MXene-based hydrovoltaic electricity generators and their coupling with other energy harvesting systems

Shengyou Li , Jinjie Liu , Kaiying Zhao , HoYeon Kim , EunAe Shin , Gwanho Kim , Guangtao Zan

Microstructures ›› 2025, Vol. 5 ›› Issue (4) : 2025080

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (4) :2025080 DOI: 10.20517/microstructures.2024.207
Review

MXene-based hydrovoltaic electricity generators and their coupling with other energy harvesting systems

Author information +
History +
PDF

Abstract

MXenes, a class of two-dimensional transition metal carbides and nitrides, have garnered significant attention for their unique properties, making them promising candidates for next-generation energy harvesting technologies. Among these, emerging MXene-based hydrovoltaic electricity generators (HEGs), including moisture electricity generators, evaporation electricity generators, reverse electrodialysis electricity generators, and droplet electricity generators, have demonstrated exceptional performance in converting energy in environmental water such as moisture, water, wave, and droplets into electricity. Additionally, the synergistic coupling of MXene HEGs with other energy harvesting systems, such as triboelectric nanogenerators and thermoelectric generators, offers new avenues for enhancing power generation performance and expanding application scenarios. This review systematically examines the structures and properties of MXenes, their application in various HEGs, and the recent advancements in their integration with other energy harvesting systems. Furthermore, we discuss the challenges and future opportunities for MXene-based devices in multifunctional energy harvesting platforms.

Keywords

MXene / hydrovoltaic electricity generators / energy harvesting / moisture electricity generator / evaporation electricity generator / coupling systems

Cite this article

Download citation ▾
Shengyou Li, Jinjie Liu, Kaiying Zhao, HoYeon Kim, EunAe Shin, Gwanho Kim, Guangtao Zan. MXene-based hydrovoltaic electricity generators and their coupling with other energy harvesting systems. Microstructures, 2025, 5(4): 2025080 DOI:10.20517/microstructures.2024.207

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Z,Yin J.Emerging hydrovoltaic technology.Nat Nanotechnol2018;13:1109-19

[2]

Yin J,Fang S.Hydrovoltaic energy on the way.Joule2020;4:1852-5

[3]

Wang X,Wang X.Hydrovoltaic technology: from mechanism to applications.Chem Soc Rev2022;51:4902-27

[4]

Poredoš P.Sustainable cooling with water generation.Science2023;380:458-9

[5]

Zan G.Biomimetic and bioinspired synthesis of nanomaterials/nanostructures.Adv Mater2016;28:2099-147

[6]

Li S,Shin EA,Zan G.Passive interfacial cooling sparks a major leap in solar-driven water and power cogeneration.Clean Energy Sci Technol2024;2:140

[7]

Zan G,Chen P,Wu Q.Mesoporous cubic nanocages assembled by coupled monolayers with 100% theoretical capacity and robust cycling.ACS Cent Sci2024;10:1283-94 PMCID:PMC11212129

[8]

Pu S,Zhou H.Sustaining 500,000 folding cycles through bioinspired stress dispersion design in sodium-ion batteries.Angew Chem Int Ed2025;64:e202417589

[9]

Zan G,Zhao K.Emerging bioinspired hydrovoltaic electricity generators.Energy Environ Sci2025;18:53-96

[10]

Jin R,Wang Z.Deposition technologies of perovskite layer enabling large-area photovoltaic modules.Energy Mater Dev2024;2:9370030

[11]

Li Y,Qiao W.Nanostructured heterogeneous photocatalyst materials for green synthesis of valuable chemicals.Chem Synth2022;2:9

[12]

Park SM,Lempesis N.Low-loss contacts on textured substrates for inverted perovskite solar cells.Nature2023;624:289-94

[13]

Wang ZL.Piezoelectric nanogenerators based on zinc oxide nanowire arrays.Science2006;312:242-6

[14]

Yang Q,Qiu P.Flexible thermoelectrics based on ductile semiconductors.Science2022;377:854-8

[15]

Zahid M,Pandit S.Microbial desalination cell: desalination through conserving energy.Desalination2022;521:115381

[16]

Zhao K,Zan G.Moisture-driven energy generation by vertically structured polymer aerogel on water-collecting gel.Nano Energy2024;126:109645

[17]

Xu J,Bai Z.Sustainable moisture energy.Nat Rev Mater2024;9:722-37

[18]

Wang J,Cui X.Recent advances of green electricity generation: potential in solar interfacial evaporation system.Adv Mater2024;36:e2311151

[19]

Liu Z,Chen Z.Recent advances in two-dimensional materials for hydrovoltaic energy technology.Exploration2023;3:20220061 PMCID:PMC10191061

[20]

Shin E,Zhao K.Environmentally sustainable moisture energy harvester with chemically networked cellulose nanofiber.Energy Environ Sci2024;17:7165-81

[21]

Zan G,Kim H.A core-shell fiber moisture-driven electric generator enabled by synergetic complex coacervation and built-in potential.Nat Commun2024;15:10056 PMCID:PMC11579398

[22]

Peng X,Liu Y.Strain engineering of two-dimensional materials for energy storage and conversion applications.Chem Synth2023;3:47

[23]

Zhang M,Wei W,Chang J.Arginine modification of hybrid cobalt/nitrogen Ti3C2Tx MXene and its application as a sulfur host for lithium-sulfur batteries.Microstructures2024;4:2024013

[24]

Dai X,Wang X.MXene-based sodium-sulfur batteries: synthesis, applications and perspectives.Rare Met2025;44:1522-55

[25]

Wang X,Meng X,Hu Z.Research status and perspectives of MXene-based materials for aqueous zinc-ion batteries.Rare Met2024;43:1867-85

[26]

Naguib M,Presser V.Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2.Adv Mater2011;23:4248-53

[27]

Li L.MXene based nanocomposite films.Exploration2022;2:20220049 PMCID:PMC10190843

[28]

Anasori B.MXenes: trends, growth, and future directions.Graphene 2D Mater2022;7:75-9

[29]

Gogotsi Y.The Future of MXenes.Chem Mater2023;35:8767-70

[30]

VahidMohammadi A,Gogotsi Y.The world of two-dimensional carbides and nitrides (MXenes).Science2021;372:eabf1581

[31]

Gogotsi Y.The rise of MXenes.ACS Nano2019;13:8491-4

[32]

Liu Y,Liang T.The mechanism of room-temperature oxidation of a HF-etched Ti3C2Tx MXene determined via environmental transmission electron microscopy and molecular dynamics.InfoMat2024;6:e12536

[33]

Ma H,Li J,Fang X.Transmittance contrast-induced photocurrent: a general strategy for self-powered photodetectors based on MXene electrodes.InfoMat2024;6:e12540

[34]

Cheng X,Wu Z,Che W.Establishing carrier transport channels based on Ti-S bonds and enhancing the photocatalytic performance of MXene quantum dots-ZnIn2S4 for ammonia synthesis.InfoMat2024;6:e12535

[35]

Chen Y,Bodepudi SC.High-sensitive and fast MXene/silicon photodetector for single-pixel X-ray imaging.InfoMat2024;6:e12596

[36]

Mathis TS,Goad A.Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene.ACS Nano2021;15:6420-9

[37]

Jia L,Ahmed A.Tuning MXene electrical conductivity towards multifunctionality.Chem Eng J2023;475:146361

[38]

Li J,Wang R.Ultra-stable cycling of organic carboxylate molecule hydrogen bonded with inorganic Ti3C2Tx MXene with improved redox kinetics for sodium-ion batteries.Battery Energy2024;3:20230033

[39]

Usman KAS,Marquez KP.Recent advances and opportunities in MXene-based liquid crystals.InfoMat2024;6:e12516

[40]

He G,Liu X.High-performance and long-term stability of MXene/PEDOT:PSS-decorated cotton yarn for wearable electronics applications.Adv Fiber Mater2024;6:367-86

[41]

Duan S,Shi Q.Highly sensitive and mechanically stable MXene textile sensors for adaptive smart data glove embedded with near-sensor edge intelligence.Adv Fiber Mater2024;6:1541-53

[42]

Feng W,Lan C,Pu X.Core-sheath CNT@MXene fibers toward absorption-dominated electromagnetic interference shielding fabrics.Adv Fiber Mater2024;6:1657-68

[43]

Zhao F,Zhang Z,Qu L.Direct power generation from a graphene oxide film under moisture.Adv Mater2015;27:4351-7

[44]

J,Hu Q,Zhou S.Microbial biofilm-based hydrovoltaic technology.Trends Biotechnol2023;41:1155-67

[45]

Zhang H,Wang B.High-performance, highly stretchable, flexible moist-electric generators via molecular engineering of hydrogels.Adv Mater2023;35:e2300398

[46]

Luo P,Han B.Nanosheets array-induced nanofluidic channels toward efficient primary batteries-coordinated textiles.Nano Energy2023;118:108988

[47]

Zhao K,Yu ZG.Humidity-tolerant moisture-driven energy generator with MXene aerogel-organohydrogel bilayer.ACS Nano2023;17:5472-85

[48]

Li Y,Shao B.Asymmetric charged conductive porous films for electricity generation from water droplets via capillary infiltrating.ACS Appl Mater Interfaces2021;13:17902-9

[49]

Xue YB,Luo P.Asymmetric sandwich Janus Structure for high-performance textile-based thermos-hydroelectric generators toward human health monitoring.Adv Funct Mater2024;34:2310485

[50]

Zhao Q,Duan Z.A Nb2CTx/sodium alginate-based composite film with neuron-like network for self-powered humidity sensing.Chem Eng J2022;438:135588

[51]

Kim G,Zhao K.A deformable complementary moisture and tribo energy harvester.Energy Environ Sci2024;17:134-48

[52]

Liu C,Guan P.Unveil the triple roles of water molecule on power generation of MXene Derived TiO2 based moisture electric generator.Adv Energy Mater2024;14:2400590

[53]

He P,Hu K.Tough and super-stretchable conductive double network hydrogels with multiple sensations and moisture-electric generation.Chem Eng J2021;414:128726

[54]

Yin J,Jia P.MXene-enhanced environmentally stable organohydrogel ionic diode toward harvesting ultralow-frequency mechanical energy and moisture energy.SusMat2023;3:859-76

[55]

Li P,Wang Z.A Ti3C2Tx MXene-based energy-harvesting soft actuator with self-powered humidity sensing and real-time motion tracking capability.ACS Nano2021;15:16811-8

[56]

Wei J,Ma C.Nacre-inspired composite film with mechanical robustness for highly efficient actuator powered by humidity gradients.Chem Eng J2023;451:138565

[57]

Cai C,Cheng F,Zhou W.Biomimetic dual absorption-adsorption networked MXene aerogel-pump for integrated water harvesting and power generation system.ACS Nano2024;18:4376-87

[58]

Tong X,Ahommed MS.A carbon nanofiber/Ti3C2Tx/carboxymethyl cellulose composite-based highly sensitive, reversible, directionally controllable humidity actuator and generator via continuous track-inspired self-assembly.J Mater Chem A2024;12:33003-14

[59]

Feng Y,Ge T.Full passive MOF water harvester in a real desert climate.Device2023;1:100054

[60]

Jin Y.Boosting atmospheric water harvesting with a solar-driven humidity-adaptable membrane device.Device2024;2:100427

[61]

Qin L.Two ways to cool via passive sorption with atmospheric water.Device2023;1:100187

[62]

Yang X,Wang R.Harvesting clean energy from moisture.Device2023;1:100016

[63]

Yu J,Liu H,Zou H.Passive and continuous moisture pump for humidity regulation via simultaneous water adsorption and desorption.Device2024;2:100429

[64]

Wilson CT,Zhong Y,Lin E.Design considerations for next-generation sorbent-based atmospheric water-harvesting devices.Device2023;1:100052

[65]

Xue G,Ding T.Water-evaporation-induced electricity with nanostructured carbon materials.Nat Nanotechnol2017;12:317-21

[66]

Zhang X,Fan X.Fabrication and study of a high output power flexible fabric hydrovoltaic generator.J Mater Chem A2023;11:26173-82

[67]

Bae J,Oh T.Towards Watt-scale hydroelectric energy harvesting by Ti3C2Tx-based transpiration-driven electrokinetic power generators.Energy Environ Sci2022;15:123-35

[68]

Su H,Nilghaz A.Efficient energy generation from a sweat-powered, wearable, MXene-based hydroelectric nanogenerator.Device2024;2:100356

[69]

Xia H,Qu X.Electricity generated by upstream proton diffusion in two-dimensional nanochannels.Nat Nanotechnol2024;19:1316-22

[70]

Zhang J,Meng T.Monolithic all-weather solar-thermal interfacial membrane evaporator.Chem Eng J2022;450:137893

[71]

Che X,Long L.Mildly peeling off and encapsulating large MXene nanosheets with rigid biologic fibrils for synchronization of solar evaporation and energy harvest.ACS Nano2022;16:8881-90

[72]

Peng H,Fu S.Unidirectionally driving nanofluidic transportation via an asymmetric textile pump for simultaneous salt-resistant solar desalination and drenching-induced power generation.ACS Appl Mater Interfaces2021;13:38405-15

[73]

Park H,Yoon S.MXene-enhanced ionovoltaic effect by evaporation and water infiltration in semiconductor nanochannels.ACS Nano2024;18:13130-40

[74]

Chen Y,Ye C.Achieving ultrahigh voltage over 100 V and remarkable freshwater harvesting based on thermodiffusion enhanced hydrovoltaic generator.Adv Energy Mater2024;14:2400529

[75]

Zhang Z,Jiang L.Nanofluidics for osmotic energy conversion.Nat Rev Mater2021;6:622-39

[76]

Hong S,Shi Y.Two-dimensional Ti3C2Tx MXene membranes as nanofluidic osmotic power generators.ACS Nano2019;13:8917-25

[77]

Chang L,Wang F.Cation-selective Mo2TiC2Tx MXene membrane for osmotic energy harvesting.2D Mater2023;10:014009

[78]

Qin H,Zeng S.Harvesting osmotic energy from proton gradients enabled by two-dimensional Ti3C2Tx MXene membranes.Adv Membr2022;2:100046

[79]

Dong Q,Wang Y,Zhai J.Ultrathin H-MXM as an "ion freeway" for high-performance osmotic energy conversion.Small Methods2024;8:e2301558

[80]

Hong S,Lei Y.Porous Ti3C2Tx MXene membranes for highly efficient salinity gradient energy harvesting.ACS Nano2022;16:792-800 PMCID:PMC8793134

[81]

Wang S,Fan Y,Wang F.Toward explicit anion transport nanochannels for osmotic power energy using positive charged MXene membrane via amination strategy.J Membr Sci2023;668:121203

[82]

Ding L,Lu Z.Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting.Angew Chem Int Ed2020;59:8720-6

[83]

Hashemifar F.Oppositely charged MXene fibers as a highly efficient osmotic power generator from sea and river water.J Mater Chem A2022;10:24915-26

[84]

Ding L,Xiao D.Bioinspired Ti3C2Tx MXene-based ionic diode membrane for high-efficient osmotic energy conversion.Angew Chem Int Ed2022;61:e202206152

[85]

Chen Y,Ding S.Bioinspired ultrastable MXene/PEDOT:PSS layered membrane for effective salinity gradient energy harvesting from organic solvents.ACS Appl Mater Interfaces2022;14:23527-35

[86]

Jang J,Kim K.Concrete-structured Nafion@MXene/Cellulose acetate cation exchange membrane for reverse electrodialysis.J Membr Sci2022;646:120239

[87]

Nazif A,Mousavi SM.Embedding MXene nanosheets into cation exchange membranes to enhance power generation by reverse electrodialysis.Desalination2023;566:116926

[88]

Ren Z,Yin J.Enhancing osmotic energy harvesting through supramolecular design of oxygen-functionalized MXene with biomimetic ion channels.Adv Funct Mater2024;34:2404410

[89]

Lin X,Xin W.Heterogeneous MXene/PS-b-P2VP nanofluidic membranes with controllable ion transport for osmotic energy conversion.Adv Funct Mater2021;31:2105013

[90]

Duan R,Ma X.High strength MXene/PBONF heterogeneous membrane with excellent ion selectivity for efficient osmotic energy conversion.Nano Lett2023;23:11043-50

[91]

Yuan Z,Yuan K.High-aligned oppositely-charged nanocellulose/MXene aerogel membranes through synergy of directional freeze-casting and structural densification for osmotic-energy harvesting.Nano Energy2024;124:109450

[92]

Sun Z,Gao Z.Highly ionic conductive and mechanically strong MXene/CNF membranes for osmotic energy conversion.Sustain Energy Fuels2022;6:299-308

[93]

Zhai R,Chen Z.Kelp nanofiber-based composite membranes for highly efficient osmotic energy conversion.Adv Funct Mater2024;34:2313914

[94]

Zhang Z,Zhang P,Chen G.Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators.Nat Commun2019;10:2920 PMCID:PMC6606750

[95]

Rao J,Yan X.Nacre-inspired mechanically robust films for osmotic energy conversion.Adv Funct Mater2024;34:2309869

[96]

Song G,Hu Y.Paper-mill waste reinforced nanofluidic membrane as high-performance osmotic energy generators.Adv Funct Mater2023;33:2214044

[97]

Wang B,Wu Z.Salinity power generation based biocompatible bacterial cellulose/MXene membrane for biological power source.Nano Energy2022;102:107702

[98]

Li X,Lu B.Soil-inspired multi-stage heterogeneous nanochannel membranes for enhanced osmotic energy conversion.Chem Eng J2024;493:152375

[99]

Liu P,Yang L.Synergy of light and acid-base reaction in energy conversion based on cellulose nanofiber intercalated titanium carbide composite nanofluidics.Energy Environ Sci2021;14:4400-9

[100]

Xu Y,Chen S.Two-dimensional lamellar MXene/three-dimensional network bacterial nanocellulose nanofiber composite Janus membranes as nanofluidic osmotic power generators.Electrochim Acta2022;412:140162

[101]

Wang L,Zhou Y.Photo-induced active ion transport-assisted efficient ionic power harvesting from bioinspired Janus dual-field heterostructures.Adv Funct Mater2024;34:2314165

[102]

Yang G,Wang L.Advanced Janus membrane (MXene/CoAl-LDH) for efficient asymmetric ion transport and nanofluidic energy harvesting.Nano Energy2023;118:108972

[103]

Wang F,Meng X.Advancing osmotic power generation using bioinspired MXene-based membrane via maze breaking.J Membr Sci2023;686:121975

[104]

Wang F,Wang S.Mechanically intensified and stabilized MXene membranes via the combination of graphene oxide for highly efficient osmotic power production.J Membr Sci2022;647:120280

[105]

Yang G,Chen C.Stable Ti3C2Tx MXene-boron nitride membranes with low internal resistance for enhanced salinity gradient energy harvesting.ACS Nano2021;15:6594-603

[106]

Gao H,Xu C,Tong X.Two-dimensional Ti3C2Tx MXene/GO hybrid membranes for highly efficient osmotic power generation.Environ Sci Technol2020;54:2931-40

[107]

Van Nguyen T,Van Le Q,Ahn SH.Recent progress and strategies of non-noble metal electrocatalysts based on MoS2/MOF for the hydrogen evolution reaction in water electrolysis: an overview.Microstructures2024;4:2024046

[108]

Huang R,You D.MOF and its derivative materials modified lithium-sulfur battery separator: a new means to improve performance.Rare Met2024;43:2418-43

[109]

Su Y,Hu J.Recent progress in strategies for preparation of metal-organic frameworks and their hybrids with different dimensions.Chem Synth2023;3:1

[110]

Mane RS,Somkuwar V,Patwardhan AV.A novel hierarchically hybrid structure of MXene and bi-ligand ZIF-67 based trifunctional electrocatalyst for zinc-air battery and water splitting.Battery Energy2023;2:20230019

[111]

Zhou J,Wu R.Maximizing ion permselectivity in MXene/MOF nanofluidic membranes for high-efficient blue energy generation.Adv Funct Mater2022;32:2209767

[112]

Yao B,Hu Y,Peng X.Enhanced osmotic power generation through anodic electrodeposited MOFs@MXene heterostructured nanochannels.J Membr Sci2024;709:123116

[113]

Yang L,Li S.MOFs/MXene nano-hierarchical porous structures for efficient ion dynamics.Nano Energy2024;129:110076

[114]

Lin W,Bai C.Novel ultrastable 2D MOF/MXene nanofluidic membrane with ultralow resistance for highly efficient osmotic power harvesting.Nano Energy2024;128:109924

[115]

Yang Y,Liao W.Arch-bridge photothermal fabric with efficient warp-direction water paths for continuous solar desalination.Adv Fiber Mater2024;6:1026-36

[116]

Chang J,Zhang H,Zhang M.MXene/Cellulose composite cloth for integrated functions (if-Cloth) in personal heating and steam generation.Adv Fiber Mater2024;6:252-63 PMCID:PMC10943173

[117]

Liu P,Teng Y.Light-induced heat driving active ion transport based on 2D MXene nanofluids for enhancing osmotic energy conversion.CCS Chem2021;3:1325-35

[118]

Xia J,Pan S.Light-augmented multi-ion interaction in MXene membrane for simultaneous water treatment and osmotic power generation.ACS Nano2023;17:25269-78

[119]

Yin J,Yu J,Zhou J.Generating electricity by moving a droplet of ionic liquid along graphene.Nat Nanotechnol2014;9:378-83

[120]

Bai Y,Liu X,Sui K.Power generation via sliding ionic droplets on nanolayered MXene films.ACS Appl Nano Mater2022;5:4597-602

[121]

Lao J,Gao J,Li G.Electricity generation based on a photothermally driven Ti3C2Tx MXene nanofluidic water pump.Nano Energy2020;70:104481

[122]

Si P,Wang X.Origin of enhanced electricity generation on Magnéli phase titanium suboxide nanocrystal films.ACS Appl Energy Mater2021;4:10877-85

[123]

Li S,Zan G.A biodegradable silk-based energy-generating skin with dual-mode tactile perception.Device2025;3:100561

[124]

Wu H,Qin X.Drinking-bird-enabled triboelectric hydrovoltaic generator.Device2024;2:100318

[125]

Zhang X,Ahmad K,Wan C.Moisture-driven fabric-based generator for powering wearable electronics.Device2024;2:100316

[126]

Yan H,Liu Z,Dong C.Unlocking the potential of hydrogel-electrode electrical double layer for high-performance moisture-enabled electric generators.Device2025;3:100568

[127]

Benedetto G.A smart fabric nanogenerator combines energy sources to power devices.Device2023;1:100177

[128]

Zou R,Pan H.Self-powered and self-sensing wearable devices from a comfort perspective.Device2024;2:100466

[129]

Liu C,Du X.Self-powered electrostatic tweezer for adaptive object manipulation.Device2024;2:100465

[130]

Yin J,Wang S,Tat T.Self-powered eye-computer interaction via a triboelectric nanogenerator.Device2024;2:100252

[131]

Wang T,Gao Z.Triboelectric encoders for accurate and durable wearable motion sensing.Device2024;2:100525

[132]

Li S,Qiu W.An all-protein multisensory highly bionic skin.ACS Nano2024;18:4579-89

[133]

Wang Y,Li S.Fully degradable, highly elastomeric and adhesive silk fibroin electronic skin for microdynamic pressure monitoring.Chem Eng J2023;469:143920

[134]

Li SY,Wen H,Guo WX.Recent advances in silk-based wearable sensors.Acta Phys Sin2020;69:178703

[135]

Li S,Wen H.A skin-like pressure- and vibration-sensitive tactile sensor based on polyacrylamide/silk fibroin elastomer.Adv Funct Mater2022;32:2111747

AI Summary AI Mindmap
PDF

183

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/