Phase-field simulation of electrocaloric effect in textured Ba0.8Sr0.2TiO3 polycrystalline ceramics

Cancan Shao , Houbing Huang

Microstructures ›› 2025, Vol. 5 ›› Issue (4) : 2025086

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (4) :2025086 DOI: 10.20517/microstructures.2024.205
Research Article

Phase-field simulation of electrocaloric effect in textured Ba0.8Sr0.2TiO3 polycrystalline ceramics

Author information +
History +
PDF

Abstract

Textured ceramics exhibit a reduced coercive field, and when aligned in the same direction as the spontaneous polarization, they enhance the adiabatic temperature change (ΔT) of the material. In this paper, we employ a polycrystalline phase-field model to analyze the solid solution Ba0.8Sr0.2TiO3 (BST80) with a <001> orientation, alongside randomly oriented polycrystals, aiming to investigate the influence of texturing on the electrocaloric effect (ECE) performance. We examine six distinct groups characterized by varying grain orientation angles for the randomly oriented polycrystals for hysteresis loop calculations. Utilizing Maxwell's relations, we compute the ECE for the randomly oriented BST80 polycrystal and the <001>-textured BST80 polycrystal across different electric field strengths. The findings indicate that the ΔT achieved with the <001>-textured BST80 polycrystal surpasses that of the randomly oriented BST80 polycrystal. Furthermore, the temperature at which the maximum ΔT occurs for the <001>-textured BST80 polycrystal is observed to be shifted to higher values compared to the randomly oriented variant. The observed enhancement of ECE in BST80 polycrystalline ceramics due to texturing offers valuable insights and foundational knowledge for future theoretical and experimental investigations.

Keywords

Electrocaloric effect / polycrystalline ceramics / texture enhancement / solid solution BaxSr(1-x)TiO3 / phase-field method

Cite this article

Download citation ▾
Cancan Shao, Houbing Huang. Phase-field simulation of electrocaloric effect in textured Ba0.8Sr0.2TiO3 polycrystalline ceramics. Microstructures, 2025, 5(4): 2025086 DOI:10.20517/microstructures.2024.205

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Saito Y,Tani T.Lead-free piezoceramics.Nature2004;432:84-7

[2]

Mensur-alkoy E,Aydin E,Misirlioglu IB.Effect of texture on the electrical and electrocaloric properties of 0.90Pb(Mg1/3Nb2/3)O3-0.10PbTiO3 relaxor ceramics.J Appl Phys2020;128:084102

[3]

Cheng L,Lu J,Chen K.Grain-orientation-engineered PMN-10PT ceramics for electrocaloric applications.J Am Ceram Soc2023;106:1194-202

[4]

Maurya D,Yan Y.Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3-BaTiO3 ceramics with giant piezoelectric response.J Mater Chem C2013;1:2102

[5]

Zhang H,Patterson E,Jiang S.Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2)TiO3-based lead-free incipient piezoceramics.J Eur Ceram Soc2015;35:2501-12

[6]

Liu K,Liu F.Boosting electric-field-induced strain of dual templates-textured (Na1/2Bi1/2)TiO3-based lead-free piezoceramics by polarization coupling.J Eur Ceram Soc2022;42:6466-77

[7]

Bai W,Zheng P.Grain-orientated lead-free BNT-based piezoceramics with giant electrostrictive effect.Ceram Int2017;43:3339-45

[8]

Zhang L,Li G,Shen B.Dual-template textured BNT-based ceramics with ultra-low electrostrain hysteresis.J Eur Ceram Soc2024;44:7597-604

[9]

Messing GL,Sabolsky EM.Templated grain growth of textured piezoelectric ceramics.Crit Rev Solid State Mater Sci2004;29:45-96

[10]

Hiruma Y,Nagata H.Phase transition temperature and electrical properties of (Bi1∕2Na1/2)TiO3-(Bi1/2A1/2)TiO3 (A = Li and K) lead-free ferroelectric ceramics.J Appl Phys2008;103:084121

[11]

Cao W,Xu D,Wang W.Enhanced electrocaloric effect in lead-free NBT-based ceramics.Ceram Int2014;40:9273-8

[12]

Le Goupil F,Axelsson A.Electrocaloric enhancement near the morphotropic phase boundary in lead-free NBT-KBT ceramics.Appl Phys Lett2015;107:172903

[13]

Bai W,Zhang J,Zhai J.Effect of different templates on structure evolution and large strain response under a low electric field in <00l>-textured lead-free BNT-based piezoelectric ceramics.J Eur Ceram Soc2015;35:2489-99

[14]

Luo L,Solterbeck C,Luo H.Orientation and phase transition dependence of the electrocaloric effect in 0.71PbMg1/3Nb2/3O3-0.29PbTiO3 single crystal.Appl Phys Lett2012;101:062907

[15]

Zhao Y,Hao X.Orientation-dependent energy-storage performance and electrocaloric effect in PLZST antiferroelectric thick films.Mater Res Bull2016;84:177-84

[16]

Hamad MA.Electrocaloric properties of Zr-modified Pb(Mg1/3Nb2/3)O3 polycrystalline ceramics.J Adv Dielect2013;03:1350029

[17]

Hou X,Zhang J,Li H.Effect of grain size on the electrocaloric properties of polycrystalline ferroelectrics.Phys Rev Appl2021;15

[18]

Su Y,Weng GJ.A phase field study of frequency dependence and grain-size effects in nanocrystalline ferroelectric polycrystals.Acta Materialia2015;87:293-308

[19]

Zhang W.A computational model of ferroelectric domains. Part II: grain boundaries and defect pinning.Acta Materialia2005;53:199-209

[20]

Hu H.Three-dimensional computer simulation of ferroelectric domain formation.J Am Ceram Soc1998;81:492-500

[21]

Ahluwalia R.Influence of dipolar defects on switching behavior in ferroelectrics.Phys Rev B2000;63

[22]

Wang J,Chen L,Zhang T.Phase-field simulations of ferroelectric/ferroelastic polarization switching.Acta Materialia2004;52:749-64

[23]

Li Y,Liu Z.Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films.Acta Materialia2002;50:395-411

[24]

Hwang SC.Switching in ferroelectric polycrystals.J Appl Phys2000;87:869-75

[25]

Hwang SC,Mcmeeking RM.The simulation of switching in polycrystalline ferroelectric ceramics.J Appl Phys1998;84:1530-40

[26]

Arlt G.A model for switching and hysteresis in ferroelectric ceramics.Integr Ferroelectr1997;16:229-36

[27]

Kim S.Polarization switching of ferroelectric ceramics with grain boundary effect: a simple continuum model.J Appl Phys2002;92:2668-73

[28]

Rödel J.Modelling linear and nonlinear behavior of polycrystalline ferroelectric ceramics.J Eur Ceram Soc2003;23:2297-306

[29]

Zhang W.A computational model of ferroelectric domains. Part I: model formulation and domain switching.Acta Materialia2005;53:185-98

[30]

Li JY,Ustündag E.Domain switching in polycrystalline ferroelectric ceramics.Nat Mater2005;4:776-81

[31]

Choudhury S,Krilliii C.Phase-field simulation of polarization switching and domain evolution in ferroelectric polycrystals.Acta Materialia2005;53:5313-21

[32]

Choudhury S,Krill Iii C.Effect of grain orientation and grain size on ferroelectric domain switching and evolution: phase field simulations.Acta Materialia2007;55:1415-26

[33]

Huang S,Jin K.Advanced ferroelectric oxide films and heterostructures for unconventional applications.Adv Phys: X2025;10:2438686

[34]

Wang JJ,Chen LQ.Understanding, Predicting, and designing ferroelectric domain structures and switching guided by the phase-field method phase-field models for microstructure evolution.Ann Rev Mater Res2019;49:127-152.

[35]

Gu Y,Ross A.A phenomenological thermodynamic energy density function for ferroelectric wurtzite Al1-xScxN single crystals.J Appl Phys2024;135:094102

[36]

Guo C.Design of super-elastic freestanding ferroelectric thin films guided by phase-field simulations.Microstructures2022;2:21

[37]

Hou Y,Yin R.The critical role of phase transition and composition regulation in inorganic perovskite electrocaloric materials.J Mater Chem C2025;13:5406-23

[38]

Feng H,Wu G.Large electrocaloric effect and wide working area in the transition from ferroelectric to nanodomains.J Am Ceram Soc2024;107:4777-88

[39]

Ou Y,Shan D.Electrocaloric effect in different oriented BaZr0.15Ti0.85O3 single crystals.Materials (Basel)2022;15:7018 PMCID:PMC9572230

[40]

Ullah S,Kong J,Li K. Highly enhanced electrothermal properties of 001-textured Pb-free ferroelectric (Ba,Ca) (Ti, Zr, Sn)O3 for energy harvesting and solid-state cooling.J Eur Ceram Soc2025;45:16830

[41]

Lu B,Lin X.Enhanced electrocaloric effect in 0.73Pb(Mg1/3Nb2/3)O3-0.27PbTiO3 single crystals via direct measurement.Crystals2020;10:451

[42]

Jin M,Chen Z,Yuan N.Electrocaloric effect of (110) oriented KNbO3 film.J Nanosci Nanotechnol2021;21:5247-52

[43]

He N,Lei C.Electrocaloric response modulated by misfit strain in different oriented epitaxial ferroelectric thin films.Int J Solids Struct2022;252:111808

[44]

Lou XH,Hou X,Tian XB.Effects of the grain orientation on the electrocaloric effect of polycrystalline ferroelectrics. In 2022 16th Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Proceedings of 2022 16th Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, IEEE Publishers: Piscataway, New Jersey, USA, 2022; pp 503-7.

[45]

Ünal MA,Irmak T.Electrocaloric behaviour of tape cast and grain oriented NBT-KBT ceramics.J Eur Ceram Soc2024;44:2128-34

[46]

Shao C.Understanding thermal hysteresis of ferroelectric phase transitions in BaTiO3 with combined first-principle-based approach and phase-field model.Chinese Phys B2025;34:027701

[47]

Zhang J,Zhang Y,Wang J.Electrocaloric effect in ferroelectric materials: from phase field to first-principles based effective Hamiltonian modeling.Mater Rep: Energy2021;1:100050

[48]

Chen X,Jian X.Maxwell relation, giant (negative) electrocaloric effect, and polarization hysteresis.Appl Phys Lett2021;118:122904

[49]

Nouchokgwe Y,Hong CH.Giant electrocaloric materials energy efficiency in highly ordered lead scandium tantalate.Nat Commun2021;12:3298 PMCID:PMC8172889

[50]

Liu X,Guan T.Giant room temperature electrocaloric effect in a layered hybrid perovskite ferroelectric: [(CH3)2CHCH2NH3]2PbCl4.Nat Commun2021;12:5502 PMCID:PMC8463535

[51]

Hadouch Y,Mezzourh H.Electrocaloric effect and high energy storage efficiency in lead-free Ba0.95Ca0.05Ti0.89Sn0.11O3 ceramic elaborated by sol-gel method.J Mater Sci: Mater Electron2022;33:2067-79

[52]

Shu W,Huang Y.Frequency-dependent ferroelectric and electrocaloric properties in barium titanate-based ceramics based on Maxwell relations.J Adv Dielect2024;14:2440008

[53]

Liu Y,Han Z,Wang Q.Defects in poly(vinylidene fluoride)-based ferroelectric polymers from a molecular perspective.Appl Phys Rev2022;9:031306

[54]

Zheng S,Zheng L.Colossal electrocaloric effect in an interface-augmented ferroelectric polymer.Science2023;382:1020-6

[55]

Yu Y,Yang Z,Qu S.Electrocaloric effect of lead-free bulk ceramics: current status and challenges.J Inorg Mater2019;35:633-46. (in Chinese)

[56]

Liao L,Lei C,Li J.Revealing the mechanisms of electrocaloric effects by simultaneously direct measuring local electrocaloric and electrostrain under ambient conditions.Acta Materialia2024;278:120264

[57]

Huang YH,Yang TN,Chen XM.A thermodynamic potential, energy storage performances, and electrocaloric effects of Ba1-xSrxTiO3 single crystals.Appl Phys Lett2018;112:102901

[58]

Yan Y,Cheng L.Correlation between cation order/disorder and the electrocaloric effect in the MLCCs of complex perovskite ferroelectrics.Acta Materialia2023;254:118990

AI Summary AI Mindmap
PDF

360

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/