Non-aqueous rechargeable aluminum-ion batteries (RABs): recent progress and future perspectives
Sahithi Thatipamula , Chamali Malaarachchi , Md Robiul Alam , Muhammad Waqas Khan , Ravichandar Babarao , Nasir Mahmood
Microstructures ›› 2024, Vol. 4 ›› Issue (4) : 2024057
Non-aqueous rechargeable aluminum-ion batteries (RABs): recent progress and future perspectives
To meet the growing energy demand, it is imperative to explore novel materials for batteries and electrochemical chemistry beyond traditional lithium-ion batteries. These innovative batteries aim to achieve long cycle life, capacity, and enhanced energy densities. Rechargeable aluminum batteries (RABs) have gained attention due to their high safety, cost-effectiveness, straightforward manufacturing process, environmental friendliness, and extended lifespan. Despite aluminum having advantages as the anode in achieving high energy density, RAB technology is yet in its early stages, necessitating substantial efforts to overcome fundamental and practical challenges. This comprehensive review centers on the historical development of aluminum batteries, delve into the electrode development in non-aqueous RABs, and explore advancements in non-aqueous RAB technology. It also encompasses essential characterizations and simulation techniques crucial for understanding the underlying mechanisms. By addressing challenges in battery components, this review proposes feasible strategies to improve the electrochemical performance and safety of RABs and the development of hybrid lithium/aluminum batteries. In conclusion, it provides perspectives on endeavors in this field that aim to bridge the gap between laboratory research and real-world applications of RABs.
Rechargeable aluminum batteries / aluminum alloys / hybrid Li-Al / non-aqueous electrolyte / challenges / energy storage
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
Abu Nayem SM, Ahmad A, Shaheen Shah S, Saeed Alzahrani A, Saleh Ahammad AJ, Aziz MA. High performance and long-cycle life rechargeable aluminum ion battery: recent progress, perspectives and challenges.Chem Rec2022;22:e202200181 |
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
Parans Paranthaman M, Liu H, Sun XG, Dai S, Brown GM. Chapter 13 - aluminum-ion batteries for medium- and large-scale energy storage. In: Advances in batteries for medium and large-scale energy storage. Elsevier; 2015. pp. 463-74. |
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
|
| [137] |
Wedepohl K. The composition of the continental crust.Geochim Cosmochim Acta1995;59:1217-32 |
| [138] |
|
| [139] |
|
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
|
| [145] |
|
| [146] |
|
| [147] |
|
| [148] |
|
| [149] |
|
| [150] |
|
| [151] |
|
| [152] |
|
| [153] |
|
| [154] |
|
| [155] |
|
| [156] |
|
| [157] |
|
| [158] |
|
| [159] |
|
| [160] |
|
| [161] |
|
| [162] |
|
| [163] |
|
| [164] |
|
| [165] |
|
| [166] |
|
| [167] |
|
| [168] |
|
| [169] |
|
| [170] |
|
| [171] |
|
| [172] |
|
/
| 〈 |
|
〉 |