A theoretical investigation on sulfidated nanoscale zero valent iron for removal of cis-DCE and PCE

Jessica Jein White , Ming Zhou , Jack Jon Hinsch , William W. Bennett , Yun Wang

Microstructures ›› 2024, Vol. 4 ›› Issue (4) : 2024050

PDF
Microstructures ›› 2024, Vol. 4 ›› Issue (4) :2024050 DOI: 10.20517/microstructures.2024.26
Research Article

A theoretical investigation on sulfidated nanoscale zero valent iron for removal of cis-DCE and PCE

Author information +
History +
PDF

Abstract

The organochlorine contaminants in wastewater can be degraded by using sulfidated nanoscale zero-valent iron. However, the specific role of S dopants and the underlying degradation mechanism are largely unknown. In this study, we applied ab initio molecular dynamics and density functional theory to investigate the remediation mechanism of two chlorinated organic compounds, cis-dichloroethene and tetrachloroethene, focusing on the role of sulfur dopant coverage on the nZVI surface, represented by a stepped Fe(211) facet, and compare it to a flat (110) surface. Our results revealed that low S coverage facilitates the dissociation of the contaminants due to stronger interaction with the iron surface. Conversely, high S coverage initially hinders dissociation but promotes adsorption of the contaminants for later dissociation, suggesting a potential benefit for remediation. By comparing with the water molecule adsorption energies, we demonstrate that S doping enhances selectivity towards these contaminants only at high S coverage. Our theoretical findings, therefore, highlight the importance of optimizing S coverage for effective wastewater treatment using sulfidated nanoscale zero-valent iron.

Keywords

Nanoscale zero-valent iron / sulfidation / stepped surfaces / hydrophobicity / density functional theory / ab initio molecular dynamics / chlorinated contaminants

Cite this article

Download citation ▾
Jessica Jein White, Ming Zhou, Jack Jon Hinsch, William W. Bennett, Yun Wang. A theoretical investigation on sulfidated nanoscale zero valent iron for removal of cis-DCE and PCE. Microstructures, 2024, 4(4): 2024050 DOI:10.20517/microstructures.2024.26

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fagerlund F,Phenrat T,Lowry GV.PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone.J Contam Hydrol2012;131:9-28

[2]

Qian L,Ouyang D.Field demonstration of enhanced removal of chlorinated solvents in groundwater using biochar-supported nanoscale zero-valent iron.Sci Total Environ2020;698:134215

[3]

Lien HL.Hydrodechlorination of chlorinated ethanes by nanoscale Pd/Fe bimetallic particles.J Environ Eng2005;131:4-10

[4]

Lin KS,Chen CY,Dehvari K.Degradation of TCE, PCE, and 1,2-DCE DNAPLs in contaminated groundwater using polyethylenimine-modified zero-valent iron nanoparticles.J Clean Prod2018;175:456-66

[5]

Xu W,Shi S.Carboxymethyl cellulose stabilized and sulfidated nanoscale zero-valent iron: characterization and trichloroethene dechlorination.Appl Catal B Environ2020;262:118303

[6]

Huang J,Zheng C.Persulfate activation by natural zeolite supported nanoscale zero-valent iron for trichloroethylene degradation in groundwater.Sci Total Environ2019;684:351-9

[7]

Gu M,Lu S,Qiu Z.Degradation of trichloroethylene in aqueous solution by rGO supported nZVI catalyst under several oxic environments.J Hazard Mater2018;349:35-44

[8]

Idrees A,Ali M.Highly efficient degradation of trichloroethylene in groundwater based on persulfate activation by polyvinylpyrrolidone functionalized Fe/Cu bimetallic nanoparticles.J Environ Chem Eng2021;9:105341

[9]

Bhattacharjee S.Optimal design of sulfidated nanoscale zerovalent iron for enhanced trichloroethene degradation.Environ Sci Technol2018;52:11078-86

[10]

He F,Shi S.Dechlorination of excess trichloroethene by bimetallic and sulfidated nanoscale zero-valent iron.Environ Sci Technol2018;52:8627-37

[11]

Mo Y,Zhu L.Molecular structure and sulfur content affect reductive dechlorination of chlorinated ethenes by sulfidized nanoscale zerovalent iron.Environ Sci Technol2022;56:5808-19

[12]

Zhang N,Blowers P.Understanding trichloroethylene chemisorption to iron surfaces using density functional theory.Environ Sci Technol2008;42:2015-20 PMCID:PMC3700525

[13]

Lim DH,Soon A.Density functional theory studies of chloroethene adsorption on zerovalent iron.Environ Sci Technol2009;43:1192-8

[14]

Lim DH.Density functional theory studies on the relative reactivity of chloroethenes on zerovalent iron.Environ Sci Technol2009;43:5443-8

[15]

Bin Q,Zhu K.Superior trichloroethylene removal from water by sulfide-modified nanoscale zero-valent iron/graphene aerogel composite.J Environ Sci2020;88:90-102

[16]

Brumovský M,Oborná J,Hofmann T.Iron nitride nanoparticles for rapid dechlorination of mixed chlorinated ethene contamination.J Hazard Mater2023;442:129988

[17]

Brumovský M,Micić V.Iron nitride nanoparticles for enhanced reductive dechlorination of trichloroethylene.Environ Sci Technol2022;56:4425-36 PMCID:PMC8988298

[18]

Cao Z,Lowry GV.Unveiling the role of sulfur in rapid defluorination of florfenicol by sulfidized nanoscale zero-valent iron in water under ambient conditions.Environ Sci Technol2021;55:2628-38

[19]

Chen J,Tian R,Xie Q.Remediation of trichloroethylene-contaminated groundwater by sulfide-modified nanoscale zero-valent iron supported on biochar: investigation of critical factors.Water Air Soil Pollut2020;231:4797

[20]

Fan D,Tratnyek PG.Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR).Environ Sci Technol2016;50:9558-65

[21]

Li X,Wen N.Critical roles of sulfidation solvent in controlling surface properties and the dechlorination reactivity of S-nZVI.J Hazard Mater2021;417:126014

[22]

Wang B,Li L.Influence of different co-contaminants on trichloroethylene removal by sulfide-modified nanoscale zero-valent iron.Chem Eng J2020;381:122773

[23]

Zhan J,Zhang X.Comparison of trichloroethylene dechlorination in seawater by sulfidated nanoscale zero-valent iron particles prepared by two methods.J Environ Chem Eng2023;11:110242

[24]

White JJ,Wu Z,Bennett WW.Sulfidation impacts on the hydrophobicity of stepped iron surfaces.Adv Energy Sustain Res2023;4:2300055

[25]

Cao Z,Xu X.Correlating surface chemistry and hydrophobicity of sulfidized nanoscale zerovalent iron with its reactivity and selectivity for denitration and dechlorination.Chem Eng J2020;394:124876

[26]

Dong H,Deng J.Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution.Water Res2018;135:1-10

[27]

Garcia AN,Ghoshal S,O’Carroll DM.Recent advances in sulfidated zerovalent iron for contaminant transformation.Environ Sci Technol2021;55:8464-83

[28]

Xu J,Zhou H.Sulfur dose and sulfidation time affect reactivity and selectivity of post-sulfidized nanoscale zerovalent iron.Environ Sci Technol2019;53:13344-52

[29]

Brumovský M,Malina O.Core-shell Fe/FeS nanoparticles with controlled shell thickness for enhanced trichloroethylene removal.ACS Appl Mater Interfaces2020;12:35424-34 PMCID:PMC7404211

[30]

Xu J,Weng C.Reactivity, selectivity, and long-term performance of sulfidized nanoscale zerovalent iron with different properties.Environ Sci Technol2019;53:5936-45

[31]

White JJ,Bennett WW.Theoretical understanding of water adsorption on stepped iron surfaces.Appl Surf Sci2022;605:154650

[32]

White JJ,Hinsch JJ.Theoretical understanding of the properties of stepped iron surfaces with van der Waals interaction corrections.Phys Chem Chem Phys2021;23:2649-57

[33]

Xu J,Lowry GV.Sulfidized nanoscale zero-valent iron: tuning the properties of this complex material for efficient groundwater remediation.ACC Mater Res2021;2:420-31

[34]

Xu J,Li H.Sulfur loading and speciation control the hydrophobicity, electron transfer, reactivity, and selectivity of sulfidized nanoscale zerovalent iron.Adv Mater2020;32:e1906910

[35]

Kresse G.Ab initio molecular dynamics for liquid metals.Phys Rev B Condens Matter1993;47:558-61

[36]

Kresse G.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set.Comput Mater Sci1996;6:15-50

[37]

Wang V,Liu J,Geng W.VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code.Comput Phys Commun2021;267:108033

[38]

Dion M,Schröder E,Lundqvist BI.van der Waals density functional for general geometries.Phys Rev Lett2004;92:246401

[39]

Thonhauser T,Li S,Hyldgaard P.Van der Waals density functional: self-consistent potential and the nature of the van der Waals bond.Phys Rev B2007;76:125112

[40]

Klimeš J,Michaelides A.Van der Waals density functionals applied to solids.Phys Rev B2011;83:195131

[41]

Lee K,Kong L,Langreth DC.Higher-accuracy van der Waals density functional.Phys Rev B2010;82:081101

[42]

Kresse G.From ultrasoft pseudopotentials to the projector augmented-wave method.Phys Rev B1999;59:1758-75

[43]

Mathew K,Letchworth-Weaver K,Hennig RG.Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways.J Chem Phys2014;140:084106

[44]

Mathew K,Mula S,Hennig RG.Implicit self-consistent electrolyte model in plane-wave density-functional theory.J Chem Phys2019;151:234101

[45]

Martínez L,Birgin EG.PACKMOL: a package for building initial configurations for molecular dynamics simulations.J Comput Chem2009;30:2157-64

AI Summary AI Mindmap
PDF

40

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/