2D materials and additives: a dual approach to high-performance tin perovskite solar cells

Jun Hyung Kim , Du Hyeon Ryu , Sang Hyuk Im , Jaeki Jeong , Chang Eun Song

Microstructures ›› 2025, Vol. 5 ›› Issue (3) : 2025063

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (3) :2025063 DOI: 10.20517/microstructures.2024.192
Review

2D materials and additives: a dual approach to high-performance tin perovskite solar cells

Author information +
History +
PDF

Abstract

Tin halide perovskite solar cells (THPSCs) are an eco-friendly alternative to lead halide perovskite solar cells. However, defect formation hinders their commercialization. Specifically, the oxidation of Sn2+ to Sn4+ generates defects, which increase background current due to charge recombination and consequently degrade device performance. This review explores the use of two-dimensional (2D) materials and additives to enhance the performance and stability of THPSCs. 2D materials improve charge transport, passivate defects, induce vertical alignment, and enhance structural stability against moisture. Additives optimize film morphology and interface properties by promoting grain growth and reducing defect density. These approaches increase the power conversion efficiency of THPSCs by up to 15%, demonstrating their commercial potential. The synergistic effects of 2D materials and additives are analyzed, and critical strategies for their combined utilization are suggested to develop high-efficiency and stable THPSCs.

Keywords

Tin halide perovskite / solar cells / 2D materials / additives

Cite this article

Download citation ▾
Jun Hyung Kim, Du Hyeon Ryu, Sang Hyuk Im, Jaeki Jeong, Chang Eun Song. 2D materials and additives: a dual approach to high-performance tin perovskite solar cells. Microstructures, 2025, 5(3): 2025063 DOI:10.20517/microstructures.2024.192

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen Q,Yang Y.Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications.Nano Today2015;10:355-96

[2]

Manser JS,Kamat PV.Intriguing optoelectronic properties of metal halide perovskites.Chem Rev2016;116:12956-3008

[3]

Zhao X,Ren J,Xiao Z.Rational design of halide double perovskites for optoelectronic applications.Joule2018;2:1662-73

[4]

NREL Best Reaserach-Cell Efficiency Chart. Available from: https://www.nrel.gov/pv/cell-efficiency.html [Last accessed 18 Apr 2025]

[5]

Binek A,Huber N.Recycling perovskite solar cells to avoid lead waste.ACS Appl Mater Interfaces2016;8:12881-6

[6]

Jiang Y,Juarez-perez EJ.Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation.Nat Energy2019;4:585-93

[7]

Li J,Jiao WB.Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold.Nat Commun2020;11:310 PMCID:PMC6974608

[8]

Bai F,Hu Y,Miao X.Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells.Solar Energy Materials and Solar Cells2018;184:15-21

[9]

Turkevych I,Ito E.Photovoltaic rudorffites: lead-free silver bismuth halides alternative to hybrid lead halide perovskites.ChemSusChem2017;10:3754-9

[10]

Krishnamoorthy T,Yan C.Lead-free germanium iodide perovskite materials for photovoltaic applications.J Mater Chem A2015;3:23829-32

[11]

Lee SJ,Kim YC.Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2-pyrazine complex.J Am Chem Soc2016;138:3974-7

[12]

Nishimura K,Hirotani D.Lead-free tin-halide perovskite solar cells with 13% efficiency.Nano Energy2020;74:104858

[13]

Toshniwal A.Development of organic-inorganic tin halide perovskites: a review.Solar Energy2017;149:54-9

[14]

Giustino F.Toward lead-free perovskite solar cells.ACS Energy Lett2016;1:1233-40

[15]

Yaffe O,Norman ZM.Excitons in ultrathin organic-inorganic perovskite crystals.Phys Rev B2015;92

[16]

Herz LM.Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits.ACS Energy Lett2017;2:1539-48

[17]

Monahan DM,Lin J,Yang P.Room-temperature coherent optical phonon in 2D electronic spectra of CH3NH3PbI3 perovskite as a possible cooling bottleneck.J Phys Chem Lett2017;8:3211-5

[18]

Baranowski M.Excitons in metal-halide perovskites.Adv Energy Mater2020;10:1903659

[19]

Fatema K.Enhancing the efficiency of Pb-based and Sn-based perovskite solar cell by applying different ETL and HTL using SCAPS-ID.Opt Mater2022;125:112036

[20]

Guo R,Liu Q.Atmospheric stable and flexible Sn-based perovskite solar cells via a bio-inspired antioxidative crystal template.J Energy Chem2022;66:612-8

[21]

Shi T,Meng W.Effects of organic cations on the defect physics of tin halide perovskites.J Mater Chem A2017;5:15124-9

[22]

Zhu C,Fu Y.Strain engineering in perovskite solar cells and its impacts on carrier dynamics.Nat Commun2019;10:815 PMCID:PMC6379394

[23]

Awais M,Yeddu V.Tin halide perovskites going forward: frost diagrams offer hints.ACS Materials Lett2021;3:299-307

[24]

Zhou Y.Zooming In on metal halide perovskites: new energy frontiers emerge.ACS Energy Lett2021;6:2750-4

[25]

Zhang C.Materials and methods for cost-effective fabrication of perovskite photovoltaic devices.Commun Mater2024;5:636

[26]

Scalon L,Fonseca AFV.2D phase formation on 3D perovskite: insights from molecular stiffness.ACS Appl Mater Interfaces2024;16:51727-37 PMCID:PMC11440457

[27]

Wu S,Yip H.The evolution and future of metal halide perovskite-based optoelectronic devices.Matter2021;4:3814-34

[28]

Teo SH,Ng YH,Hayase S.Resolve deep-rooted challenges of halide perovskite for sustainable energy development and environmental remediation.Nano Energy2022;99:107401

[29]

Kojima A,Shirai Y.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.J Am Chem Soc2009;131:6050-1

[30]

Kim HS,Im JH.Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.Sci Rep2012;2:591 PMCID:PMC3423636

[31]

Park N.Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell.J Phys Chem Lett2013;4:2423-9

[32]

Wang K,Liang L.All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15.Nat Commun2018;9:4544 PMCID:PMC6208436

[33]

Glazer AM.The classification of tilted octahedra in perovskites.Acta Crystallogr B Struct Crystallogr Cryst Chem1972;28:3384-92

[34]

Pellet N,Gregori G.Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting.Angew Chem Int Ed Engl2014;53:3151-7

[35]

Wang Y,He Y.Improvement in the performance of inverted 3D/2D perovskite solar cells by ambient exposure.Solar RRL2022;6:2200224

[36]

Wu G,Li X.Molecular engineering for two-dimensional perovskites with photovoltaic efficiency exceeding 18%.Matter2021;4:582-99

[37]

El-Ballouli AO,Mohammed OF.Structurally tunable two-dimensional layered perovskites: from confinement and enhanced charge transport to prolonged hot carrier cooling dynamics.J Phys Chem Lett2020;11:5705-18 PMCID:PMC7467744

[38]

Yi C,Meloni S.Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells.Energy Environ Sci2016;9:656-62

[39]

Huang J,Lund PD.Impact of H2O on organic-inorganic hybrid perovskite solar cells.Energy Environ Sci2017;10:2284-311

[40]

Lin Y,Fang Y.Excess charge-carrier induced instability of hybrid perovskites.Nat Commun2018;9:4981 PMCID:PMC6255755

[41]

Luo S.Recent progress in organic-inorganic halide perovskite solar cells: mechanisms and material design.J Mater Chem A2015;3:8992-9010

[42]

Khatoon S,Chakravorty V.Perovskite solar cell’s efficiency, stability and scalability: a review.Mater Sci Energy Technol2023;6:437-59

[43]

Kore BP,Gardner JM.The impact of moisture on the stability and degradation of perovskites in solar cells.Mater Adv2024;5:2200-17

[44]

Pitaro M,Shao S.Tin halide perovskites: from fundamental properties to solar cells.Adv Mater2022;34:e2105844 PMCID:PMC11469212

[45]

Ruddlesden SN.New compounds of the K2NIF4 type.Acta Cryst1957;10:538-9

[46]

Smith IC,Solis-Ibarra D,Karunadasa HI.A layered hybrid perovskite solar-cell absorber with enhanced moisture stability.Angew Chem Int Ed Engl2014;53:11232-5

[47]

Stoumpos CC,Clark DJ.Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors.Chem Mater2016;28:2852-67

[48]

Chen Y,Peng J.Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells.Advanced Energy Materials2017;7:1700162

[49]

Cheng P,Li J.Highly efficient Ruddlesden-Popper halide perovskite PA2 MA4Pb5I16 Solar Cells.ACS Energy Lett2018;3:1975-82

[50]

Hong X,Nurmikko AV.Dielectric confinement effect on excitons in PbI4-based layered semiconductors.Phys Rev B Condens Matter1992;45:6961-4

[51]

Guo Z,Zhu T,Huang L.Electron-phonon scattering in atomically thin 2D perovskites.ACS Nano2016;10:9992-8

[52]

Gélvez-Rueda MC,Cao DH.Interconversion between free charges and bound excitons in 2D hybrid lead halide perovskites.J Phys Chem C Nanomater Interfaces2017;121:26566-74 PMCID:PMC5712865

[53]

Fu W,Zuo L.Two-dimensional perovskite solar cells with 14.1% power conversion efficiency and 0.68% external radiative efficiency.ACS Energy Lett2018;3:2086-93

[54]

Lai H,Liu T.Two-dimensional Ruddlesden-Popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%.J Am Chem Soc2018;140:11639-46

[55]

Shao M,Yang L.Over 21% efficiency stable 2D perovskite solar cells.Adv Mater2022;34:e2107211

[56]

Kayesh ME,Kaneko R.Coadditive engineering with 5-ammonium valeric acid iodide for efficient and stable Sn perovskite solar cells.ACS Energy Lett2019;4:278-84

[57]

Ma L,Dai J.Tin and germanium based two-dimensional Ruddlesden-Popper hybrid perovskites for potential lead-free photovoltaic and photoelectronic applications.Nanoscale2018;10:11314-9

[58]

Wang D,Dong Y,Liu Z.Electronic and optical properties of layered Ruddlesden Popper hybrid X2(MA)n-1SnnI3n+1 perovskite insight by first principles.J Phys Chem Solids2020;144:109510

[59]

Cao DH,Yokoyama T.Thin films and solar cells based on semiconducting two-dimensional Ruddlesden-Popper(CH3(CH 2)3NH3)2(CH3NH3)n-1 SnnI3n+1 perovskites.ACS Energy Lett2017;2:982-90

[60]

Dion M,Tournoux M.Nouvelles familles de phases MIMII2Nb3O10 a feuillets “perovskites”.Mater Res Bull1981;16:1429-35

[61]

Jacobson AJ,Lewandowski JT.Interlayer chemistry between thick transition-metal oxide layers: synthesis and intercalation reactions of K[Ca2Nan-3NbnO3n+1] (3 .ltoreq. n .ltoreq. 7).Inorg Chem1985;24:3727-9

[62]

Ahmad S,Yu S.Dion-Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability.Joule2019;3:794-806

[63]

Gong J,Zhang Y,Zhou Y.Layered 2D halide perovskites beyond the Ruddlesden-Popper phase: tailored interlayer chemistries for high-performance solar cells.Angew Chem Int Ed Engl2022;61:e202112022

[64]

Safdari M,Hoang MT,Kloo L.Layered 2D alkyldiammonium lead iodide perovskites: synthesis, characterization, and use in solar cells.J Mater Chem A2016;4:15638-46

[65]

Mao L,Pedesseau L.Hybrid Dion-Jacobson 2D lead iodide perovskites.J Am Chem Soc2018;140:3775-83

[66]

Ma C,Ng TW,Lee CS.2D Perovskites with short interlayer distance for high-performance solar cell application.Adv Mater2018;30:e1800710

[67]

Boeije Y,Zhang Y.Tailoring interlayer charge transfer dynamics in 2D perovskites with electroactive spacer molecules.J Am Chem Soc2023;145:21330-43

[68]

Li X,Traoré B.Two-dimensional Dion-Jacobson hybrid lead iodide perovskites with aromatic diammonium cations.J Am Chem Soc2019;141:12880-90

[69]

Lin YL.Interlayer triplet energy transfer in dion-jacobson two-dimensional lead halide perovskites containing naphthalene diammonium cations.J Phys Chem Lett2021;12:4793-8

[70]

Ghosh D,Pedesseau L.Charge carrier dynamics in two-dimensional hybrid perovskites: Dion-Jacobson vs. Ruddlesden-Popper phases.J Mater Chem A2020;8:22009-22

[71]

Jokar E,Fathi A,Chang Y.Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells.Energy Environ Sci2018;11:2353-62

[72]

Ke W,Spanopoulos I,Wasielewski MR.Diammonium cations in the FASnI3 perovskite structure lead to lower dark currents and more efficient solar cells.ACS Energy Lett2018;3:1470-6

[73]

Chen M,Hu M.Lead-Free Dion–Jacobson Tin Halide Perovskites for Photovoltaics.ACS Energy Lett2019;4:276-7

[74]

Li P,Zhang Y.Low-dimensional Dion-Jacobson-phase lead-free perovskites for high-performance photovoltaics with improved stability.Angew Chem Int Ed Engl2020;59:6909-14

[75]

Yao H,Wu C,Hua Y.Structural tailoring the phenylenediamine isomers to obtain 2D Dion-Jacobson tin perovskite solar cells with record efficiency.Adv Funct Mater2024;34:2312287

[76]

Qian J,Shen Y.Dion-Jacobson-phase 2D Sn-based perovskite comprising a high dipole moment of π-conjugated short-chain organic spacers for high-performance solar cell applications.ACS Nano2024;18:15055-66

[77]

Yao H,Wu T.Regulation of the quantum barrier and carrier transport toward high-efficiency quasi-2D Dion-Jacobson tin perovskite solar cells.J Energy Chem2024;95:200-7

[78]

Cao DH,Farha OK,Kanatzidis MG.2D homologous perovskites as light-absorbing materials for solar cell applications.J Am Chem Soc2015;137:7843-50

[79]

Quan LN,Comin R.Ligand-stabilized reduced-dimensionality perovskites.J Am Chem Soc2016;138:2649-55

[80]

Teale S,Jung EH.Dimensional mixing increases the efficiency of 2D/3D perovskite solar cells.J Phys Chem Lett2020;11:5115-9

[81]

Krishna A,Nazeeruddin MK.Mixed dimensional 2D/3D Hybrid perovskite absorbers: the future of perovskite solar cells?.Adv Funct Mater2019;29:1806482

[82]

Li H,Gong C.2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells.Nat Energy2023;8:946-55

[83]

Wang J,Lin Y.Templated growth of oriented layered hybrid perovskites on 3D-like perovskites.Nat Commun2020;11:582 PMCID:PMC6989653

[84]

Zhou T,Wang R,Fu Q.Crystal growth regulation of 2D/3D perovskite films for solar cells with both high efficiency and stability.Adv Mater2022;34:e2200705

[85]

Hauff E. 2D or not 2D: eliminating interfacial losses in perovskite solar cells.Chem2021;7:1694-6

[86]

Soe CMM,Shivaramaiah R.Structural and thermodynamic limits of layer thickness in 2D halide perovskites.Proc Natl Acad Sci U S A2019;116:58-66 PMCID:PMC6320524

[87]

Duan J,Dai J,Xi J.Understand two-dimensional perovskite nanosheets from individual and collective perspectives.Mater Today Electron2024;8:100097

[88]

Cresp M,Rager M,Pauporté T.2D Ruddlesden-Popper versus 2D Dion-Jacobson perovskites: of the importance of determining the “true” average n -value of annealed layers.Adv Funct Mater2025;35:2413671

[89]

Sutanto AA,Drigo N.2D/3D perovskite engineering eliminates interfacial recombination losses in hybrid perovskite solar cells.Chem2021;7:1903-16

[90]

Wang T,Cao J.High open circuit voltage over 1 V achieved in tin-based perovskite solar cells with a 2d/3d vertical heterojunction.Adv Sci (Weinh)2022;9:e2200242 PMCID:PMC9218751

[91]

Li H,Wei Q.High-member low-dimensional Sn-based perovskite solar cells.Sci China Chem2023;66:459-65

[92]

Kang Z,Zhang L.Homogenizing the low-dimensional phases for stable 2D-3D tin perovskite solar cells.Small2024;20:e2402028

[93]

Zhang L,Yang L.Tactic of A-D-A scheme organic photocatalyst with broad spectral feature of absorption enables photocatalytic performance improvement.Surf Interfaces2024;48:104327

[94]

Jokar E,Lin C,Shahbazi S.Enhanced performance and stability of 3D/2D tin perovskite solar cells fabricated with a sequential solution deposition.ACS Energy Lett2021;6:485-92

[95]

Sun M,Guo Y.Difluorine-substituted molecule-based low-dimensional structure for highly stable tin perovskite solar cells.Solar RRL2022;6:2200672

[96]

Li H,Ramakrishnan S.Pseudo-halide anion engineering for efficient quasi-2D Ruddlesden-Popper tin perovskite solar cells.Cell Reports Physical Science2022;3:101060

[97]

Li T,Zhu W.Synergistic effect of two hydrochlorides resulting in significantly enhanced performance of tin-based perovskite solar cells with 3D to quasi-2D structural transition.J Mater Chem A2022;10:14441-50

[98]

Gao W,Sun N.Chiral cation promoted interfacial charge extraction for efficient tin-based perovskite solar cells.J Energy Chem2022;68:789-96

[99]

Xu Y,Wang P.Highly oriented quasi-2D layered tin halide perovskites with 2-thiopheneethylammonium iodide for efficient and stable tin perovskite solar cells.New J Chem2022;46:2259-65

[100]

Chen B,Zhang X,Cao Z.Reducing the interfacial voltage loss in tin halides perovskite solar cells.Chem Eng J2022;445:136769

[101]

Wang S,Xie L,Hao F.Pseudohalide-modulated crystallization for efficient quasi-2D tin perovskite solar cells with minimized voltage deficit.ACS Materials Lett2023;5:936-43

[102]

Wang K,Chen Y.Rational selection of phenethylammonium salts for 2D/3D tin perovskite solar cells: the halogen ion matters.ACS Appl Energy Mater2023;6:10509-17

[103]

Zhou Y,Feng X.Buried interface modification via guanidine thiocyanate for high-performance lead-free perovskite solar cells.J Phys Chem C2023;127:1320-5

[104]

Yao H,Hu J.Halogen engineering of 2D/3D tin halide perovskite for enhanced structural stability.Chem Eng J2023;455:140862

[105]

Yang F,Zhang Z.High-stable lead-free solar cells achieved by surface reconstruction of quasi-2D tin-based perovskites.Adv Mater2024;36:e2308655

[106]

Chang B,Li H.Phase-pure 2D/3D tin-based perovskite films for solar cells.ACS Energy Lett2024;9:363-72

[107]

Zang Z,Jiang X.Efficient quasi-2D tin perovskite solar cells based on mixed monoammonium and diammonium terminal molecules.Mater Chem Front2024;8:1827-34

[108]

Du F,Jiang W.Managing crystallization and phase distribution via 2D perovskite seed crystals for 2D-3D tin-based perovskite solar cells.Adv Funct Mater2025;35:2413281

[109]

Pan H,Zheng Y.Phase-pure Ruddlesden-Popper tin halide perovskites for solar energy conversion applications.J Mater Chem A2024;12:21008-15

[110]

Choi J,Jeong M.Molecularly engineered alicyclic organic spacers for 2D/3D Hybrid tin-based perovskite solar cells.Small2024;20:e2405598 PMCID:PMC11600702

[111]

Xu Y,Ramakrishnan S.Unraveling the formation mechanisms of highly oriented tin perovskite with a 3D-over-2D heterostructure.ACS Energy Lett2024;9:4734-45

[112]

Kang Z,Wang K.Tailoring low-dimensional phases for improved performance of 2D-3D tin perovskite solar cells.ACS Mater Lett2024;6:1-9

[113]

Feng G,Wang T.A-site engineering with thiophene-based ammonium for high-efficiency 2D/3D tin halide perovskite solar cells.Angew Chem Int Ed Engl2025;64:e202413584

[114]

Wang C,Gu F.Illumination durability and high-efficiency Sn-Based perovskite solar cell under coordinated control of phenylhydrazine and halogen ions.Matter2021;4:709-21

[115]

Wu T,Luo X.Lead-free tin perovskite solar cells.Joule2021;5:863-86

[116]

Chen L,Li Y,Yan Y.On the durability of tin-containing perovskite solar cells.Adv Sci (Weinh)2024;11:e2304811 PMCID:PMC10767427

[117]

Heo JH,Kim H,Im SH.Roles of SnX2 (X = F, Cl, Br) additives in tin-based halide perovskites toward highly efficient and stable lead-free perovskite solar cells.J Phys Chem Lett2018;9:6024-31

[118]

Koh TM,Yantara N.Formamidinium tin-based perovskite with low Eg for photovoltaic applications.J Mater Chem A2015;3:14996-5000

[119]

Liu G,Feng W.Synergic electron and defect compensation minimizes voltage loss in lead-free perovskite solar cells.Angew Chem Int Ed Engl2023;62:e202305551

[120]

Lai H,Ren S.Unveiling the GeI2-assisted oriented growth of perovskite crystallite for high-performance flexible Sn perovskite solar cells.Energy Environ Mater2025;8:e12791

[121]

Liu X,Wu T.Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure.Nat Commun2020;11:2678 PMCID:PMC7260362

[122]

Ryu DH,Obila JO.Erbium chloride-mediated nucleation/crystallization control for high-performance tin-based perovskite solar cells.EcoMat2024;6:e12500

[123]

Ng CH,Ito N.Role of GeI2 and SnF2 additives for SnGe perovskite solar cells.Nano Energy2019;58:130-7

[124]

Ito N,Hirotani D.Mixed Sn-Ge perovskite for enhanced perovskite solar cell performance in air.J Phys Chem Lett2018;9:1682-8

[125]

Ng CH,Kapil G.Reducing trap density and carrier concentration by a Ge additive for an efficient quasi 2D/3D perovskite solar cell.J Mater Chem A2020;8:2962-8

[126]

Jang H,Yoon YJ.Formate as anti-oxidation additives for Pb-Free FASnI3 perovskite solar cells.Solar RRL2022;6:2200789

[127]

Cao J,You P.Enhanced performance of tin-based perovskite solar cells induced by an ammonium hypophosphite additive.J Mater Chem A2019;7:26580-5

[128]

Wang T,Guo X.Highly air-stable tin-based perovskite solar cells through grain-surface protection by gallic acid.ACS Energy Lett2020;5:1741-9

[129]

Wang N,Ju M.Heterojunction-depleted lead-free perovskite solar cells with coarse-grained B-γ-CsSnI3 thin films.Adv Energy Mater2016;6:1601130

[130]

Chen Q,He R.Unveiling roles of tin fluoride additives in high-efficiency low-bandgap mixed tin-lead perovskite solar cells.Adv Energy Mater2021;11:2101045

[131]

Lin Y,Dai J.π-Conjugated Lewis base: efficient trap-passivation and charge-extraction for hybrid perovskite solar cells.Adv Mater2017;29

[132]

Li W,Li J,Mai Y.Addictive-assisted construction of all-inorganic CsSnIBr2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K.J Mater Chem A2016;4:17104-10

[133]

Jung M,Kim G.Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications.Chem Soc Rev2019;48:2011-38

[134]

Ma Y,Zhang M.Review on the effects of solvent physical properties on the performance of slot-die coated perovskite solar cells.Surf Sci Tech2024;2:54

[135]

Liao W,Yu Y.Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%.Adv Mater2016;28:9333-40

[136]

Kayesh ME,Matsuishi K.Enhanced photovoltaic performance of FASnI3-based perovskite solar cells with hydrazinium chloride coadditive.ACS Energy Lett2018;3:1584-9

[137]

He L,Liu X.Efficient Anti-solvent-free spin-coated and printed Sn-perovskite solar cells with crystal-based precursor solutions.Matter2020;2:167-80

[138]

Abdel-shakour M,Matsuishi K,Moritomo Y.High-efficiency tin halide perovskite solar cells: the chemistry of tin (II) compounds and their interaction with Lewis base additives during perovskite film formation.Solar RRL2021;5:2000606

[139]

Duan C,Wen Q.A bifunctional carbazide additive for durable CsSnI3 perovskite solar cells.Adv Mater2023;35:e2300503

[140]

Deng L,Yang H,Hu B.Polymer assist crystallization and passivation for enhancements of open-circuit voltage and stability in tin-halide perovskite solar cells.J Phys D: Appl Phys2018;51:475102

[141]

Ke W,Zhu M.Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI3.Sci Adv2017;3:e1701293 PMCID:PMC5576879

[142]

Khan N,Park J.Bromide incorporation enhances vertical orientation of triple organic cation tin-halide perovskites for high-performance lead-free solar cells.Solar RRL2022;6:2200631

[143]

Liu X,Chen J.Templated growth of FASnI3 crystals for efficient tin perovskite solar cells.Energy Environ Sci2020;13:2896-902

[144]

Ryu DH,Park JG.Morphology and performance enhancement through the strong passivation effect of amphoteric ions in tin-based perovskite solar cells.Small2023;19:e2302418

[145]

Obila JO,Oh S.Tin-based perovskite solar cells containing a perylene diimide cathode interlayer with a copper top electrode.ACS Energy Lett2024;9:1090-6

[146]

Li Y,Xu Z,Li X.Key roles of interfaces in inverted metal-halide perovskite solar cells.ACS Nano2024;18:10688-725

[147]

Wang F,Chen H.2D-quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability.Joule2018;2:2732-43

[148]

Liu G,Feng W.Multidentate chelation heals structural imperfections for minimized recombination loss in lead-free perovskite solar cells.Angew Chem Int Ed Engl2022;61:e202209464

[149]

Ma M,Zang Z.Suppressing fluoride segregation for high efficiency tin perovskite solar cells.Adv Funct Materials2024;34:2407095

[150]

Zhao Z,Li Y.Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12.Adv Sci (Weinh)2017;4:1700204 PMCID:PMC5700647

[151]

Shao S,Portale G.Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency.Adv Energy Mater2018;8:1702019

[152]

Jokar E,Tsai CM,Diau EW.Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10.Adv Mater2019;31:e1804835

[153]

Ran C,Li J.Conjugated organic cations enable efficient self-healing FASnI3 solar cells.Joule2019;3:3072-87

[154]

Kamarudin MA,Wang Z.Suppression of charge carrier recombination in lead-free tin halide perovskite via lewis base post-treatment.J Phys Chem Lett2019;10:5277-83

[155]

Meng X,Liu X.Highly reproducible and efficient FASnI3 perovskite solar cells fabricated with volatilizable reducing solvent.J Phys Chem Lett2020;11:2965-71

[156]

Meng X,Lin J.Surface-controlled oriented growth of FASnI3 crystals for efficient lead-free perovskite solar cells.Joule2020;4:902-12

[157]

Chen M,Eickemeyer FT.High-performance lead-free solar cells based on tin-halide perovskite thin films functionalized by a divalent organic cation.ACS Energy Lett2020;5:2223-30

[158]

Wang C,Zhao Z.Self-repairing tin-based perovskite solar cells with a breakthrough efficiency over 11%.Adv Mater2020;32:e1907623

[159]

Nakamura T,Truong MA.Sn(IV)-free tin perovskite films realized by in situ Sn(o) nanoparticle treatment of the precursor solution.Nat Commun2020;11:3008 PMCID:PMC7297727

[160]

Jiang X,Wei Q.Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design.Nat Commun2020;11:1245 PMCID:PMC7060347

[161]

Wang S,Zhu W.Suppressing the formation of tin vacancy yields efficient lead-free perovskite solar cells.Nano Energy2022;99:107416

[162]

Li H,Wang L.Surface reconstruction for tin-based perovskite Solar Cells.ACS Energy Lett2022;7:3889-99

[163]

Zhang Z,Wang C.Revealing superoxide-induced degradation in lead-free tin perovskite solar cells.Energy Environ Sci2022;15:5274-83

[164]

Zou S,Jiang Y.Efficient environment-friendly lead-free tin perovskite solar cells enabled by incorporating 4-fluorobenzylammonium iodide additives.Energy Environ Mater2023;6:e12465

[165]

Zhu Z,Yu D,Ning Z.Smooth and compact FASnI3 films for lead-free perovskite solar cells with over 14% efficiency.ACS Energy Lett2022;7:2079-83

[166]

Wang J,Chen H.Oriented attachment of tin halide perovskites for photovoltaic applications.ACS Energy Lett2023;8:1590-6

[167]

Zhou X,Liu Z.Additive engineering with 2,8-dibromo-dibenzothiophene-S, S-dioxide enabled tin-based perovskite solar cells with 14.98% power conversion efficiency.Energy Environ Sci2024;17:2837-44

AI Summary AI Mindmap
PDF

289

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/