First-principles study on crystal structures and superconductivity of ternary metal hydride La-Sr-H under high pressure

Ling Chen , Qiwen Jiang , Zihan Zhang , Zhengtao Liu , Zihao Huo , Hao Ma , Shumin Guo , Shouwen Yang , Defang Duan

Microstructures ›› 2025, Vol. 5 ›› Issue (3) : 2025042

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (3) :2025042 DOI: 10.20517/microstructures.2024.21
Research Article

First-principles study on crystal structures and superconductivity of ternary metal hydride La-Sr-H under high pressure

Author information +
History +
PDF

Abstract

The discovery of cage hydrides (Y,Ca)H6, (La,Ce)H9, and (La,Y)H10 indicates the appeal of ternary hydrides as contenders for high-temperature superconductors. Herein, we systematically studied a La-Sr-H system and predicted interesting stable and metastable hydrides at 200 GPa by first-principles calculations. The results revealed that LaSrH21 has a high superconducting transition temperature (Tc) of 211 K at 200 GPa, mainly attributed to its unique H12 rings. LaSrH12, LaSr2H18, and LaSr3H24 contain distorted H24 cages and exhibit high Tc values of 160, 167, and 169 K, respectively. Notably, LaSrH12 maintained dynamic stability down to 30 GPa, which is extremely low for H24 cage hydrides. In addition, the Tcs of LaSrH12 increased at a rate of 0.43 K/GPa with the increase in pressure. Further analysis revealed that the positive pressure-dependent Tc was mainly due to the softening of the low-frequency phonon modes and Lifshitz transition. Our work will guide the study of ternary rare- and alkaline-earth hydrides.

Keywords

High pressure / first-principles calculations / hydrides / superconductcity

Cite this article

Download citation ▾
Ling Chen, Qiwen Jiang, Zihan Zhang, Zhengtao Liu, Zihao Huo, Hao Ma, Shumin Guo, Shouwen Yang, Defang Duan. First-principles study on crystal structures and superconductivity of ternary metal hydride La-Sr-H under high pressure. Microstructures, 2025, 5(3): 2025042 DOI:10.20517/microstructures.2024.21

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ashcroft NW.Metallic hydrogen: a high-temperature superconductor?.Phys Rev Lett1968;21:1748-9

[2]

Bardeen J,Schrieffer JR.Microscopic theory of superconductivity.Phys Rev1957;106:162-4

[3]

Zhao W,Du M.Pressure-induced high-temperature superconductivity in ternary Y-Zr-H compounds.Phys Chem Chem Phys2023;25:5237-43

[4]

Edalati K,Beloshenko VA.Nanomaterials by severe plastic deformation: review of historical developments and recent advances.Mater Res Lett2022;10:163-256

[5]

Kang S,Liu T.A ferromagnetically coupled Fe42 cyanide-bridged nanocage.Nat Commun2015;6:5955 PMCID:PMC4354210

[6]

Dalladay-Simpson P,Gregoryanz E.Evidence for a new phase of dense hydrogen above 325 gigapascals.Nature2016;529:63-7

[7]

Loubeyre P,Dumas P.Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen.Nature2020;577:631-5

[8]

Ashcroft NW.Hydrogen dominant metallic alloys: high temperature superconductors?.Phys Rev Lett2004;92:187002

[9]

Du M,Cui T.Compressed superhydrides: the road to room temperature superconductivity.J Phys Condens Matter2022;34:173001

[10]

Goncharenko I,Hanfland M.Pressure-induced hydrogen-dominant metallic state in aluminum hydride.Phys Rev Lett2008;100:045504

[11]

Eremets MI,Medvedev SA,Yao Y.Superconductivity in hydrogen dominant materials: silane.Science2008;319:1506-9

[12]

Pickard CJ.Ab initio random structure searching.J Phys Condens Matter2011;23:053201

[13]

Wang Y,Zhu L.Crystal structure prediction via particle-swarm optimization.Phys Rev B2010;82:094116

[14]

Wang Y,Zhu L.CALYPSO: a method for crystal structure prediction.Comput Phys Commun2012;183:2063-70

[15]

Gao H,Han Y.Enhancing crystal structure prediction by decomposition and evolution schemes based on graph theory.Fundam Res2021;1:466-71

[16]

Oganov AR.Crystal structure prediction using ab initio evolutionary techniques: principles and applications.J Chem Phys2006;124:244704

[17]

Oganov AR,Valle M.How evolutionary crystal structure prediction works-and why.ACC Chem Res2011;44:227-37

[18]

Lyakhov AO,Stokes HT.New developments in evolutionary structure prediction algorithm USPEX.Comput Phys Commun2013;184:1172-82

[19]

Xia K,Liu C.A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search.Sci Bull2018;63:817-24

[20]

Duan D,Tian F.Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity.Sci Rep2014;4:6968 PMCID:PMC4225546

[21]

Duan D,Tian F.Pressure-induced decomposition of solid hydrogen sulfide.Phys Rev B2015;91:180502

[22]

Drozdov AP,Troyan IA,Shylin SI.Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system.Nature2015;525:73-6

[23]

Einaga M,Ishikawa T.Crystal structure of the superconducting phase of sulfur hydride.Nat Phys2016;12:835-8 PMCID:PMC5446087

[24]

Peng F,Pickard CJ,Wu Q.Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity.Phys Rev Lett2017;119:107001

[25]

Liu H,Hoffmann R,Hemley RJ.Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure.Proc Natl Acad Sci USA2017;114:6990-5 PMCID:PMC5502634

[26]

Drozdov AP,Minkov VS.Superconductivity at 250 K in lanthanum hydride under high pressures.Nature2019;569:528-31

[27]

Somayazulu M,Mishra AK.Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures.Phys Rev Lett2019;122:027001

[28]

Hong F,Shan P.Superconductivity of lanthanum superhydride investigated using the standard four-probe configuration under high pressures.Chinese Phys Lett2020;37:107401

[29]

Troyan IA,Kvashnin AG.Anomalous high-temperature superconductivity in YH6.Adv Mater2021;33:e2006832

[30]

Kong P,Kuzovnikov MA.Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure.Nat Commun2021;12:5075 PMCID:PMC8379216

[31]

Ma L,Xie Y.High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa.Phys Rev Lett2022;128:167001

[32]

Jiang Q,Song H.Ternary superconducting hydrides stabilized via Th and Ce elements at mild pressures.Fundam Res2024;4:550-6 PMCID:PMC11197597

[33]

Errea I,Pickard CJ.Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system.Nature2016;532:81-4

[34]

Errea I,Monacelli L.Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride.Nature2020;578:66-9

[35]

Chen W,Huang X.High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 megabar.Phys Rev Lett2021;127:117001

[36]

Semenok DV,Ivanova AG.Superconductivity at 161 K in thorium hydride ThH10: synthesis and properties.Mater Today2020;33:36-44

[37]

Sun Y,Xie Y,Ma Y.Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure.Phys Rev Lett2019;123:097001

[38]

Zhang Z,Hutcheon MJ.Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure.Phys Rev Lett2022;128:047001

[39]

Song Y,Nakamoto Y.Stoichiometric ternary superhydride LaBeH8 as a new template for high-temperature superconductivity at 110 K under 80 GPa.Phys Rev Lett2023;130:266001

[40]

Heil C,Bachelet GB.Superconductivity in sodalite-like yttrium hydride clathrates.Phys Rev B2019;99:220502

[41]

Xie H,Shao Z.High-temperature superconductivity in ternary clathrate CaYH12 under high pressures.J Phys Condens Matter2019;31:245404

[42]

Liang X,Wang L.Potential high- Tc superconductivity in CaYH12 under pressure.Phys Rev B2019;99:100505

[43]

Zhao W,Du M.Pressure-induced high-Tc superconductivity in the ternary clathrate system Y-Ca-H.Phys Rev B2022;106:014521

[44]

Chen W,Semenok DV.Enhancement of superconducting properties in the La-Ce-H system at moderate pressures.Nat Commun2023;14:2660 PMCID:PMC10170082

[45]

Bi J,Zhang P.Giant enhancement of superconducting critical temperature in substitutional alloy (La,Ce)H9.Nat Commun2022;13:5952 PMCID:PMC9551097

[46]

Semenok DV,Ivanova AG.Superconductivity at 253 K in lanthanum-yttrium ternary hydrides.Mater Today2021;48:18-28

[47]

Ma T,Du M.High-throughput calculation for superconductivity of sodalite-like clathrate ternary hydrides MXH12 at high pressure.Mater Today Phys2023;38:101233

[48]

Hooper J,Shamp A.Composition and constitution of compressed strontium polyhydrides.J Phys Chem C2014;118:6433-47

[49]

Wang Y,Tse JS,Ma Y.Structural morphologies of high-pressure polymorphs of strontium hydrides.Phys Chem Chem Phys2015;17:19379-85

[50]

Semenok DV,Savkin IA,Oganov AR.On distribution of superconductivity in metal hydrides.Curr Opin Solid State Mater Sci2020;24:100808

[51]

Tanaka K,Liu H.Electron-phonon coupling mechanisms for hydrogen-rich metals at high pressure.Phys Rev B2017;96:100502

[52]

Semenok DV,Huang X.Sr-doped superionic hydrogen glass: synthesis and properties of SrH22.Adv Mater2022;34:e2200924

[53]

Chen Y,Lin Z.High Tc superconductivity in layered hydrides XH15 (X = Ca, Sr, Y, La) under high pressures.Front Phys2022;17:63502

[54]

Kresse G.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys Rev B Condens Matter1996;54:11169-86

[55]

Perdew JP,Ernzerhof M.Generalized gradient approximation made simple.Phys Rev Lett1996;77:3865-8

[56]

Perdew JP.Pair-distribution function and its coupling-constant average for the spin-polarized electron gas.Phys Rev B Condens Matter1992;46:12947-54

[57]

Blöchl PE.Projector augmented-wave method.Phys Rev B Condens Matter1994;50:17953-79

[58]

Maintz S,Tchougréeff AL.LOBSTER: a tool to extract chemical bonding from plane-wave based DFT.J Comput Chem2016;37:1030-5 PMCID:PMC5067632

[59]

Togo A,Tanaka I.First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-typeSiO2 at high pressures.Phys Rev B2008;78:134106

[60]

Giannozzi P,Bonini N.QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials.J Phys Condens Matter2009;21:395502

[61]

Vanderbilt D.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.Phys Rev B Condens Matter1990;41:7892-5

[62]

Appel J.Transition temperature of d-f -band superconductors.Phys Rev B1973;8:1079-87

[63]

Wu Y,Hautier G,Ceder G.First principles high throughput screening of oxynitrides for water-splitting photocatalysts.Energy Environ Sci2013;6:157-68

[64]

Hinuma Y,Kumagai Y.Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis.Nat Commun2016;7:11962 PMCID:PMC4919542

[65]

Song H,Cui T,Kresin VZ.High Tc superconductivity in heavy rare earth hydrides.Chinese Phys Lett2021;38:107401

[66]

Lifshitz IM. Anomalies of electron characteristics in the high pressure region. 1960. Available from: https://www.osti.gov/biblio/4173345 [Last accessed on 15 Jul 2024]

[67]

Yang K,Chen H,Li B.Stable structures and superconducting properties of Ca-La-H compounds under pressure.J Phys Condens Matter2022;34:355401

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/