Electrochem Commun2014;46:63-6.

[28]

Zhang J,Wang Z.Identifying water oxidation mechanisms at pure and titanium-doped hematite-based photoanodes with spectroelectrochemistry.Small Methods2021;12:e2100976

[29]

Ricinschi D,Okuyama M.A mechanism for the 150 µC cm-2 polarization of BiFeO3 films based on first-principles calculations and new structural data.J Phys Condens Matter2006;18:L97.

[30]

Han N,Yang H.Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate.Nat Commun2018;1:1320 PMCID:PMC5882965

[31]

Yang Z,Zhang KHL.P-block metal-based (Sn In Bi Pb) electrocatalysts for selective reduction of CO2 to formate.APL Materials2020;6:060901.

[32]

Xiao J,Sui PF.In-situ generated hydroxides realize near-unity CO selectivity for electrochemical CO2 reduction.Chem Eng J2022;433:133785

[33]

Komatsu S,Hiraga Y,Kunugi A.Electrochemical reduction of CO2 at Sb and Bi electrodes in KHCO3 solution.Denki Kagaku oyobi Kogyo Butsuri Kagaku1995;3:217-224.

[34]

DiMeglio JL.Selective conversion of CO2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst.J Am Chem Soc2013;24:8798-801. PMCID:PMC3725765

[35]

Medina-Ramos J,Keane TP,Rosenthal J.Efficient conversion of CO2 to CO using tin and other inexpensive and easily prepared post-transition metal catalysts.J Am Chem Soc2015;15:5021-7.

[36]

Han N,He L,Li Y.Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate.Adv Energy Mater2019;11:201902338

[37]

Li P,Li J.Nanoscale engineering of P-block metal-based catalysts toward industrial-scale electrochemical reduction of CO2.Adv Energy Mater2023;34:202301597

[38]

Guan Y,Rao X,Zhang J.Electrochemical reduction of carbon dioxide (CO2): bismuth-based electrocatalysts.J Mater Chem A2021;24:13770-803.

[39]

Xia D,Xie H.Recent progress of Bi-based electrocatalysts for electrocatalytic CO2 reduction.Nanoscale2022;22:7957-73.

[40]

Pan F,O’Carroll T.Carbon catalysts for electrochemical CO2 reduction toward multicarbon products.Adv Energy Mater2022;24:202200586.

[41]

Koh JH,Eom T.Facile CO2 electro-reduction to formate via oxygen bidentate intermediate stabilized by high-index planes of bi dendrite catalyst.ACS Catal2017;8:5071-77.

[42]

Chen J,Sun Z.Recent progress and challenges in heterogeneous CO2 catalytic activation.Curr Opin Green Sust2023;39:100720.

[43]

Bagger A,Varela AS,Rossmeisl J.Electrochemical CO2 reduction: a classification problem.Chemphyschem2017;22:3266-73.

[44]

Jiang H,Zhang Y.Structural self-reconstruction of catalysts in electrocatalysis.Acc Chem Res2018;11:2968-77.

[45]

Wang F,Xia X.Metal-CO2 electrochemistry: from CO2 recycling to energy storage.Adv Energy Mater2021;25:202100667.

[46]

Huang J,Oveisi E.Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction.Nat Commun2018;1:3117. PMCID:PMC6079067

[47]

Kuznetsov DA,Yu Y.Tuning redox transitions via inductive effect in metal oxides and complexes and implications in oxygen electrocatalysis.Joule2018;2:225-44.

[48]

De Luna P,Dinh CT.Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction.Nature Catalysis2018;2:103-10.

[49]

Liu X,Zhu J.Comprehensive understandings into complete reconstruction of precatalysts: synthesis applications and characterizations.Adv Mater2021;32:e2007344.

[50]

Cao C,Gu JF.Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel.Angew Chem Int Ed Engl2020;35:15014-20.

[51]

Lamagni P,Catalano J.Restructuring metal-organic frameworks to nanoscale bismuth electrocatalysts for highly active and selective CO2 reduction to formate.Adv Funct Mater2020;16;201910408.

[52]

Wang H,Chen P.Microenvironment regulation strategies of single-atom catalysts for advanced electrocatalytic CO2 reduction to CO.Nano Energy2023;118:108967.

[53]

Zhang E,Yu K.Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction.J Am Chem Soc2019;42:16569-73

[54]

Santra S,Wagner LI.Tuning carbon dioxide reduction reaction selectivity of bi single-atom electrocatalysts with controlled coordination environments.ChemSusChem2024;17:e202301452.

[55]

Giannakakis G,Sykes ECH.Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts.Acc Chem Res2019;1:237-47.

[56]

Darby MT,Michaelides A.Lonely atoms with special gifts: breaking linear scaling relationships in heterogeneous catalysis with single-atom alloys.J Phys Chem Lett2018;18:5636-46.

[57]

Greiner MT,Beeg S.Free-atom-like d states in single-atom alloy catalysts.Nat Chem2018;10:1008-15

[58]

Sun G,Mu R.Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation.Nat Commun2018;1:4454. PMCID:PMC6203812

[59]

Cao Y,Bo S.Single atom bi decorated copper alloy enables C-C coupling for electrocatalytic reduction of CO2 into C2+ Products.Angew Chem Int Ed Engl2023;30:e202303048

[60]

Fan K,Ji Y.Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window.ACS Catalysis2019;1:358-64

[61]

Guan A,Quan Y.One-dimensional nanomaterial electrocatalysts for CO2 Fixation.Chem Asian J2019;22:3969-80.

[62]

Zhang X,Guo SX,Zhang J.Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential.Energ Environ Sci2019;4:1334-40.

[63]

Zhang W,Ma L.Liquid-phase exfoliated ultrathin Bi nanosheets: uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure.Nano Energy2018;53:808-16.

[64]

Hu Y,Gu Y.Sandwiched epitaxy growth of 2D single-crystalline hexagonal bismuthene nanoflakes for electrocatalytic CO2 reduction.Nano Letters2023;22:10512-21

[65]

Feng X,Zheng R.Bi2O3/BiO2 nanoheterojunction for highly efficient electrocatalytic CO2 reduction to formate.Nano Lett2022;4:1656-64.

[66]

Tian J,Shen M.Bi-Sn oxides for highly selective CO2 electroreduction to formate in a wide potential window.ChemSusChem2021;10:2247-54.

[67]

Gong Q,Xu M.Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction.Nat Commun2019;1:2807. PMCID:PMC6594929

[68]

Yang S,Zhang W.In situ structure refactoring of bismuth nanoflowers for highly selective electrochemical reduction of CO2 to formate.Adv Funct Mater2023;37:202301984.

[69]

Tran-Phu T,Fusco Z.Nanostructured β-Bi2O3 fractals on carbon fibers for highly selective CO2 electroreduction to formate.Adv Funct Mater2019;3:201906478

[70]

Liu S,Xiao J.Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH.Angew Chem Int Ed Engl2019;39:13828-33

[71]

Ye K,Shao J.In situ reconstruction of a hierarchical Sn-Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction.Angew Chem Int Ed Engl2020;12:4814-21.

[72]

Das S,Gong J.Core-shell structured catalysts for thermocatalytic photocatalytic and electrocatalytic conversion of CO2.Chem Soc Rev2020;10:2937-3004.

[73]

Zhao Y,Liu Z.Spontaneously Sn-doped Bi/BiOx core-shell nanowires toward high-performance CO2 electroreduction to liquid fuel.Nano Lett2021;16:6907-13.

[74]

Zhang Y,Ling Y.Controllable synthesis of few-layer bismuth subcarbonate by electrochemical exfoliation for enhanced CO2 reduction performance.Angew Chem Int Ed Engl2018;40:13283-87.

[75]

Lv W,Zhang R.Bi2O2CO3 nanosheets as electrocatalysts for selective reduction of CO2 to formate at low overpotential.ACS Omega2017;6:2561-7. PMCID:PMC6640941

[76]

Wang Y,Jiang W.Sub-2 nm ultra-thin Bi2O2CO3 nanosheets with abundant Bi-O structures toward formic acid electrosynthesis over a wide potential window.Nano Research2021;4:2919-27.

[77]

Fu HQ,Bedford NM.Operando converting BiOCl into Bi2O2(CO3)xCly for efficient electrocatalytic reduction of carbon dioxide to formate.Nanomicro Lett2022;1:121. PMCID:PMC9065225

[78]

Wu M,Hu B.Indium doped bismuth subcarbonate nanosheets for efficient electrochemical reduction of carbon dioxide to formate in a wide potential window.J Colloid Interface Sci2022;624:261-9.

[79]

Lv L,Zhu J.Coordinating the edge defects of bismuth with sulfur for enhanced CO2 electroreduction to formate.Angew Chem Int Ed Engl2023;25:e202303117.

[80]

Wang Z,Hu Y.Simultaneous diffusion of cation and anion to access N S co-coordinated Bi-sites for enhanced CO2 electroreduction.Nano Research2021;8:2790-6.

[81]

Luo Y,Zhang J.Perovskite-derived bismuth with I- and Cs+ dual modification for high-efficiency CO2 -to-formate electrosynthesis and Al-CO2 batteries.Adv Mater2023;36:e2303297.

[82]

Yang S,Arnouts S.Halide-guided active site exposure in bismuth electrocatalysts for selective CO2 conversion into formic acid.Nature Catalysis2023;9:796-806

[83]

Wang D,Chang K.Residual iodine on in situ transformed bismuth nanosheets induced activity difference in CO2 electroreduction.J CO2 Utili2022;55:101802.

[84]

Li Y,Chen S.In situ confined growth of bismuth nanoribbons with active and robust edge sites for boosted CO2 electroreduction.ACS Energy Letters2022;4:1454-61

[85]

Zhao S,Wang X.Anion exchange facilitates the in situ construction of Bi/Bi-O interfaces for enhanced electrochemical CO2 -to-formate conversion over a wide potential window.Small2023;43:e2302878.

[86]

Liu S,Wang Y.Surface-oxygen-rich Bi@C nanoparticles for high-efficiency electroreduction of CO2 to formate.Nano Lett2022;22:9107-14.

[87]

Liu S,Zhao J.Enhanced electrocatalytic CO2 reduction of bismuth nanosheets with introducing surface bismuth subcarbonate.Coatings2022;2:12020233.

[88]

Li JF,Ding Y.Shell-isolated nanoparticle-enhanced raman spectroscopy.Nature2010;7287:392-5.

[89]

Sui PF,Liu S.Carbon dioxide valorization via formate electrosynthesis in a wide potential window.Adv Funct Mater2022;32:202203794.

[90]

Cui R,Zhang C.Revealing the behavior of interfacial water in te-doped bi via operando infrared spectroscopy for improving electrochemical CO2 reduction.ACS Catalysis2022;18:11294-300.

[91]

Li J,Liu X.Probing the role of surface hydroxyls for Bi Sn and In catalysts during CO2 Reduction.Appl Catal B Environ2021;298:120581.

[92]

Zhang H,Huang C.Enhanced dissociation activation of CO2 on the Bi/Cu(111) interface by the synergistic effect.J Catal2022;410:1-9.

[93]

Jiang X,Rong Y.Boosting CO2 electroreduction to formate via bismuth oxide clusters.Nano Res2022;10:12050-57.

[94]

Xiao L,Huang X.Efficient CO2 reduction MOFs derivatives transformation mechanism revealed by in situ liquid phase TEM.Appl Catal B-Environ2022;307:121164

[95]

Dong J,Wang W.Charged microdroplets as microelectrochemical cells for CO2 reduction and C-C coupling.J Am Chem Soc2024;146:2227-36

[96]

Wang Z Y,Li L Y.Research progress of CO2 oxidative dehydrogenation of propane to propylene over Cr-free metal catalysts.Rare Metals2022;41:2129-52 PMCID:PMC8913863

[97]

Jiang Y,Han L.Advances in TiS2 for energy storage, electronic devices, and catalysis: a review.Prog Nat Sci-Mater2023;33:133-50.

[98]

Ju L,Kou L.Polarization boosted catalysis: progress and outlook.Microstructures2022;2:2022008.

[99]

Wang J,Ding J.et al.Recent progresses of micro-nanostructured transition metal compound-based electrocatalysts for energy conversion technologies.Sci China Mater2021;64:1-26

[100]

Wang J,Cui B.A review of non-noble metal-based electrocatalysts for CO2 electroreduction.Rare Met2021;40:3019-303.

[101]

Hu Q,Wang J.et al.Nanoporous nickel with rich adsorbed oxygen for efficient alkaline hydrogen evolution electrocatalysis.Sci China Mater2022;65:1825-32.

[102]

Huang B,Sun G.Recent progress in cathodic reduction-enabled organic electrosynthesis: trends, challenges, and opportunities.eScience2022;2:243-77.

[103]

Rabinowitz JA.The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem.Nat Commun2020;11:5231. PMCID:PMC7567821

[104]

Higgins D,Xiang C,Weber AZ.Gas-diffusion electrode for carbon dioxide reduction: a new paradigm.ACS Energy Letters2019;4:317-24.

[105]

Pan B,Zhang J.Close to 90% single-pass conversion efficiency for CO2 electroreduction in an acid-fed membrane electrode assembly.ACS Energy Lett2022;7:4224-31,

[106]

Chi LP,Zhang YC.Efficient and stable acidic CO2 electrolysis to formic acid by a reservoir structure design.P Natl Acad Sci Usa2023;120:e2312876120 PMCID:PMC10742388

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/