Non-aqueous rechargeable aluminum-ion batteries (RABs): recent progress and future perspectives

Sahithi Thatipamula , Chamali Malaarachchi , Md Robiul Alam , Muhammad Waqas Khan , Ravichandar Babarao , Nasir Mahmood

Microstructures ›› 2024, Vol. 4 ›› Issue (4) : 2024057

PDF
Microstructures ›› 2024, Vol. 4 ›› Issue (4) :2024057 DOI: 10.20517/microstructures.2024.27
Review

Non-aqueous rechargeable aluminum-ion batteries (RABs): recent progress and future perspectives

Author information +
History +
PDF

Abstract

To meet the growing energy demand, it is imperative to explore novel materials for batteries and electrochemical chemistry beyond traditional lithium-ion batteries. These innovative batteries aim to achieve long cycle life, capacity, and enhanced energy densities. Rechargeable aluminum batteries (RABs) have gained attention due to their high safety, cost-effectiveness, straightforward manufacturing process, environmental friendliness, and extended lifespan. Despite aluminum having advantages as the anode in achieving high energy density, RAB technology is yet in its early stages, necessitating substantial efforts to overcome fundamental and practical challenges. This comprehensive review centers on the historical development of aluminum batteries, delve into the electrode development in non-aqueous RABs, and explore advancements in non-aqueous RAB technology. It also encompasses essential characterizations and simulation techniques crucial for understanding the underlying mechanisms. By addressing challenges in battery components, this review proposes feasible strategies to improve the electrochemical performance and safety of RABs and the development of hybrid lithium/aluminum batteries. In conclusion, it provides perspectives on endeavors in this field that aim to bridge the gap between laboratory research and real-world applications of RABs.

Keywords

Rechargeable aluminum batteries / aluminum alloys / hybrid Li-Al / non-aqueous electrolyte / challenges / energy storage

Cite this article

Download citation ▾
Sahithi Thatipamula, Chamali Malaarachchi, Md Robiul Alam, Muhammad Waqas Khan, Ravichandar Babarao, Nasir Mahmood. Non-aqueous rechargeable aluminum-ion batteries (RABs): recent progress and future perspectives. Microstructures, 2024, 4(4): 2024057 DOI:10.20517/microstructures.2024.27

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tu J,Lei H.Nonaqueous rechargeable aluminum batteries: progresses, challenges, and perspectives.Chem Rev2021;121:4903-61

[2]

Yang H,Li J.The rechargeable aluminum battery: opportunities and challenges.Angew Chem Int Ed2019;58:11978-96

[3]

Das S,Pathak B.Recent trends in electrode and electrolyte design for aluminum batteries.ACS Omega2021;6:1043-53 PMCID:PMC7818116

[4]

Zhang Y,Ji Y,Yu H.Emerging nonaqueous aluminum-ion batteries: challenges, status, and perspectives.Adv Mater2018;30:e1706310

[5]

Jayaprakash N,Archer LA.The rechargeable aluminum-ion battery.Chem Commun2011;47:12610-2

[6]

Abu Nayem SM, Ahmad A, Shaheen Shah S, Saeed Alzahrani A, Saleh Ahammad AJ, Aziz MA. High performance and long-cycle life rechargeable aluminum ion battery: recent progress, perspectives and challenges.Chem Rec2022;22:e202200181

[7]

Li Q.Aluminum as anode for energy storage and conversion: a review.J Power Sources2002;110:1-10

[8]

Ferdian D,Togina I.Development of Al-Zn-Cu alloy for low voltage aluminum sacrificial anode.Procedia Eng2017;184:418-22

[9]

Ran Q,Zhu M.Uniformly MXene-grafted eutectic aluminum-cerium alloys as flexible and reversible anode materials for rechargeable aluminum-ion battery.Adv Funct Mater2023;33:2211271

[10]

Wang M,Lee C.Low-cost metallic anode materials for high performance rechargeable batteries.Adv Energy Mater2017;7:1700536

[11]

Jiang M,Meng P.Challenges and strategies of low-cost aluminum anodes for high-performance Al-based batteries.Adv Mater2022;34:e2102026

[12]

Mahmood A,Tabassum H.Carbon fibers embedded with iron selenide (Fe3Se4) as anode for high-performance sodium and potassium ion batteries.Front Chem2020;8:408 PMCID:PMC7283878

[13]

Jiang J,Liu J,Yuan C.Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage.Adv Mater2012;24:5166-80

[14]

Zafar ZA,Razaq R.Cathode materials for rechargeable aluminum batteries: current status and progress.J Mater Chem A2017;5:5646-60

[15]

Wang DY,Lin MC.Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode.Nat Commun2017;8:14283 PMCID:PMC5316828

[16]

Tu J,Lei H,Chang C.Design strategies of high-performance positive materials for nonaqueous rechargeable aluminum batteries: from crystal control to battery configuration.Small2022;18:e2201362

[17]

Li Q,Zhu J,Sun S.Graphene and its composites with nanoparticles for electrochemical energy applications.Nano Today2014;9:668-83

[18]

Mahmood N,Hou Y.Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective.Adv Energy Mater2016;6:1600374

[19]

Angell M,Rong Y.High coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte.Proc Natl Acad Sci USA2017;114:834-9 PMCID:PMC5293044

[20]

Heise GW,Cahoon NC.A heavy duty chlorine-depolarized cell.J Electrochem Soc1948;94:99

[21]

Zaromb S.The use and behavior of aluminum anodes in alkaline primary batteries.J Electrochem Soc1962;109:1125

[22]

Egan D,Wood R,Stokes K.Developments in electrode materials and electrolytes for aluminium - air batteries.J Power Sources2013;236:293-310

[23]

Gifford PR.An aluminum/chlorine rechargeable cell employing a room temperature molten salt electrolyte.J Electrochem Soc1988;135:650-4

[24]

Paranthaman MP,Sun XG,Manthiram A.A transformational, high energy density, secondary aluminum ion battery.Meet Abstr2010;MA2010-02:314

[25]

Sun H,Yu Z,Wang S.A new aluminium-ion battery with high voltage, high safety and low cost.Chem Commun2015;51:11892-5

[26]

Sun XG,Liu H.A high performance hybrid battery based on aluminum anode and LiFePO4 cathode.Chem Commun2016;52:1713-6

[27]

Zhang L,Ding Y,Yu G.A low-cost and high-energy hybrid iron-aluminum liquid battery achieved by deep eutectic solvents.Joule2017;1:623-33

[28]

Tian H,Meng Z,Han W.Rechargeable aluminum/iodine battery redox chemistry in ionic liquid electrolyte.ACS Energy Lett2017;2:1170-6

[29]

Wang S,Song W.A novel dual-graphite aluminum-ion battery.Energy Stor Mater2018;12:119-27

[30]

Yu Z,Li S.Flexible stable solid-state Al-ion batteries.Adv Funct Mater2019;29:1806799

[31]

Liu Y,Xie B.Ultrathin Co3O4 nanosheet clusters anchored on nitrogen doped carbon nanotubes/3D graphene as binder-free cathodes for Al-air battery.Chem Eng J2020;381:122681

[32]

Thanwisai P,Phuenhinlad P.Mesoporous and defective activated carbon cathode for AlCl4- anion storage in non-aqueous aluminium-ion batteries.Carbon2022;191:195-204

[33]

Wang L,Lin Y,Zhu Q.MOF-derived hierarchical porous carbon octahedrons for aluminum-ion batteries.Carbon2023;202:305-13

[34]

Elia GA,Hoeppner K.An overview and future perspectives of aluminum batteries.Adv Mater2016;28:7564-79

[35]

Leisegang T,Zschornak M.The aluminum-ion battery: a sustainable and seminal concept?.Front Chem2019;7:268 PMCID:PMC6504778

[36]

Han X,Zhao R,Wu F.Electrolytes for rechargeable aluminum batteries.Prog Mater Sci2022;128:100960

[37]

Yu X.Electrochemical energy storage with a reversible nonaqueous room-temperature aluminum-sulfur chemistry.Adv Energy Mater2017;7:1700561

[38]

Buckingham R,Atanassov P.Aluminum-air batteries: a review of alloys, electrolytes and design.J Power Sources2021;498:229762

[39]

Tu J,Li S,Sun D.The effects of anions behaviors on electrochemical properties of Al/graphite rechargeable aluminum-ion battery via molten AlCl3-NaCl liquid electrolyte.J Electrochem Soc2017;164:A3292-302

[40]

Elia GA,Greco G.Insights into the reversibility of aluminum graphite batteries.J Mater Chem A2017;5:9682-90

[41]

Kravchyk KV,Piveteau L.Efficient aluminum chloride-natural graphite battery.Chem Mater2017;29:4484-92

[42]

Abood HM,Ballantyne AD.Do all ionic liquids need organic cations? Characterisation of [AlCl2·nAmide]+AlCl4- and comparison with imidazolium based systems .Chem Commun2011;47:3523-5

[43]

Fang Y,Sun XG.New ionic liquids based on the complexation of dipropyl sulfide and AlCl3 for electrodeposition of aluminum.Chem Commun2015;51:13286-9

[44]

Hu P,Meng X,Xu C.Structural and spectroscopic characterizations of amide-AlCl3-based ionic liquid analogues.Inorg Chem2016;55:2374-80

[45]

Xu H,Chen H.Low-cost AlCl3/Et3NHCl electrolyte for high-performance aluminum-ion battery.Energy Stor Mater2019;17:38-45

[46]

Liu Z,Liu Z.Low-cost gel polymer electrolyte for high-performance aluminum-ion batteries.ACS Appl Mater Interfaces2021;13:28164-70

[47]

Sun XG,Jiang X,Tsuda T.Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries.Chem Commun2016;52:292-5

[48]

Yu Z,Tu J.Gel electrolytes with a wide potential window for high-rate Al-ion batteries.J Mater Chem A2019;7:20348-56

[49]

Wu F,Bai Y.Paving the path toward reliable cathode materials for aluminum-ion batteries.Adv Mater2019;31:e1806510

[50]

Zhu N,Wang Z.Reversible Al3+ storage mechanism in anatase TiO2 cathode material for ionic liquid electrolyte-based aluminum-ion batteries.J Energy Chem2020;51:72-80

[51]

Zhang L,Luo H,Liu Z.Large-sized few-layer graphene enables an ultrafast and long-life aluminum-ion battery.Adv Energy Mater2017;7:1700034

[52]

Wu Y,Lin MC.3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum-ion battery.Adv Mater2016;28:9218-22

[53]

Geng L,Fu C,Fokwa BPT.Titanium sulfides as intercalation-type cathode materials for rechargeable aluminum batteries.ACS Appl Mater Interfaces2017;9:21251-7

[54]

Placke T,Lux SF.Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells.J Electrochem Soc2012;159:A1755-65

[55]

Reed LD,Xiong M.A rechargeable aluminum-ion battery utilizing a copper hexacyanoferrate cathode in an organic electrolyte.Chem Commun2015;51:14397-400

[56]

Wang S,Tu J.A novel aluminum-ion battery: Al/AlCl3-[EMIm]Cl/Ni3S2@Graphene.Adv Energy Mater2016;6:1600137

[57]

Wang S,Wang J.High-performance aluminum-ion battery with CuS@C microsphere composite cathode.ACS Nano2017;11:469-77

[58]

Zhang C,Yin H,Hou Y.Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries.Adv Mater2013;25:4932-7

[59]

Yousaf M,Li Y.A mechanistic study of electrode materials for rechargeable batteries beyond lithium ions by in situ transmission electron microscopy.Energy Environ Sci2021;14:2670-707

[60]

Mahmood N,Yin H.Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells.J Mater Chem A2014;2:15-32

[61]

Tareen AK,Iqbal M.Recent advance in two-dimensional MXenes: new horizons in flexible batteries and supercapacitors technologies.Energy Stor Mater2022;53:783-826

[62]

Tahir M,Butt FK.Tubular graphitic-C3N4: a prospective material for energy storage and green photocatalysis.J Mater Chem A2013;1:13949-55

[63]

Goel P,Sharma R.Aluminum-air batteries: a viability review.J Energy Stor2020;28:101287

[64]

Mori R.Recent developments for aluminum-air batteries.Electrochem Energy Rev2020;3:344-69

[65]

Gaele MF.Rechargeable aluminum-air batteries based on aqueous solid-state electrolytes.Energy Technol2022;10:2101046

[66]

Fan L.The effect of grain size on aluminum anodes for Al-air batteries in alkaline electrolytes.J Power Sources2015;284:409-15

[67]

Fan L,Leng J,Chen C.The effect of crystal orientation on the aluminum anodes of the aluminum-air batteries in alkaline electrolytes.J Power Sources2015;299:66-9

[68]

Wu Z,Qin K.The role of gallium and indium in improving the electrochemical characteristics of Al-Mg-Sn-based alloy for Al-air battery anodes in 2 M NaCl solution.J Mater Sci2020;55:11545-60

[69]

Zhuang Z,Peng C,Wang M.Effect of Ga on microstructure and electrochemical performance of Al-0.4Mg-0.05Sn-0.03Hg alloy as anode for Al-air batteries.Trans Nonferr Metal Soc2021;31:2558-69

[70]

Ren J,Dong Q.Evaluation of impurities in aluminum anodes for Al-air batteries.ACS Sustain Chem Eng2021;9:2300-8

[71]

Lv C,Zhu Y.Quasi-solid-state aluminum-air batteries with ultra-high energy density and uniform aluminum stripping behavior.Adv Sci2023;10:e2304214 PMCID:PMC10582464

[72]

Wang Y,Leong KW,Zhao X.Solid-state Al-air battery with an ethanol gel electrolyte.Green Energy Environ2023;8:1117-27

[73]

Harchegani RK.Synergistic effect of vanadate and nanoclay hybrid inhibitor on the self-corrosion and discharge activity of Al anode in alkaline aluminum-air batteries.J Electrochem Soc2023;170:030524

[74]

Srivastava S,Varshney PK.Impact of surface modification of electrode for aluminium air batteries.J Energy Stor2024;76:109588

[75]

Zuo Y,Liu H,Cao Q.Electrospun Al2O3 film as inhibiting corrosion interlayer of anode for solid aluminum-air batteries.Batteries2020;6:19

[76]

Zuo Y,Shi H,Zuo C.Inhibition of hydrogen evolution by a bifunctional membrane between anode and electrolyte of aluminum-air battery.Membranes2022;12:407 PMCID:PMC9028828

[77]

Ipadeola AK,Abdullah AM.Porous transition metal-based nanostructures as efficient cathodes for aluminium-air batteries.Curr Opin Electrochem2023;37:101198

[78]

Timofeeva EV,Pour GS,Patawah BL.Aqueous air cathodes and catalysts for metal-air batteries.Curr Opin Electrochem2023;38:101246

[79]

Meng X,Rageloa J,Wang W.Coordination strategy to prepare high-performance Fe-Nx catalysts for Al-air batteries.J Power Sources2023;567:232988

[80]

Yu Y,Liu Y.Directly electrospun carbon nanofibers incorporated with Mn3O4 nanoparticles as bending-resistant cathode for flexible Al-air batteries.Nanomaterials2020;10:216 PMCID:PMC7074833

[81]

Ma Y,Zang W.Flexible and wearable all-solid-state Al-air battery based on iron carbide encapsulated in electrospun porous carbon nanofibers.ACS Appl Mater Interfaces2019;11:1988-95

[82]

Li K,Li H.Heterostructural interface in Fe3C-TiN quantum dots boosts oxygen reduction reaction for Al-air batteries.ACS Appl Mater Interfaces2021;13:47440-8

[83]

Liu D,Tang Y.High-power double-face flow Al-air battery enabled by CeO2 decorated MnOOH nanorods catalyst.Chem Eng J2021;406:126772

[84]

Akgenc B,Yagmurcukardes M.Aluminum and lithium sulfur batteries: a review of recent progress and future directions.J Phys Condens Matter2021;33:253002

[85]

Cheng R,Li K.Dimensional engineering of carbon dots derived sulfur and nitrogen co-doped carbon as efficient oxygen reduction reaction electrocatalysts for aluminum-air batteries.Chem Eng J2021;425:130603

[86]

Wang M,Fang J.Superior oxygen reduction reaction on phosphorus-doped carbon dot/graphene aerogel for all-solid-state flexible Al-air batteries.Adv Energy Mater2020;10:1902736

[87]

Shui Z,Lei Y.MnO2 synergized with N/S codoped graphene as a flexible cathode efficient electrocatalyst for advanced honeycomb-shaped stretchable aluminum-air batteries.Langmuir2020;36:12954-62

[88]

Wang Z,Xue J.Ultrasonic-assisted hydrothermal synthesis of cobalt oxide/nitrogen-doped graphene oxide hybrid as oxygen reduction reaction catalyst for Al-air battery.Ultrason Sonochem2021;72:105457 PMCID:PMC7808954

[89]

Huang L,Ma Y.In-situ formation of isolated iron sites coordinated on nitrogen-doped carbon coated carbon cloth as self-supporting electrode for flexible aluminum-air battery.Chem Eng J2021;421:129973

[90]

Long G,Chen M.Effects of ultrasound on synthesis and performance of manganese-based/ graphene oxide oxygen reduction catalysts for aluminum-air batteries.J Power Sources2023;573:233150

[91]

Xia Z,Zhang W.Cobalt ion intercalated MnO2/C as air cathode catalyst for rechargeable aluminum-air battery.J Alloys Compd2020;824:153950

[92]

Hosseini S,Pourzolfaghar H,Li Y.Techno-economically feasible beverage can as superior anode in rechargeable Al-air batteries.Sustain Mater Technol2023;35:e00560

[93]

Yu L,Zhu T,Sun M.La0.4Sr0.6Co0.7Fe0.2Nb0.1O3-δ perovskite prepared by the sol-gel method with superior performance as a bifunctional oxygen electrocatalyst.Int J Hydrogen Energy2020;45:30583-91

[94]

Shui Z,Xiao H.Controllable porous perovskite with three-dimensional ordered structure as an efficient oxygen reduction reaction electrocatalyst for flexible aluminum-air battery.J Power Sources2022;523:231028

[95]

Chen J,Jiang L.Rechargeable aqueous aluminum organic batteries.Angew Chem Int Ed2021;60:5794-9

[96]

Yoo D,Shin J,Choi JW.Stable performance of aluminum-metal battery by incorporating lithium-ion chemistry.ChemElectroChem2017;4:2345-51

[97]

Sun XG,Guan H.A sodium-aluminum hybrid battery.Meet Abstr2017;MA2017-02:564

[98]

Ramasubramanian B,Chellappan V,Ramakrishna S.Recent development in carbon-LiFePO4 cathodes for lithium-ion batteries: a mini review.Batteries2022;8:133

[99]

Zeng X,Guo Y,Huang X.Research progress on Na3V2(PO4)3 cathode material of sodium ion battery.Front Chem2020;8:635 PMCID:PMC7394007

[100]

Ji B,Sheng M,Tang Y.A Novel and generalized lithium-ion-battery configuration utilizing Al foil as both anode and current collector for enhanced energy density.Adv Mater2017;29:1604219

[101]

Parans Paranthaman M, Liu H, Sun XG, Dai S, Brown GM. Chapter 13 - aluminum-ion batteries for medium- and large-scale energy storage. In: Advances in batteries for medium and large-scale energy storage. Elsevier; 2015. pp. 463-74.

[102]

Ghavidel MZ,Le J,Espitia A.Electrochemical formation of four Al-Li phases (β-AlLi, Al2Li3, AlLi2-x, Al4Li9) at intermediate temperatures.J Electrochem Soc2019;166:A4034-40

[103]

Li D,He Z,Wu F.Single-material aluminum foil as anodes enabling high-performance lithium-ion batteries: the roles of prelithiation and working mechanism.Mater Today2022;58:80-90

[104]

Wang H,Luo X.The progress on aluminum-based anode materials for lithium-ion batteries.J Mater Chem A2020;8:25649-62

[105]

Zheng T.Lithium aluminum alloy anodes in Li-ion rechargeable batteries: past developments, recent progress, and future prospects.Prog Energy2023;5:032001

[106]

Li H,Matsumoto S.Circumventing huge volume strain in alloy anodes of lithium batteries.Nat Commun2020;11:1584 PMCID:PMC7154030

[107]

Zhang W.A review of the electrochemical performance of alloy anodes for lithium-ion batteries.J Power Sources2011;196:13-24

[108]

Gu X,Lai C.Li-containing alloys beneficial for stabilizing lithium anode: a review.Eng Rep2021;3:e12339

[109]

Sun J,Lv R.A Li-ion sulfur full cell with ambient resistant Al-Li alloy anode.Energy Stor Mater2018;15:209-17

[110]

Ryu J,Kim H,Lee H.Electrolyte-mediated nanograin intermetallic formation enables superionic conduction and electrode stability in rechargeable batteries.Energy Stor Mater2020;33:164-72

[111]

Zheng T,Mönig R.Aluminum foil anodes for Li-ion rechargeable batteries: the role of Li solubility within β-LiAl.ACS Sustain Chem Eng2022;10:3203-10

[112]

Yu Y,Fan H.Optimal annealing of Al foil anode for prelithiation and full-cell cycling in Li-ion battery: the role of grain boundaries in lithiation/delithiation ductility.Nano Energy2020;67:104274

[113]

Crowley PJ,Manthiram A.Diffusional lithium trapping as a failure mechanism of aluminum foil anodes in lithium-ion batteries.J Power Sources2022;546:231973

[114]

Chang X,Liu Z,Zheng J.Enabling high performance lithium storage in aluminum: the double edged surface oxide.Nano Energy2017;41:731-7

[115]

Sun X,Zhao Y.Ultrathin aluminum nanosheets grown on carbon nanotubes for high performance lithium ion batteries.Adv Funct Mater2022;32:2109112

[116]

Gu J,Du Z,Zhang D.Multi-atomic layers of metallic aluminum for ultralong life lithium storage with high volumetric capacity.Adv Funct Mater2017;27:1700840

[117]

Zhang M,Galluzzi M.Uniform distribution of alloying/dealloying stress for high structural stability of an Al anode in high-areal-density lithium-ion batteries.Adv Mater2019;31:e1900826

[118]

Fan H,Li S.Nanocrystalline Li-Al-Mn-Si foil as reversible Li host: electronic percolation and electrochemical cycling stability.Nano Lett2020;20:896-904

[119]

Kwon GD,Lee YJ,Pribat D.Graphene-coated aluminum thin film anodes for lithium-ion batteries.ACS Appl Mater Interfaces2018;10:29486-95

[120]

Muñoz-torrero D,García-quismondo E.Investigation of different anode materials for aluminium rechargeable batteries.J Power Sources2018;374:77-83

[121]

Wang P,Li N.Dense graphene papers: toward stable and recoverable Al-ion battery cathodes with high volumetric and areal energy and power density.Energy Stor Mater2018;13:103-11

[122]

Yan C,Wang L.Architecting a stable high-energy aqueous Al-ion battery.J Am Chem Soc2020;142:15295-304

[123]

Sovizi M.Effect of nano zirconia on electrochemical performance, corrosion behavior and microstructure of Al-Mg-Sn-Ga anode for aluminum batteries.J Alloys Compd2019;792:1088-94

[124]

Asfia MP,Kashani H,Badrnezhad R.Study of uniform and localized corrosion behaviour of aluminum alloy 1050 as Al/AgO battery anode in aerated NaCl in the presence of an organosulfur inhibitor.J Electrochem Soc2020;167:140527

[125]

Chen H,Zheng B.Oxide film efficiently suppresses dendrite growth in aluminum-ion battery.ACS Appl Mater Interfaces2017;9:22628-34

[126]

Ran Q,Meng H.Aluminum-copper alloy anode materials for high-energy aqueous aluminum batteries.Nat Commun2022;13:576 PMCID:PMC8803968

[127]

Zheng J,Tang T.Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metal-substrate bonding.Nat Energy2021;6:398-406

[128]

Shen X,Yang L.Ultra-fast charging in aluminum-ion batteries: electric double layers on active anode.Nat Commun2021;12:820 PMCID:PMC7864900

[129]

Afshari M,Sovizi MR.Evaluation of nanometer-sized zirconium oxide incorporated Al-Mg-Ga-Sn alloy as anode for alkaline aluminum batteries.Trans Nonferr Metal Soc2020;30:90-8

[130]

Mahmood N,Pramoda K,Bhargava SK.Atomically thin two-dimensional metal oxide nanosheets and their heterostructures for energy storage.Energy Stor Mater2019;16:455-80

[131]

Mahmood N.Electrode nanostructures in lithium-based batteries.Adv Sci2014;1:1400012 PMCID:PMC5115266

[132]

Kuksenko SP.Aluminum foil as anode material of lithium-ion batteries: effect of electrolyte compositions on cycling parameters.Russ J Electrochem2013;49:67-75

[133]

Hamon Y,Jousse F,Buvat P.Aluminum negative electrode in lithium ion batteries.J Power Sources2001;97-8:185-7

[134]

Du W,Yang Y,Ye M.Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries.Energy Environ Sci2020;13:3330-60

[135]

Li Z,Niu B,Kang F.A Novel graphite-graphite dual ion battery using an AlCl3-[EMIm]Cl liquid electrolyte.Small2018;14:e1800745

[136]

Song Y,Tu J.A long-life rechargeable Al ion battery based on molten salts.J Mater Chem A2017;5:1282-91

[137]

Wedepohl K. The composition of the continental crust.Geochim Cosmochim Acta1995;59:1217-32

[138]

Tang W,Hou Y.Aqueous rechargeable lithium batteries as an energy storage system of superfast charging.Energy Environ Sci2013;6:2093-104

[139]

Wang DW,Zhou G.Carbon-sulfur composites for Li-S batteries: status and prospects.J Mater Chem A2013;1:9382-94

[140]

Li X.Supercapacitors based on nanostructured carbon.Nano Energy2013;2:159-73

[141]

Xu C,Gu Y,Sun J.Graphene-based electrodes for electrochemical energy storage.Energy Environ Sci2013;6:1388-414

[142]

Rani JV,Dadmal T,Bhavanarushi S.Fluorinated natural graphite cathode for rechargeable ionic liquid based aluminum-ion battery.J Electrochem Soc2013;160:A1781-4

[143]

Levitin G,Licht S.Fluorinated graphites as energetic cathodes for nonaqueous Al batteries.Electrochem Solid State Lett2002;5:A160

[144]

Li Z,Yuan L,Huang Y.Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries.Carbon2015;92:41-63

[145]

Zhang K,Varma RS.Covalent organic frameworks: emerging organic solid materials for energy and electrochemical applications.ACS Appl Mater Interfaces2020;12:27821-52

[146]

Tu J,Li S.High-efficiency transformation of amorphous carbon into graphite nanoflakes for stable aluminum-ion battery cathodes.Nanoscale2019;11:12537-46

[147]

Wang S,Krumeich F.Kish graphite flakes as a cathode material for an aluminum chloride-graphite battery.ACS Appl Mater Interfaces2017;9:28478-85

[148]

Ellingsen LA,Drillet JF.Environmental screening of electrode materials for a rechargeable aluminum battery with an AlCl3/EMIMCl electrolyte.Materials2018;11:936 PMCID:PMC6025533

[149]

Murphy DW,Disalvo FJ,Waszczak JV.Lithium Incorporation by V6O13 and related vanadium (+4, +5) oxide cathode materials.J Electrochem Soc1981;128:2053-60

[150]

Zhang C,Zhang J,Wang Z.Amorphous carbon-derived nanosheet-bricked porous graphite as high-performance cathode for aluminum-ion batteries.ACS Appl Mater Interfaces2018;10:26510-6

[151]

Yan Q,Miao Y,Yang M.Vanadium oxychloride as cathode for rechargeable aluminum batteries.J Alloys Compd2019;806:1109-15

[152]

Shi M,Jiang Z,Gao J.Biomass-derived multifunctional TiO2/carbonaceous aerogel composite as a highly efficient photocatalyst.RSC Adv2016;6:25255-66

[153]

Hu Z,Wang H,Li Q.Nonaqueous aluminum ion batteries: recent progress and prospects.ACS Mater Lett2020;2:887-904

[154]

González JR,Cabello M,Lavela P.Reversible intercalation of aluminium into vanadium pentoxide xerogel for aqueous rechargeable batteries.RSC Adv2016;6:62157-64

[155]

Hong H,Huang H.Ordered macro-microporous metal-organic framework single crystals and their derivatives for rechargeable aluminum-ion batteries.J Am Chem Soc2019;141:14764-71

[156]

Hu Y,Yu D.All-climate aluminum-ion batteries based on binder-free MOF-derived FeS2@C/CNT cathode.Nanomicro Lett2021;13:159 PMCID:PMC8302704

[157]

Gu S,Wu C,Li H.Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery.Energy Stor Mater2017;6:9-17

[158]

Nethravathi C,Michael J.Hydrothermal synthesis of a monoclinic VO2 nanotube-graphene hybrid for use as cathode material in lithium ion batteries.Carbon2012;50:4839-46

[159]

Jiang J,Mahmood N,Hou Y.SnS2/graphene composites: excellent anode materials for lithium ion battery and photolysis catalysts.Sci Adv Mat2013;5:1667-75

[160]

Choi S,Lee G.Electrochemical properties of an aluminum anode in an ionic liquid electrolyte for rechargeable aluminum-ion batteries.Phys Chem Chem Phys2017;19:8653-6

[161]

Jiao H,Tu J,Jiao S.A rechargeable Al-ion battery: Al/molten AlCl3-urea/graphite.Chem Commun2017;53:2331-4

[162]

Wang C,Jiao H,Jiao S.The electrochemical behavior of an aluminum alloy anode for rechargeable Al-ion batteries using an AlCl3-urea liquid electrolyte.RSC Adv2017;7:32288-93

[163]

Zhu N,Wu F,Wu C.Ionic liquid-based electrolytes for aluminum/magnesium/sodium-ion batteries.Energy Mater Adv2021;2021:9204217

[164]

Rehman S,Khan K.3D vertically aligned and interconnected porous carbon nanosheets as sulfur immobilizers for high performance lithium-sulfur batteries.Adv Energy Mat J2016;6:1502518

[165]

Huang X,Liu C,Noonan O.Rechargeable aluminum-selenium batteries with high capacity.Chem Sci2018;9:5178-82 PMCID:PMC6001279

[166]

Hu Y,Luo B.Recent progress and future trends of aluminum batteries.Energy Technol2019;7:86-106

[167]

Nasim Khan RN,Lv C.Pristine organo-imido polyoxometalates as an anode for lithium ion batteries.RSC Adv2014;4:7374-9

[168]

Lin MC,Lu B.An ultrafast rechargeable aluminium-ion battery.Nature2015;520:325-8

[169]

Kim I,Lee KH,Lee G.In situ polymerized solid electrolytes for superior safety and stability of flexible solid-state Al-ion batteries.Energy Stor Mater2021;40:229-38

[170]

Lee D,Tak Y.Hypostatic instability of aluminum anode in acidic ionic liquid for aluminum-ion battery.Nanotechnology2018;29:36LT01

[171]

Wu F,Bai Y,Wu C.An interface-reconstruction effect for rechargeable aluminum battery in ionic liquid electrolyte to enhance cycling performances.Green Energy Environ2018;3:71-7

[172]

Wang H,Bai Y.Anion-effects on electrochemical properties of ionic liquid electrolytes for rechargeable aluminum batteries.J Mater Chem A2015;3:22677-86

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/