Ti-Zr-V-Nb-Al BCC high-entropy alloy with outstanding uniform ductility achieved by grain refinement
Hanlin Zeng , Mengyunqing Han , Bolun Li , Liang Wang , Ke Jin , Benpeng Wang , Shihai Sun , Lu Wang , Yunfei Xue
Microstructures ›› 2025, Vol. 5 ›› Issue (1) : 2025010
Ti-Zr-V-Nb-Al BCC high-entropy alloy with outstanding uniform ductility achieved by grain refinement
The lack of sufficient uniform deformation ability of body-centered cubic (BCC) high-entropy alloys (HEAs) is the obstacle to their applications as structural materials. Here we present a grain refinement strategy to achieve excellent uniform ductility of a BCC non-equal atomic ratio Ti-Zr-V-Nb-Al (TZ) alloy. The uniform elongation and yield strength of the fine-grained TZ alloy with a grain size of 15 µm are as high as ~12% and 840 MPa, respectively. The outstanding uniform deformability of the fine-grained TZ alloys is due to the frequent cross-slip events and abundant dislocation tangles. Grain refinement can increase the probability of dislocation entanglement, thereby promoting a rise in the work-hardening rate. The good plasticity and high work-hardening rate can improve the uniform deformation ability. Our results will give new insights into enhancing uniform ductility while maintaining high strength in the BCC HEAs.
High-entropy alloys / grain refinement / dislocation density / uniform deformation
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
/
| 〈 |
|
〉 |