PDF
Abstract
Aqueous zinc-ion batteries (AZIBs), as one of the most promising energy storage devices, have attracted widespread attention owing to their abundant resources, environmental friendliness, and high safety. As a crucial component of AZIBs, the electrochemical performance of cathode materials plays a decisive role in battery performance, thus necessitating in-depth investigations into the structure and properties of cathode materials. Manganese dioxide (MnO2), as a cathode material for AZIBs, has garnered significant interest owing to advantages such as the low cost of manganese, stable structure, simple synthesis process, and abundant raw materials. Additionally, it exhibits high specific capacity and tunable cycling performance. However, MnO2 as a cathode in AZIBs is plagued by structural deformation, side reactions, and the Jahn-Teller effect during cycling. Therefore, it is essential to comprehensively review the research progress, reaction mechanisms, and optimization strategies of MnO2 in AZIBs.
Herein, MnO2 is taken as the research focus. Firstly, we comprehensively summarize the development status and research progress of MnO2 materials as cathodes for AZIBs. Subsequently, we conduct an in-depth analysis of the structural evolution and Zn2+ storage mechanisms of MnO2 during cycling, including the conversion reaction mechanism, Zn2+ intercalation mechanism, dissolution-deposition mechanism, and H+/Zn2+ co-intercalation mechanism. Building on this, various optimization strategies such as structural control, morphological regulation, defect engineering, and electrolyte development are systematically reviewed. Finally, we outline future research directions for high-performance MnO2 cathodes, put forward a rational research roadmap to maximize the electrochemical properties of MnO2, and facilitate the construction of stable AZIBs.
Keywords
Aqueous zinc-ion batteries, cathode
/
MnO2, optimization strategies, manganese dioxide, mechanisms
Cite this article
Download citation ▾
Hanzhi Zhang, Zhiyun Huang, Yunhan Du, Daoshuai Zha, Lei Zhou, Yedian Gong, Jiashun Wang, Lianhao Wang, Zhiqing Gong, Huawei Zhang, Qingfeng Zhang, Zhaomeng Liu.
Manganese dioxide as cathode for aqueous zinc-ion batteries: reaction mechanisms, optimization strategies and further prospects.
Microstructures, 2025, 5(4): 2025091 DOI:10.20517/microstructures.2024.193
| [1] |
Zhang A,Zhao H.MnO2 superstructure cathode with boosted zinc ion intercalation for aqueous zinc ion batteries.J Colloid Interface Sci2024;669:723-30
|
| [2] |
Liang Z,Yang G.Enabling long-cycling aqueous sodium-ion batteries via Mn dissolution inhibition using sodium ferrocyanide electrolyte additive.Nat Commun2023;14:3591 PMCID:PMC10275921
|
| [3] |
Wu L,Li S.Phase-engineered cathode for super-stable potassium storage.Nat Commun2023;14:644 PMCID:PMC9902589
|
| [4] |
Xu J,Pollard TP.Electrolyte design for Li-ion batteries under extreme operating conditions.Nature2023;614:694-700
|
| [5] |
Caracciolo L,Petit E.Electrochemical redox processes involved in carbon-coated KVPO4F for high voltage K-ion batteries revealed by XPS analysis.J Electrochem Soc2020;167:130527
|
| [6] |
Zheng J,Wang Z.Double ionic-electronic transfer interface layers for all-solid-state lithium batteries.Angew Chem Int Ed2021;60:18448-53
|
| [7] |
Xu S,Yu T.Decoupling of ion pairing and ion conduction in ultrahigh-concentration electrolytes enables wide-temperature solid-state batteries.Energy Environ Sci2022;15:3379-87
|
| [8] |
Zhang Q,Wang C,Lu B.Sulfur-assisted large-scale synthesis of graphene microspheres for superior potassium-ion batteries.Energy Environ Sci2021;14:965-74
|
| [9] |
Wang Y,Xu J.Competitive coordination of sodium ions for high-voltage sodium metal batteries with fast reaction speed.J Am Chem Soc2024;146:7332-40
|
| [10] |
Zhang Q,Wang J.Low-temperature synthesis of edge-rich graphene paper for high-performance aluminum batteries.Energy Storage Mater2018;15:361-7
|
| [11] |
Cao W,Wang J.Potato derived biomass porous carbon as anode for potassium ion batteries.Electrochim Acta2019;293:364-70
|
| [12] |
Cheng N,Liu Z.Fluorine atom-inducing graphene oxide in situ coating SnPO composites as anode for sodium ion batteries.Mater Today Energy2019;11:174-81
|
| [13] |
Wang D,Gao X,Zhao L.Massive anionic fluorine substitution two-dimensional δ-MnO2 nanosheets for high-performance aqueous zinc-ion battery.J Energy Storage2023;72:108740
|
| [14] |
Ma K,Hong C,Wang C.Bi doping-enhanced reversible-phase transition of α-MnO2 raising the cycle capability of aqueous Zn-Mn batteries.ACS Appl Mater Interfaces2021;13:55208-17
|
| [15] |
Shen X,Zhou Y.Highly reversible aqueous Zn-MnO2 battery by supplementing Mn2+-mediated MnO2 deposition and dissolution.Adv Funct Mater2021;31:2101579
|
| [16] |
Li C,Huang J,Liu Y.Reversible transformation of a zinc salt-boosted high areal capacity manganese dioxide cathode for energy-dense and stable aqueous zinc batteries.ACS Appl Energy Mater2022;5:1478-86
|
| [17] |
Ding S,Qin R.Oxygen-deficient β-MnO2@graphene oxide cathode for high-rate and long-life aqueous zinc ion batteries.Nano-Micro Lett2021;13:173 PMCID:PMC8363675
|
| [18] |
Le T,Housel LM.Discharging behavior of hollandite α-MnO2 in a hydrated zinc-ion battery.ACS Appl Mater Interfaces2021;13:59937-49
|
| [19] |
Chen X,Wu X,Zhou J.Crystal structures, reaction mechanisms, and optimization strategies of MnO2 cathode for aqueous rechargeable zinc batteries.Acta Phys Chim Sin2022;38:2111003-0
|
| [20] |
Xie J,Zhao J.An irreversible electrolyte anion-doping strategy toward a superior aqueous Zn-organic battery.Energy Storage Mater2020;33:283-9
|
| [21] |
Zeng X,Mao J.Toward a Reversible Mn4+ /Mn2+ redox reaction and dendrite-free Zn anode in near-neutral aqueous Zn/MnO2 batteries via salt anion chemistry.Adv Energy Mater2020;10:1904163
|
| [22] |
Wang K,Han J.High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode.ACS Appl Mater Interfaces2018;10:24573-82
|
| [23] |
Zheng J,Chen C.Reinforced bonding of Mo-doped MnO2 with ammonium-ion as cathodes for durable aqueous MnO2-Zn batteries.Sci China Mater2023;66:3113-22
|
| [24] |
Wang K,Ma Q,He L.Advanced in situ and operando characterization techniques for zinc-ion batteries.Energy Technol2024;12:2400199
|
| [25] |
Zhou W,Zhao D.Cathodic electrolyte engineering toward durable Zn-Mn aqueous batteries.Natl Sci Rev2023;10:nwad265 PMCID:PMC10632780
|
| [26] |
Chen N,Ma Y.Aqueous zinc-chlorine battery modulated by a MnO2 redox adsorbent.Small Methods2024;8:2201553
|
| [27] |
Huang J,Hou M.Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery.Nat Commun2018;9:2906 PMCID:PMC6060179
|
| [28] |
Li Y,Salvador JR.Reaction mechanisms for long-life rechargeable Zn/MnO2 batteries.Chem Mater2019;31:2036-47
|
| [29] |
Nguyen TN,Cheng E.Washable and stretchable Zn-MnO2 rechargeable cell.Adv Energy Mate2022;12:2103148
|
| [30] |
Wang Z,Shi J,Qu X.Conversion reaction of the zinc sulfate hydroxide activated by voltage modulation for high-performance aqueous Zn/MnO2 batteries.Adv Energy Mater2024;14:2303739
|
| [31] |
Gong Z,Gao XW.Constructing cyclic hydrogen bonding to suppress side reactions and dendrite formation on zinc anodes.Chem Eur J2024;30:e202402558
|
| [32] |
Wang S,Zhang X.Non-metal ion co-insertion chemistry in aqueous Zn/MnO2 batteries.Angew Chem Int Ed2021;60:7056-60
|
| [33] |
Chen H,Li SD.Suppression of structural degradation in molybdenum-modified layered oxides for high-performance potassium-ion batteries.J Colloid Interface Sci2025;695:137733
|
| [34] |
Liao X,Yan H,Pan Y.Polyaniline-functionalized graphene composite cathode with enhanced Zn2+ storage performance for aqueous zinc-ion battery.Chem Eng J2022;440:135930
|
| [35] |
Zhang T,Jiang JB.Energy storage mechanism, issue and modification strategies of vanadiumbased cathode materials for aqueous zinc ion batteries.Chinese J Rare Metals2023;47:399-424
|
| [36] |
Yin C,Pan Y.Hierarchical spheroidal MOF-derived MnO@C as cathode components for high-performance aqueous zinc ion batteries.J Colloid Interface Sci2023;642:513-22
|
| [37] |
Zhang Q,Liu X.Flexible wearable energy storage devices: materials, structures, and applications.Battery Energy2024;3:20230061
|
| [38] |
Sambandam B,Ahmad Nurul F,Song M.Aqueous rechargeable zinc-metal batteries: a critical analysis.ACS Energy Lett2024;9:3058-65
|
| [39] |
Zhang A,Saadoune I,Wang Y.Zwitterion intercalated manganese dioxide nanosheets as high-performance cathode materials for aqueous zinc ion batteries.Small2024;20:2402811
|
| [40] |
Zhang Q,Chen X.Unveiling the energy storage mechanism of MnO2 polymorphs for zinc-manganese dioxide batteries.Adv Funct Mater2024;34:2306652
|
| [41] |
Ding H,Liu Z.TiO2 quantum dots decorated multi-walled carbon nanotubes as the multifunctional separator for highly stable lithium sulfur batteries.Electrochim Acta2018;284:314-20
|
| [42] |
Liu Y,Zhou W,Zhu H.Investigations on tunnel-structure MnO2 for utilization as a high-voltage and long-life cathode material in aqueous ammonium-ion and hybrid-ion batteries.Small2024;20:2308741
|
| [43] |
Paik S,Lee S.Chelating effects of polyphenolic biomolecules to improve β-MnO2 cathode performance for aqueous rechargeable zinc-ion batteries.ACS Appl Mater Interfaces2024;16:50775-84
|
| [44] |
Xia J,Zhang J.Triggering high capacity and superior reversibility of manganese oxides cathode via magnesium modulation for Zn//MnO2 batteries.Small2023;19:2301906
|
| [45] |
Yin C,Pan Y,Fang G.Proton self-doped polyaniline with high electrochemical activity for aqueous zinc-ion batteries.Small Methods2023;7:2300574
|
| [46] |
Li G,Zhang S.Developing cathode materials for aqueous zinc ion batteries: challenges and practical prospects.Adv Funct Mater2024;34:2301291
|
| [47] |
Li H,Tang Y,Fang G.Copper-based materials in anode electrode of aqueous zinc metal batteries.cMat2024;1:e25
|
| [48] |
Li L,Han R,Hu J.CNT composite β-MnO2 with fiber cable shape as cathode materials for aqueous zinc-ion batteries.Inorg Chem2024;63:13100-9
|
| [49] |
Yin C,Pan Y.Hollow Mn-Co-O@C yolk-shell microspheres with carbon shells as cathodes derived from a double-metal MOF for aqueous zinc-ion batteries.ACS Sustain Chem Eng2023;11:12397-405
|
| [50] |
Yin C,Pan C,Hu J.Constructing MOF-derived V2O5 as advanced cathodes for aqueous zinc ion batteries.J Energy Storage2023;73:109045
|
| [51] |
Han R,Du C.Eu doping β-MnO2 as cathode materials for high specific capacity aqueous zinc ion batteries.J Energy Storage2024;80:110250
|
| [52] |
Lin C,Xiong P.Adaptive ionization-induced tunable electric double layer for practical Zn metal batteries over wide pH and temperature ranges.ACS Nano2023;17:23181-93
|
| [53] |
Xiong P,Wei Y.Charge-transfer complex-based artificial layers for stable and efficient Zn metal anodes.ACS Energy Lett2023;8:2718-27
|
| [54] |
Li Y,Liu Q.Revealing the dominance of the dissolution-deposition mechanism in aqueous Zn-MnO2 batteries.Angew Chem Int Ed2024;63:e202318444
|
| [55] |
Kitchaev DA,Sun W.Thermodynamics of phase selection in MnO2 framework structures through alkali intercalation and hydration.J Am Chem Soc2017;139:2672-81
|
| [56] |
Lian S,Xu W.Built-in oriented electric field facilitating durable Zn MnO2 battery.Nano Energy2019;62:79-84
|
| [57] |
Xiong P,Zhang J.Recent progress of artificial interfacial layers in aqueous Zn metal batteries.EnergyChem2022;4:100076
|
| [58] |
Wang T,Zhao X,Jiao L.Unraveling the anionic redox chemistry in aqueous zinc-MnO2 batteries.Angew Chem Int Ed2024;63:e202412057
|
| [59] |
Aguilar I,Godeffroy L.A key advance toward practical aqueous Zn/MnO2 batteries via better electrolyte design.Joule2025;9:101784
|
| [60] |
Fu H,Wang C.Exploring hybrid electrolytes for Zn metal batteries.Adv Energy Mater2025:2501152
|
| [61] |
Oberholzer P,Bouzid A,Kundu D.Oxide versus nonoxide cathode materials for aqueous Zn batteries: an insight into the charge storage mechanism and consequences thereof.ACS Appl Mater Interfaces2019;11:674-82
|
| [62] |
Pan H,Li X,Chang HJ.Electrolyte effect on the electrochemical performance of mild aqueous zinc-electrolytic manganese dioxide batteries.ACS Appl Mater Interfaces2019;11:37524-30
|
| [63] |
Yadav GG,Huang J,Banerjee S.Breaking the 2 V barrier in aqueous zinc chemistry: creating 2.45 and 2.8 V MnO2-Zn aqueous batteries.ACS Energy Lett2019;4:2144-6
|
| [64] |
Zhang X,Deng S.3D CNTs networks enable MnO2 cathodes with high capacity and superior rate capability for flexible rechargeable Zn-MnO2 batteries.Small Methods2019;3:1900525
|
| [65] |
Zhang Y,Luo M.Defect promoted capacity and durability of N-MnO2-x branch arrays via low-temperature NH3 treatment for advanced aqueous zinc ion batteries.Small2019;15:1905452
|
| [66] |
Gao X,Li W.H+-insertion boosted α-MnO2 for an aqueous Zn-ion battery.Small2020;16:1905842
|
| [67] |
Zhang M,Sun Z.Two-dimen sional covalent organic framework with synergistic active centers for efficient electrochemical sodium storage.Chem Mater2023;35:4873-81
|
| [68] |
Ding C,Li C,Zhang Q.Constructing ultra-stable, high-energy, and flexible aqueous zinc-ion batteries using environment-friendly organic cathodes.Chem Sci2024;15:4952-9 PMCID:PMC10967254
|
| [69] |
Su J,Tian H.Synergistic π-conjugation organic cathode for ultra-stable aqueous aluminum batteries.Small2024;20:2312086
|
| [70] |
Tong Y,Wang J,Zhang Q.Covalent organic framework containing dual redox centers as an efficient anode in Li-ion batteries.SmartMat2022;3:685-94
|
| [71] |
Zhao L,Gu Q.Realizing a dendrite-free metallic-potassium anode using reactive prewetting chemistry.eScience2024;4:100201
|
| [72] |
Qin Z,Yang D.Enabling reversible MnO2/Mn2+ transformation by Al3+ addition for aqueous Zn-MnO2 hybrid batteries.ACS Appl Mater Interfaces2022;14:10526-34
|
| [73] |
Zuo Y,Ling L.Boosted H+ intercalation enables ultrahigh rate performance of the δ-MnO2 cathode for aqueous zinc batteries.ACS Appl Mater Interfaces2022;14:26653-61
|
| [74] |
Huang X,Li H,Ma T.Revealing the real charge carrier in aqueous zinc batteries based on polythiophene/manganese dioxide cathode.Small Struct2023;4:2200221
|
| [75] |
Li J,Liu Z.Boosting potassium-based dual ion battery with high energy density and long lifespan by red phosphorous.J Power Sources2023;571:233054
|
| [76] |
Chen Y,Zhou J.Advances in the use of carbonaceous scaffolds for constructing stable composite Li metal anodes.New Carbon Mater2023;38:698-718
|
| [77] |
Yu W,Hu Y.Hybrid high-performance aqueous batteries with potassium-based cathode||zinc metal anode.Sci China Mater2023;66:923-31
|
| [78] |
Kim SJ,Sadique N.Unraveling the dissolution-mediated reaction mechanism of α-MnO2 cathodes for aqueous Zn-ion batteries.Small2020;16:2005406
|
| [79] |
Li G,Zhang H.Membrane-free Zn/MnO2 flow battery for large-scale energy storage.Adv Energy Mater2020;10:1902085
|
| [80] |
Wang C,He Z,Huang Y.Rechargeable aqueous zinc-manganese dioxide/graphene batteries with high rate capability and large capacity.ACS Appl Energy Mater2020;3:1742-8
|
| [81] |
Wang SB,Yao RQ.Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries.Nat Commun2020;11:1634
|
| [82] |
Liu Y,Wu Y,Huang J.Highly efficient dendrite suppressor and corrosion inhibitor based on gelatin/Mn2+ Co-additives for aqueous rechargeable zinc-manganese dioxide battery.Chem Eng J2021;407:127189
|
| [83] |
Wu B,Yan M.Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery.Small2018;14:1703850
|
| [84] |
Jiang Y,Li Y.Noninterference revealing of “layered to layered” zinc storage mechanism of δ-MnO2 toward neutral Zn-Mn batteries with superior performance.Adv Sci2020;7:1902795
|
| [85] |
Alfaruqi MH,Gim J.Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system.Chem Mater2015;27:3609-20
|
| [86] |
Alfaruqi MH,Kim S.A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications.Electrochem Commun2015;60:121-5
|
| [87] |
Meng L,Lu Y.Rechargeable Zn-MnO2 batteries: progress, challenges, rational design, and perspectives.ChemElectroChem2024;11:e202300495
|
| [88] |
Liu Y,Sedighi M.Mn 2+ ions confined by electrode microskin for aqueous battery beyond intercalation capacity.Adv Energy Mater2020;10:2002578
|
| [89] |
Jin Y,Liu L.Joint charge storage for high-rate aqueous zinc-manganese dioxide batteries.Adv Mater2019;31:1900567
|
| [90] |
Zhang R,Yang H.Manipulating intercalation-extraction mechanisms in structurally modulated δ-MnO2 nanowires for high-performance aqueous zinc-ion batteries.Chem Eng J2022;433:133687
|
| [91] |
Zhao W,Wu X.ε-MnO2@C cathode with high stability for aqueous zinc-ion batteries.Appl Surf Sci2022;605:154685
|
| [92] |
Li Y,Duan H.Aerogel-structured MnO2 cathode assembled by defect-rich ultrathin nanosheets for zinc-ion batteries.Chem Eng J2022;441:136008
|
| [93] |
Liao Y,Yang C.Unveiling performance evolution mechanisms of MnO2 polymorphs for durable aqueous zinc-ion batteries.Energy Storage Mater2022;44:508-16
|
| [94] |
Yadav P,Rai AK.A review on solutions to overcome the structural transformation of manganese dioxide-based cathodes for aqueous rechargeable zinc ion batteries.J Power Sources2023;555:232385
|
| [95] |
An N,Li W.3D Binder-free conjugated microporous polymer carbon Aerogels@MnO2 cathode for high-performance aqueous zinc ion batteries.Appl Surf Sci2022;599:153881
|
| [96] |
Wang H,Gao J.Robust structural stability of flower-like δ-MnO2 as cathode for aqueous zinc ion battery.Colloids Surf A Phys Eng Aspects2022;643:128804
|
| [97] |
Lai G,Hu X.Dynamic compensation of MnOOH to mitigate the irregular dissolution of MnO2 in rechargeable aqueous Zn/MnO2 batteries.J Mater Chem A2023;11:15211-8
|
| [98] |
Siamionau U,Mazanik A.Rechargeable zinc-ion batteries with manganese dioxide cathode: how critical is choice of manganese dioxide polymorphs in aqueous solutions?.J Power Sources2022;523:231023
|
| [99] |
Zhao S,Zhang D.Unravelling the reaction chemistry and degradation mechanism in aqueous Zn/MnO2 rechargeable batteries.J Mater Chem A2018;6:5733-9
|
| [100] |
Li H,Sun X.Interface regulated MnO2/Mn2+ redox chemistry in aqueous Zn ion batteries.Chem Eng J2022;446:137205
|
| [101] |
Yang H,Chen D.The origin of capacity fluctuation and rescue of dead Mn-based Zn-ion batteries: a Mn-based competitive capacity evolution protocol.Energy Environ Sci2022;15:1106-18
|
| [102] |
Ye X,Jiang G.Unraveling the deposition/dissolution chemistry of MnO2 for high-energy aqueous batteries.Energy Environ Sci2023;16:1016-23
|
| [103] |
Cui S,Zhang G.Reaction mechanism for the α-MnO2 cathode in aqueous Zn ion batteries revisited: elucidating the irreversible transformation of α-MnO2 into Zn-vernadite.J Mater Chem A2022;10:25620-32
|
| [104] |
Qiu C,Xue L.The function of Mn2+ additive in aqueous electrolyte for Zn/δ-MnO2 battery.Electrochim Acta2020;351:136445
|
| [105] |
Perez-antolin D,Colina A.Float-charging protocol in rechargeable Zn-MnO2 batteries: unraveling the key role of Mn2+ additives in preventing spontaneous pH changes.Electrochem Commun2022;138:107271
|
| [106] |
Yao H,Zheng Y.Pre-intercalation of ammonium ions in layered δ-MnO2 nanosheets for high-performance aqueous zinc-ion batteries.Angew Chem Int Ed2023;62:e202315257
|
| [107] |
Wang Y,Gao G.Effectively modulating oxygen vacancies in flower-like δ-MnO2 nanostructures for large capacity and high-rate zinc-ion storage.Nano-Micro Lett2023;15:219 PMCID:PMC10560176
|
| [108] |
Zhang A,Wang Y.Hybrid superlattice-triggered selective proton grotthuss intercalation in δ-MnO2 for high-performance zinc-ion battery.Angew Chem Int Ed2023;62:e202313163
|
| [109] |
Wu L,Liu Y.Interfacial synthesis of strongly-coupled δ-MnO2/MXene heteronanosheets for stable zinc ion batteries with Zn2+-exclusive storage mechanism.Chem Eng J2023;459:141662
|
| [110] |
Xu X,Li W.Achieving ultralong-cycle zinc-ion battery via synergistically electronic and structural regulation of a MnO2 nanocrystal-carbon hybrid framework.Small2023;19:2207517
|
| [111] |
Li X,Shen J.Amorphous heterostructure derived from divalent manganese borate for ultrastable and ultrafast aqueous zinc ion storage.Adv Sci2023;10:2205794 PMCID:PMC10015855
|
| [112] |
Li W.Conversion-type cathode materials for aqueous Zn metal batteries in nonalkaline aqueous electrolytes: progress, challenges, and solutions.Adv Mater2023;:2304983
|
| [113] |
Li X,Qian Y.In-situ regulated competitive proton intercalation and deposition/dissolution reaction of MnO2 for high-performance flexible zinc-manganese batteries.Energy Storage Mater2022;53:72-8
|
| [114] |
Guo C,Li J.Ultrathin δ-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery.Electrochim Acta2019;304:370-7
|
| [115] |
Yu B,He Y.Hierarchical porous CS@Ce-MnO2 as cathode for energy-dense and long-cycling flexible aqueous zinc-ion batteries.J Colloid Interface Sci2024;654:56-65
|
| [116] |
Guo C,Liu H.A case study of β- and δ-MnO2 with different crystallographic forms on ion-storage in rechargeable aqueous zinc ion battery.Electrochim Acta2019;324:134867
|
| [117] |
Wang Y,Wang Y,Chen Y.Atomically coupled 2D MnO2/MXene superlattices for ultrastable and fast aqueous zinc-ion batteries.ACS Nano2023;17:21761-70
|
| [118] |
Chen H,Wu Y,Xu M.Successive electrochemical conversion reaction to understand the performance of aqueous Zn/MnO2 batteries with Mn2+ additive.Mater Today Energy2021;20:100646
|
| [119] |
Silapasom W,Wannapaiboon S,Kheawhom S.Enhancing zinc-ion batteries: PEDOT-MnO2 cathodes for superior stability and capacity.Radiat Phys Chem2024;223:111935
|
| [120] |
Zhang N,Liu J.Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities.Nat Commun2017;8:405 PMCID:PMC5581336
|
| [121] |
Guo X,Bai C,Fang G.Zn/MnO2 battery chemistry with dissolution-deposition mechanism.Mater Today Energy2020;16:100396
|
| [122] |
Han K,An F.Boosting aqueous Zn/MnO2 batteries via a synergy of edge/defect-rich cathode and dendrite-free anode.ACS Appl Mater Interfaces2022;14:4316-25
|
| [123] |
Zhang X,Bi H.Carboxymethylcellulose induced the formation of amorphous MnO2 nanosheets with abundant oxygen vacancies for fast ion diffusion in aqueous zinc-ion batteries.Adv Funct Mater2025;35:2411990
|
| [124] |
Chen C,Zhao Y,Zhao L.Al-intercalated MnO2 cathode with reversible phase transition for aqueous Zn-ion batteries.Chem Eng J2021;422:130375
|
| [125] |
Zhao J,Zhou Z.A safe flexible self-powered wristband system by integrating defective MnO2-x nanosheet-based zinc-ion batteries with perovskite solar cells.ACS Nano2021;15:10597-608
|
| [126] |
Kim S,Jo Y.Defect engineering via the F-doping of β-MnO2 cathode to design hierarchical spheres of interlaced nanosheets for superior high-rate aqueous zinc ion batteries.J Mater Chem A2021;9:17211-22
|
| [127] |
Lee B,Lee HR.Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries.ChemSusChem2016;9:2948-56
|
| [128] |
Zhang N,Liu Y.Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery.J Am Chem Soc2016;138:12894-901
|
| [129] |
Xu W,Huo W.Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries.Nano Energy2019;62:275-81
|
| [130] |
Wang P,Zhong Y,Sun G.Dendrite-free Zn metal anodes with boosted stability achieved by four-in-one functional additive in aqueous rechargeable zinc batteries.Adv Energy Mater2024;14:2401540
|
| [131] |
Hao J,Li B.Toward high-performance hybrid Zn-Based batteries via deeply understanding their mechanism and using electrolyte additive.Adv Funct Mater2019;29:1903605
|
| [132] |
Wan F,Dai X,Niu Z.Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers.Nat Commun2018;9:1656 PMCID:PMC5916908
|
| [133] |
Guo S,Zhang T.Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries.Energy Storage Mater2021;34:545-62
|
| [134] |
Chao D,Xie F.Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density.Adv Mater2020;32:2001894
|
| [135] |
Chuai M,Tan R.Theory-driven design of a cationic accelerator for high-performance electrolytic MnO2-Zn batteries.Adv Mater2022;34:2203249
|
| [136] |
Qi Y,Sheng H.Seed-assisted reversible dissolution/deposition of MnO2 for long-cyclic and green aqueous zinc-ion batteries.Small2024;20:2404312
|
| [137] |
Mo F,Liang G.Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities.Adv Energy Mater2020;10:2000035
|
| [138] |
Becknell N,Hatsukade T.Employing the dynamics of the electrochemical interface in aqueous zinc-ion battery cathodes.Adv Funct Mater2021;31:2102135
|
| [139] |
Qu G,Li C.Hierarchical interface enabled by a guest-anionic chemistry for high-rate aqueous zinc-ion batteries.Angew Chem Int Ed2025;64:e202422036
|