Recent progress and strategies of non-noble metal electrocatalysts based on MoS2/MOF for the hydrogen evolution reaction in water electrolysis: an overview

Tuan Van Nguyen , Mahider Tekalgne , Quyet Van Le , Chau Van Tran , Sang Hyun Ahn , Soo Young Kim

Microstructures ›› 2024, Vol. 4 ›› Issue (4) : 2024046

PDF
Microstructures ›› 2024, Vol. 4 ›› Issue (4) :2024046 DOI: 10.20517/microstructures.2024.24
Review

Recent progress and strategies of non-noble metal electrocatalysts based on MoS2/MOF for the hydrogen evolution reaction in water electrolysis: an overview

Author information +
History +
PDF

Abstract

Recently, hydrogen has emerged as a prominent energy source that can be used in various technologies. Molybdenum disulfide (MoS2) is a typical catalyst material with two-dimensional groups that exhibit Pt-like hydrogen evolution reaction (HER) performance. In addition, metal-organic frameworks (MOFs) are a group of materials with ultrahigh porosity and enormous internal surface area, which are also highly beneficial for electrochemical processes. Therefore, catalysts based on MoS2 and MOF materials have been extensively investigated for the production of hydrogen gases. Numerous studies have indicated that a combination of MoS2 and MOF materials can dramatically boost the catalytic activity of these heterostructures. In this paper, the unique properties of MoS2 and MOF materials and the progress and strategies to improve the HER efficiency of catalysts based on MoS2/MOF hybrid materials are discussed. Furthermore, the challenges and future perspectives of these catalysts for HER are presented.

Keywords

Hydrogen energy / MoS2 / MOF / HER / MoS2/MOF heterostructure

Cite this article

Download citation ▾
Tuan Van Nguyen, Mahider Tekalgne, Quyet Van Le, Chau Van Tran, Sang Hyun Ahn, Soo Young Kim. Recent progress and strategies of non-noble metal electrocatalysts based on MoS2/MOF for the hydrogen evolution reaction in water electrolysis: an overview. Microstructures, 2024, 4(4): 2024046 DOI:10.20517/microstructures.2024.24

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Y,Deng S.The impact of fossil fuel combustion on children's health and the associated losses of human capital.Global Transitions2023;5:117-24

[2]

Abdallah L.Reducing carbon dioxide emissions from electricity sector using smart electric grid applications.J Eng2013;2013:1-8

[3]

Nguyen TV,Trung TQ.Stable and multicolored electrochromic device based on polyaniline-tungsten oxide hybrid thin film.J Alloys Compd2021;882:160718

[4]

Nguyen TV,Le QV,Ahn SH.Highly stable electrochromic cells based on amorphous tungsten oxides prepared using a solution-annealing process.Int J Energy Res2021;45:8061-72

[5]

Kim S,Oh C,Park JH.Artificial photosynthesis for high-value-added chemicals: old material, new opportunity.Carbon Energy2022;4:21-44

[6]

Jin B,Park C.A two-photon tandem black phosphorus quantum dot-sensitized BiVO4 photoanode for solar water splitting.Energy Environ Sci2022;15:672-9

[7]

Kim KH,Choung S.Continuous oxygen vacancy gradient in TiO2 photoelectrodes by a photoelectrochemical-driven “self-purification” process.Adv Energy Mater2022;12:2103495

[8]

Lee MK,Kim SY.Two-dimensional metal-organic frameworks and covalent-organic frameworks for electrocatalysis: distinct merits by the reduced dimension.Adv Energy Mater2022;12:2003990

[9]

Lee SA,Lee TH.Multifunctional nano-heterogeneous Ni(OH)2/NiFe catalysts on silicon photoanode toward efficient water and urea oxidation.Appl Catal B Environ2022;317:121765

[10]

Cho JH,Hong SH.Transition metal ion doping on ZIF-8 enhances the electrochemical CO2 reduction reaction.Adv Mater2023;35:e2208224

[11]

Lee MG,Park H.Crystal facet engineering of TiO2 nanostructures for enhancing photoelectrochemical water splitting with BiVO4 nanodots.Nanomicro Lett2022;14:48 PMCID:PMC8789981

[12]

Kai C,Zhang F,Wang Y.In situ growth of CdS spherical nanoparticles/Ti3C2 MXene nanosheet heterojunction with enhanced photocatalytic hydrogen evolution.J Korean Ceram Soc2022;59:302-11

[13]

Xie H,Liu T.A membrane-based seawater electrolyser for hydrogen generation.Nature2022;612:673-8

[14]

Odenweller A,Nemet GF,Luderer G.Probabilistic feasibility space of scaling up green hydrogen supply.Nat Energy2022;7:854-65

[15]

Van Dao D,Ko H.LaFeO3 meets nitrogen-doped graphene functionalized with ultralow Pt loading in an impactful Z-scheme platform for photocatalytic hydrogen evolution.J Mater Chem A2022;10:3330-40

[16]

Nguyen TV,Nguyen CC.Synthesis of nano-coral tungsten carbide/carbon fibers as efficient catalysts for hydrogen evolution reaction.Int J Energy Res2022;46:13089-98

[17]

Li C.Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction.ACS Omega2020;5:31-40 PMCID:PMC6963895

[18]

Cai J,Ye D,Zhang J.Recent progress in noble metal nanocluster and single atom electrocatalysts for the hydrogen evolution reaction.J Mater Chem A2020;8:22467-87

[19]

Wu H,Zhang L,Wilkinson DP.Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis.Electrochem Energy Rev2021;4:473-507

[20]

Paygozar S,Hassanizadeh E,Barati Darband G.Recent progress in non-noble metal-based electrocatalysts for urea-assisted electrochemical hydrogen production.Int J Hydrogen Energy2023;48:7219-59

[21]

Wu L.Comparing the intrinsic HER activity of transition metal dichalcogenides: pitfalls and suggestions.ACS Energy Lett2021;6:2619-25

[22]

Muthu J,Chin H,Hsieh Y.The HER performance of 2D materials is underestimated without morphology correction.Chem Eng J2023;465:142852

[23]

Li C,Liu M,Pang J.Recent progress in metal-organic frameworks (MOFs) for electrocatalysis.Ind Chem Mater2023;1:9-38

[24]

Jin S.How to effectively utilize MOFs for electrocatalysis.ACS Energy Lett2019;4:1443-5

[25]

Van Nguyen T,Tekalgne M.WS2-WC-WO3 nano-hollow spheres as an efficient and durable catalyst for hydrogen evolution reaction.Nano Converg2021;8:28 PMCID:PMC8452812

[26]

Bolar S,Murmu NC,Kuila T.Activation strategy of MoS2 as HER electrocatalyst through doping-induced lattice strain, band gap engineering, and active crystal plane design.ACS Appl Mater Interfaces2021;13:765-80

[27]

Nguyen T, Tekalgne M, Nguyen TP, Van Le Q, Ahn SH, Kim SY. Electrocatalysts based on MoS2 and WS2 for hydrogen evolution reaction: an overview.Battery Energy2023;2:20220057

[28]

van Nguyen T,Nguyen TP.Control of the morphologies of molybdenum disulfide for hydrogen evolution reaction.Int J Energy Res2022;46:11479-91

[29]

Baumann AE,Liu B.Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices.Commun Chem2019;2:86

[30]

Redfern LR.Mechanical properties of metal-organic frameworks.Chem Sci2019;10:10666-79 PMCID:PMC7066669

[31]

Zhu J,Zhao P,Wong KY.Recent advances in electrocatalytic hydrogen evolution using nanoparticles.Chem Rev2020;120:851-918

[32]

Li X,Yu J.Water splitting: from electrode to green energy system.Nanomicro Lett2020;12:131 PMCID:PMC7770753

[33]

Wei J,Long A.Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions.Nanomicro Lett2018;10:75 PMCID:PMC6223891

[34]

Hu C,Gong J.Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting.Energy Environ Sci2019;12:2620-45

[35]

Bao F,Dorbandt I.Understanding the hydrogen evolution reaction kinetics of electrodeposited nickel-molybdenum in acidic, near-neutral, and alkaline conditions.ChemElectroChem2021;8:195-208

[36]

Kumar S,Sharma S.Recent reports on hydrogen evolution reactions and catalysis.Results Chem2022;4:100613

[37]

Benck JD,Kibsgaard J,Jaramillo TF.Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials.ACS Catal2014;4:3957-71

[38]

Duan J,Zhao C.Ultrathin metal-organic framework array for efficient electrocatalytic water splitting.Nat Commun2017;8:15341 PMCID:PMC5465318

[39]

Heveling J.Heterogeneous catalytic chemistry by example of industrial applications.J Chem Educ2012;89:1530-6

[40]

Hinnemann B,Bonde J.Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution.J Am Chem Soc2005;127:5308-9

[41]

Zheng Z,Gao M.Boosting hydrogen evolution on MoS2 via co-confining selenium in surface and cobalt in inner layer.Nat Commun2020;11:3315 PMCID:PMC7334232

[42]

Niu S,Du Y,Xu P.How to reliably report the overpotential of an electrocatalyst.ACS Energy Lett2020;5:1083-7

[43]

Geng X,Wu W.Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction.Nat Commun2016;7:10672 PMCID:PMC4749985

[44]

Shinagawa T,Takanabe K.Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion.Sci Rep2015;5:13801 PMCID:PMC4642571

[45]

Jung HY,Park JH,Ro JC.Effects of platinum group metals on MoS2 nanosheets for a high-performance hydrogen evolution reaction catalyst.ACS Appl Energy Mater2021;4:10748-55

[46]

Lin Z,Wang Z.The role of conductivity and phase structure in enhancing catalytic activity of CoSe for hydrogen evolution reaction.Electrochim Acta2019;294:142-7

[47]

Zhang X,Yu P.Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution.Nat Catal2018;1:460-8

[48]

Zhai W,Chen D,Dai Z.Recent progress on the long-term stability of hydrogen evolution reaction electrocatalysts.InfoMat2022;4:e12357

[49]

Hochfilzer D,Kibsgaard J.Catalyst stability considerations for electrochemical energy conversion with non-noble metals: do we measure on what we synthesized?.ACS Energy Lett2023;8:1607-12.

[50]

Han SA,Kim S.Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides.Nano Convergence2015;2:1-14

[51]

Radisavljevic B,Brivio J,Kis A.Single-layer MoS2 transistors.Nature Nanotech2011;6:147-50.

[52]

Wang Z.Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets.Environ Sci Technol2017;51:8229-44

[53]

Li M,Liu L,Xi N.Experimental study and modeling of atomic-scale friction in zigzag and armchair lattice orientations of MoS2.Sci Technol Adv Mater2016;17:189-99 PMCID:PMC5101872

[54]

Li X.Two-dimensional MoS2: properties, preparation, and applications.J Materiom2015;1:33-44

[55]

Joseph A,Shebeeb CM,John Mathew KP.A review on tailoring the corrosion and oxidation properties of MoS2-based coatings.J Mater Chem A2023;11:3172-209

[56]

Han B.MoS2 as a co-catalyst for photocatalytic hydrogen production from water.Energy Sci Eng2016;4:285-304

[57]

Zhang G,Qu J.Two-dimensional layered MoS2: rational design, properties and electrochemical applications.Energy Environ Sci2016;9:1190-209

[58]

Toh RJ,Luxa J,Pumera M.3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution.Chem Commun2017;53:3054-7

[59]

Kuc A,Heine T.Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2.Phys Rev B2011;83:245213

[60]

Shi W.Effect of oxygen doping on the hydrogen evolution reaction in MoS2 monolayer.J Taiwan Inst Chem Eng2018;82:163-8

[61]

Seh ZW,Dickens CF,Nørskov JK.Combining theory and experiment in electrocatalysis: insights into materials design.Science2017;355:eaad4998

[62]

Xu Y,Yang J.Molybdenum disulfide (MoS2)-based electrocatalysts for hydrogen evolution reaction: From mechanism to manipulation.J Energy Chem2022;74:45-71

[63]

Zhao D,Wang H,Xu Q.Exfoliation of MoS2 by zero-valent transition metal intercalation.Chem Commun2023;59:8135-8

[64]

Zhu X,Wu C.Exfoliation of MoS2 nanosheets enabled by a redox-potential-matched chemical lithiation reaction.Nano Lett2022;22:2956-63

[65]

Kumar BA,Raju K,Sambasivam S.Green solvent exfoliation of few layers 2D-MoS2 nanosheets for efficient energy harvesting and storage application.J Energy Stor2023;65:107336

[66]

Wu L,Yu M.Unraveling the role of lithium in enhancing the hydrogen evolution activity of MoS2: intercalation versus adsorption.ACS Energy Lett2019;4:1733-40 PMCID:PMC6630958

[67]

de-Mello GB,Rowley-neale SJ,Hutton SJ.Surfactant-exfoliated 2D molybdenum disulphide (2D-MoS2): the role of surfactant upon the hydrogen evolution reaction.RSC Adv2017;7:36208-13

[68]

Fan X,Zhou D.Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion.Nano Lett2015;15:5956-60

[69]

Li S,Salamone MM.Edge-enriched 2D MoS2 thin films grown by chemical vapor deposition for enhanced catalytic performance.ACS Catal2017;7:877-86

[70]

Zhu J,Dai H.Boundary activated hydrogen evolution reaction on monolayer MoS2.Nat Commun2019;10:1348 PMCID:PMC6430794

[71]

Dong L,Wang Y.Activating MoS2 basal planes for hydrogen evolution through direct CVD morphology control.J Mater Chem A2019;7:27603-11

[72]

Jeon J,Jeon SM.Layer-controlled CVD growth of large-area two-dimensional MoS2 films.Nanoscale2015;7:1688-95

[73]

Duraisamy S,Sharma PK,Davis J.One-step hydrothermal synthesis of phase-engineered MoS2/MoO3 electrocatalysts for hydrogen evolution reaction.ACS Appl Nano Mater2021;4:2642-56

[74]

Muralikrishna S,Samrat D,Ramakrishnappa T.Hydrothermal synthesis of 2D MoS2 nanosheets for electrocatalytic hydrogen evolution reaction.RSC Adv2015;5:89389-96

[75]

Ren X,Zhang Y,Fan H.One-step hydrothermal synthesis of monolayer MoS2 quantum dots for highly efficient electrocatalytic hydrogen evolution.J Mater Chem A2015;3:10693-7

[76]

Ganesha H,Nagaraju YS.2-Dimensional layered molybdenum disulfide nanosheets and CTAB-assisted molybdenum disulfide nanoflower for high performance supercapacitor application.Nanoscale Adv2022;4:521-31 PMCID:PMC9419562

[77]

Lukowski MA,Meng F,Li L.Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets.J Am Chem Soc2013;135:10274-7

[78]

Nguyen TV,Le QV,Ahn SH.Synthesis of very small molybdenum disulfide nanoflowers for hydrogen evolution reaction.Appl Surf Sci2023;607:154979

[79]

Xu J,Tang X.Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution.Nat Commun2022;13:2193 PMCID:PMC9033855

[80]

Stock N.Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites.Chem Rev2012;112:933-69

[81]

Yusuf VF,Kailasa SK.Review on metal-organic framework classification, synthetic approaches, and influencing factors: applications in energy, drug delivery, and wastewater treatment.ACS Omega2022;7:44507-31 PMCID:PMC9753116

[82]

Zhou HC,Yaghi OM.Introduction to metal-organic frameworks.Chem Rev2012;112:673-4

[83]

Ahmed I.Composites of metal-organic frameworks: preparation and application in adsorption.Mater Today2014;17:136-46

[84]

Skrabalak SE.The chemistry of metal organic framework materials.Chem Mater2023;35:5713-22

[85]

Chueh C,Su Y.Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives.J Mater Chem A2019;7:17079-95

[86]

Munawar T,Mukhtar F.Scalable synthesis of MOFs-derived ZnO/C nanohybrid: efficient electrocatalyst for oxygen evolution reaction in alkaline medium.J Korean Ceram Soc2023;60:918-34

[87]

Lee J,Roberts J,Nguyen ST.Metal-organic framework materials as catalysts.Chem Soc Rev2009;38:1450-9

[88]

Zhou A,Zhou J,Chen Y.Pd@ZIF-67 derived recyclable Pd-based catalysts with hierarchical pores for high-performance heck reaction.ACS Sustain Chem Eng2018;6:2103-11

[89]

Qin JS,Guan W.Ultrastable polymolybdate-based metal-organic frameworks as highly active electrocatalysts for hydrogen generation from water.J Am Chem Soc2015;137:7169-77

[90]

Deng L,Ma M.Electronic modulation caused by interfacial Ni-O-M (M = Ru, Ir, Pd) bonding for accelerating hydrogen evolution kinetics.Angew Chem Int Ed2021;60:22276-82

[91]

Ren J,Musyoka NM.Structural defects in metal-organic frameworks (MOFs): formation, detection and control towards practices of interests.Coord Chem Rev2017;349:169-97

[92]

Wang Q.State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis.Chem Rev2020;120:1438-511

[93]

Han SA,Lee J,Kim JH.Metal-organic framework derived porous structures towards lithium rechargeable batteries.EcoMat2023;5:e12283

[94]

Bu F,Aly Aboud MF,Gu J.Microwave-assisted ultrafast synthesis of adjustable bimetal phosphide/graphene heterostructures from MOFs for efficient electrochemical water splitting.J Mater Chem A2019;7:14526-35

[95]

Alagar S, Krishankant, Gaur A, Bera C, Bagchi V. Rapid synthesis of a CuZn-MOF via controlled electrodeposition: manifesting enhanced overall electrocatalytic water splitting.Sustain Energy Fuels2023;7:3692-700

[96]

Hu Z,Zhao D.Modulated hydrothermal chemistry of metal-organic frameworks.Acc Mater Res2022;3:1106-14

[97]

Nivetha R,Raghavan V.Highly porous MIL-100(Fe) for the hydrogen evolution reaction (HER) in acidic and basic media.ACS Omega2020;5:18941-9 PMCID:PMC7408201

[98]

Wu L,Zeng P,Zhang M.Hydrothermal synthesis of Ni(II) or Co(II)-based MOF for electrocatalytic hydrogen evolution.Polyhedron2022;225:116035

[99]

Ravipati M,Badhulika S.Single-pot solvothermal synthesis of single-crystalline nickel-metal organic framework nanosheets for direct iron fuel cell applications.ACS Appl Energy Mater2023;6:6901-9

[100]

Zhang B,Tan X.MIL-125-NH2@TiO2 core-shell particles produced by a post-solvothermal route for high-performance photocatalytic H2 Production.ACS Appl Mater Interfaces2018;10:16418-23

[101]

Ma B,Li QY,Zang SQ.MOF-derived flower-like MoS2@TiO2 nanohybrids with enhanced activity for hydrogen evolution.ACS Appl Mater Interfaces2016;8:26794-800

[102]

Głowniak S,Choma J.Mechanochemistry: toward green synthesis of metal-organic frameworks.Mater Today2021;46:109-24

[103]

Huo YP,Gao ZX,Wang Y.State-of-the-art progress of switch fluorescence biosensors based on metal-organic frameworks and nucleic acids.Mikrochim Acta2021;188:168

[104]

Yang M,Dong H.Conversion of bimetallic MOF to Ru-doped Cu electrocatalysts for efficient hydrogen evolution in alkaline media.Sci Bull2021;66:257-64

[105]

Wang M,Peng CK.Site-specified two-dimensional heterojunction of Pt nanoparticles/metal-organic frameworks for enhanced hydrogen evolution.J Am Chem Soc2021;143:16512-8

[106]

Nishigaki K,Matsuoka M.A synthetic route to MoS2 catalysts supported on a metal-organic framework for electrochemical hydrogen evolution reaction utilizing chemical vapor deposition.Energy Fuels2022;36:548-53

[107]

Saifi S,Karthikeyan J,Aijaz A.MoS2 and WS2 nanosheets decorated on metal-organic framework-derived cobalt/carbon nanostructures as electrocatalysts for hydrogen evolution.ACS Appl Nano Mater2022;5:10696-703

[108]

Chen T,Li L,Zang S.MOF-derived Co9S8/MoS2 embedded in tri-doped carbon hybrids for efficient electrocatalytic hydrogen evolution.J Energy Chem2020;44:90-6

[109]

Zhu D,Zhao Y,Qiao SZ.Engineering 2D metal-organic framework/MoS2 interface for enhanced alkaline hydrogen evolution.Small2019;15:e1805511

[110]

Wang C,Zhao X,Han X.MoS2 @HKUST-1 flower-like nanohybrids for efficient hydrogen evolution reactions.Chemistry2018;24:1080-7

[111]

Qiao Z,Liu N.Synthesis of MOF/MoS2 composite photocatalysts with enhanced photocatalytic performance for hydrogen evolution from water splitting.Int J Hydrogen Energy2022;47:40755-67

[112]

Rong J,Ryan Osterloh W.In situ construction MoS2-Pt nanosheets on 3D MOF-derived S, N-doped carbon substrate for highly efficient alkaline hydrogen evolution reaction.Chem Eng J2021;412:127556

[113]

Gopi S,Yun K.MoS2 decoration followed by P inclusion over Ni-Co bimetallic metal-organic framework-derived heterostructures for water splitting.Inorg Chem2021;60:10772-80

[114]

Xiong L,Wang G.MOF-derived CoS2@NiS-MoS2 ternary composite heterojunction electrocatalyst for efficient water splitting.ACS Appl Energy Mater2022;5:15010-8

AI Summary AI Mindmap
PDF

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/