Visualizing small molecules via transmission electron microscopy

Shuo Xie , Sheng Dai

Microstructures ›› 2025, Vol. 5 ›› Issue (3) : 2025057

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (3) :2025057 DOI: 10.20517/microstructures.2024.188
Review

Visualizing small molecules via transmission electron microscopy

Author information +
History +
PDF

Abstract

Transmission electron microscopy (TEM) is a cutting-edge characterization technique renowned for its ability to achieve atomic resolution. Owing to its exceptional capacity for microscopic characterization, TEM has emerged as an essential and powerful tool in the realms of structural characterization and chemical analysis. Its applications span a diverse array of fields, including materials science, chemistry, and biology, offering unprecedented insights into the fundamental structure understanding of various substances. The capability of TEM to facilitate direct observation of small molecules holds significant promise for advancing our understanding of molecular structures, host-guest interactions, and their dynamic behaviors. However, a couple of challenges hide this potential. Notably, issues such as electron beam irradiation can damage small molecules, while low contrast of small molecules compared to the background presents considerable obstacles during imaging. These factors necessitate the continued development of innovative techniques that enhance the efficacy of TEM. In this review, we offer a brief introduction to advanced TEM techniques aimed at directly imaging small molecules, including cryo-electron microscopy, low electron dose imaging, and in situ TEM techniques. We review recent advancements in atomic-resolution TEM studies involving small molecules, highlighting significant findings and methodological improvements that have emerged in the field. In addition, we provide an outlook on the future trajectory of TEM studies on small molecules, emphasizing the potential progress that could stimulate further scientific exploration in this realm.

Keywords

Transmission electron microscopy / small molecules / real-space imaging / atomic resolution

Cite this article

Download citation ▾
Shuo Xie, Sheng Dai. Visualizing small molecules via transmission electron microscopy. Microstructures, 2025, 5(3): 2025057 DOI:10.20517/microstructures.2024.188

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen W.Nanophase separation of small and large molecules.Macromol Chem Phys1999;200:283-311

[2]

Erickson HP.Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy.Biol Proced Online2009;11:32-51 PMCID:PMC3055910

[3]

Kong G,Lu J,Zhong Z.Insight for microstructure research of materials.Acta Metall Sin2010;46:487-93

[4]

Whitesides GM.Nanoscience, nanotechnology, and chemistry.Small2005;1:172-9

[5]

Niemeyer CM.Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science.Angew Chem Int Ed2001;40:4128-58

[6]

De Clercq P.We need to talk about Kekule: The 150th anniversary of the benzene structure.Eur J Org Chem2022;2022:e202200171

[7]

Watson JD.Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid.JAMA1993;269:1966-7

[8]

Bai XC,Scheres SH.How cryo-EM is revolutionizing structural biology.Trends Biochem Sci2015;40:49-57

[9]

Huang Y,Xu XF,Liu SW.Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19.Acta Pharmacol Sin2020;41:1141-9 PMCID:PMC7396720

[10]

Olsbye U,Lillerud KP.The formation and degradation of active species during methanol conversion over protonated zeotype catalysts.Chem Soc Rev2015;44:7155-76

[11]

Dominguez-Soria VD,Goursot A.Theoretical study of host-guest interactions in the large and small cavities of MOR zeolite models.J Phys Chem C2011;115:6508-12

[12]

Dias DA,Beale DJ.Current and future perspectives on the structural identification of small molecules in biological systems.Metabolites2016;6:46 PMCID:PMC5192452

[13]

Franklin RE.Molecular configuration in sodium thymonucleate.Nature1953;171:740-1

[14]

Cichocka MO,Wang B,Smeets S.High-throughput continuous rotation electron diffraction data acquisition via software automation.J Appl Crystallogr2018;51:1652-61 PMCID:PMC6276279

[15]

Zhang YB,Furukawa H.Single-crystal structure of a covalent organic framework.J Am Chem Soc2013;135:16336-9

[16]

Wang B,Inge AK.A Porous cobalt tetraphosphonate metal-organic framework: accurate structure and guest molecule location determined by continuous-rotation electron diffraction.Chemistry2018;24:17429-33

[17]

Morgan TJ,Davis DB,Kandiyoti R.O Optimization of 1H and 13C NMR methods for structural characterization of acetone and pyridine soluble/insoluble fractions of a coal tar pitch.Energy Fuels2008;22:1824-35

[18]

Kwan AH,Gooley PR,Mackay JP.Macromolecular NMR spectroscopy for the non-spectroscopist.FEBS J2011;278:687-703

[19]

Singh KS,Tilvi S.Chapter 6 - Vibrational spectroscopy for structural characterization of bioactive compounds.Compr Anal Chem2014;65:115-48

[20]

Zhang Z,Chen YA.Tuning the conformation and color of conjugated polyheterocyclic skeletons by installing ortho-methyl groups.Angew Chem Int Ed2018;57:9880-4

[21]

Hong T,Nie SP.Applications of infrared spectroscopy in polysaccharide structural analysis: progress, challenge and perspective.Food Chem X2021;12:100168 PMCID:PMC8633561

[22]

Cai Z,Zenobi R.Probing on-surface chemistry at the nanoscale using tip-enhanced raman spectroscopy.CCS Chem2023;5:55-71

[23]

Park H,Baker D.The origin of consistent protein structure refinement from structural averaging.Structure2015;23:1123-8 PMCID:PMC4456269

[24]

Piston DW.The impact of technology on light microscopy.Nat Cell Biol2009;11:S23-4

[25]

Wang Y,Xu J.The development of microscopic imaging technology and its application in micro- and nanotechnology.Front Chem2022;10:931169 PMCID:PMC9294601

[26]

Tanaka N.Present status and future prospects of spherical aberration corrected TEM/STEM for study of nanomaterials.Sci Technol Adv Mater2008;9:014111 PMCID:PMC5099806

[27]

Guzzinati G,Batuk M.Recent advances in transmission electron microscopy for materials science at the EMAT lab of the university of Antwerp.Materials2018;11:1304 PMCID:PMC6117696

[28]

Rauch EF,Nicolopoulos S.Orientation and phase mapping in TEM microscopy (EBSD-TEM like): applications to materials science.Solid State Phenomena2012;186:13-5

[29]

Pennycook SJ,Lupini AR.Aberration-corrected scanning transmission electron microscopy: from atomic imaging and analysis to solving energy problems.Philos Trans A Math Phys Eng Sci2009;367:3709-33

[30]

Scherzer O.The theoretical resolution limit of the electron microscope.J App Phys1949;20:20-9

[31]

Krivanek OL,Dellby N.An electron microscope for the aberration-corrected era.Ultramicroscopy2008;108:179-95

[32]

Spence J.The future of atomic resolution electron microscopy for materials science.Mater Sci Eng R Rep1999;26:1-49

[33]

Haider M,Schwan E,Kabius B.Electron microscopy image enhanced.Nature1998;392:768-9

[34]

Rummeli MH,Mendes RG.New frontiers in electron beam-driven chemistry in and around graphene.Adv Mater2019;31:e1800715

[35]

Bachmatiuk A,Gorantla SM.Low voltage transmission electron microscopy of graphene.Small2015;11:515-42

[36]

Gong X,Chen Z.Insights into the structure and dynamics of metal-organic frameworks via transmission electron microscopy.J Am Chem Soc2020;142:17224-35

[37]

Williams DB.Transmission electron microscopy: a textbook for materials science; New York, NY: Springer, 2009.

[38]

Brydson R.Electron energy loss spectroscopy; London: Garland Science, 2001.

[39]

Egerton RF,Malac M.Radiation damage in the TEM and SEM.Micron2004;35:399-409

[40]

Ding ZJ,Da B.Charging effect induced by electron beam irradiation: a review.Sci Technol Adv Mater2021;22:932-71 PMCID:PMC8592625

[41]

Dubochet J,Chang JJ.Cryo-electron microscopy of vitrified specimens.Q Rev Biophys1988;21:129-228

[42]

Chari A.Prospects and limitations of high-resolution single-particle cryo-electron microscopy.Annu Rev Biophys2023;52:391-411

[43]

Li Y,Dai J.The cage effect of electron beam irradiation damage in cryo-electron microscopy.NPJ Comput Mater2024;10:1299

[44]

Henderson R.Cryo-protection of protein crystals against radiation damage in electron and X-ray diffraction.Proc R Soc Lond B1990;241:6-8

[45]

Hugenschmidt M,Marx A,Gerthsen D.Electron-beam-induced carbon contamination in STEM-in-SEM: quantification and mitigation.Microsc Microanal2023;29:219-34

[46]

McGilvery CM,Shaffer MS.Contamination of holey/lacey carbon films in STEM.Micron2012;43:450-5

[47]

Egerton RF.Direct measurement of contamination and etching rates in an electron beam.J Phys D Appl Phys1976;9:659-63

[48]

Zaluzec NJ,Henriks D.Reactive gas plasma specimen processing for use in microanalysis and imaging in analytical electron microscopy.Microsc Microanal1997;3:983-4

[49]

Hettler S,Hermann P,Gerthsen D.Carbon contamination in scanning transmission electron microscopy and its impact on phase-plate applications.Micron2017;96:38-47

[50]

Mitchell DR.Contamination mitigation strategies for scanning transmission electron microscopy.Micron2015;73:36-46

[51]

Dobro MJ,Jensen GJ.Chapter three - plunge freezing for electron cryomicroscopy.Methods Enzymol2010;481:63-82

[52]

Hurbain I.The future is cold: cryo-preparation methods for transmission electron microscopy of cells.Biol Cell2011;103:405-20

[53]

Li Y,Zhou W.Cryo-EM structures of atomic surfaces and host-guest chemistry in metal-organic frameworks.Matter2019;1:428-38 PMCID:PMC8184120

[54]

Lee J,Kim J.Contrast transfer function-based exit-wave reconstruction and denoising of atomic-resolution transmission electron microscopy images of graphene and Cu single atom substitutions by deep learning framework.Nanomaterials2020;10:1977 PMCID:PMC7601262

[55]

Zhang D,Liu L.Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials.Science2018;359:675-9

[56]

Milazzo AC,Duttweiler F.Active pixel sensor array as a detector for electron microscopy.Ultramicroscopy2005;104:152-9

[57]

Faruqi AR.Direct imaging detectors for electron microscopy.In: Nuclear instruments and methods in physics research section a: accelerators, spectrometers, detectors and associated equipment; 2018, pp. 180-90

[58]

Kuijper M,Janssen B.FEI's direct electron detector developments: Embarking on a revolution in cryo-TEM.J Struct Biol2015;192:179-87

[59]

Levin BDA.Direct detectors and their applications in electron microscopy for materials science.J Phys Mater2021;4:042005

[60]

Koshino M,Solin N,Isobe H.Imaging of single organic molecules in motion.Science2007;316:853

[61]

Skowron ST,Biskupek J,Besley E.Chemical reactions of molecules promoted and simultaneously imaged by the electron beam in transmission electron microscopy.ACC Chem Res2017;50:1797-807

[62]

Umeyama T,Sato Y.Molecular interactions on single-walled carbon nanotubes revealed by high-resolution transmission microscopy.Nat Commun2015;6:7732 PMCID:PMC4518305

[63]

Zhu Y,Zheng B.Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy.Nat Mater2017;16:532-6

[64]

Peng Y,Zhu Y.Ultrathin two-dimensional covalent organic framework nanosheets: preparation and application in highly sensitive and selective DNA detection.J Am Chem Soc2017;139:8698-704

[65]

Egerton RF.Radiation damage to organic and inorganic specimens in the TEM.Micron2019;119:72-87

[66]

Lazić I,Lazar S.Phase contrast STEM for thin samples: integrated differential phase contrast.Ultramicroscopy2016;160:265-80

[67]

Lin Y,Tai X,Han X.Analytical transmission electron microscopy for emerging advanced materials.Matter2021;4:2309-39

[68]

Bosch EG.Analysis of HR-STEM theory for thin specimen.Ultramicroscopy2015;156:59-72

[69]

Lazić I.Chapter Three - Analytical review of direct stem imaging techniques for thin samples.Adv Imaging Electron Phys2017;199:75-184

[70]

Cowley JM.Scanning transmission electron microscopy of thin specimens.Ultramicroscopy1976;2:3-16

[71]

Shen B,Wang H.A single-molecule van der Waals compass.Nature2021;592:541-4

[72]

Shen B,Xiong H.Atomic imaging of zeolite-confined single molecules by electron microscopy.Nature2022;607:703-7

[73]

Feng J,Song B.Atomic single-molecule imaging by the confinement methods in advanced microscopy. Fundam Res 2024.

[74]

Yoshida H,Jinschek JR.Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions.Science2012;335:317-9

[75]

Molina LM.Theoretical study of CO oxidation on Au nanoparticles supported by MgO(100).Phys Rev B2004;69:155424

[76]

Mavrikakis M,Nørskov J.Making gold less noble.Catal Lett2000;64:101-6

[77]

Yuan W,Li XY.Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy.Science2020;367:428-30

[78]

Panagiotopoulou P.Effect of morphological characteristics of TiO2-supported noble metal catalysts on their activity for the water-gas shift reaction.J Catal2004;225:327-36

[79]

Xiong H,Chen X.In situ imaging of the sorption-induced subcell topological flexibility of a rigid zeolite framework.Science2022;376:491-6

[80]

de Jonge N,Demers H,Drouin D.Nanometer-resolution electron microscopy through micrometers-thick water layers.Ultramicroscopy2010;110:1114-9 PMCID:PMC2917648

[81]

Wang H,Kim YJ,Granick S.Intermediate states of molecular self-assembly from liquid-cell electron microscopy.Proc Natl Acad Sci USA2020;117:1283-92 PMCID:PMC6983447

[82]

Nagamanasa KH,Granick S.Liquid-cell electron microscopy of adsorbed polymers.Adv Mater2017;29:1703555

[83]

Dahmke IN,Hermannsdörfer J.Graphene liquid enclosure for single-molecule analysis of membrane proteins in whole cells using electron microscopy.ACS Nano2017;11:11108-17

[84]

Findlay SD,Sawada H,Kondo Y.Dynamics of annular bright field imaging in scanning transmission electron microscopy.Ultramicroscopy2010;110:903-23

[85]

Ooe K,Yoshida K.Direct imaging of local atomic structures in zeolite using optimum bright-field scanning transmission electron microscopy.Sci Adv2023;9:eadf6865 PMCID:PMC10396294

[86]

Peters JJP,Jimbo Y.Event-responsive scanning transmission electron microscopy.Science2024;385:549-53

[87]

Ophus C.Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond.Microsc Microanal2019;25:563-82

[88]

Yu R,Cui J.Introduction to electron ptychography for materials scientists.Microstructures2024;4:2024056

[89]

Jiang Y,Han Y.Electron ptychography of 2D materials to deep sub-ångström resolution.Nature2018;559:343-9

[90]

Chen Z,Shao YT.Electron ptychography achieves atomic-resolution limits set by lattice vibrations.Science2021;372:826-31

[91]

Yang W,Cui J,Yu R.Local-orbital ptychography for ultrahigh-resolution imaging.Nat Nanotechnol2024;19:612-7

[92]

Nguyen KX,Lee CH.Achieving sub-0.5-angstrom-resolution ptychography in an uncorrected electron microscope.Science2024;383:865-70

[93]

Gao S,Zhang F.Electron ptychographic microscopy for three-dimensional imaging.Nat Commun2017;8:163 PMCID:PMC5537274

[94]

Zhou L,Kim JS.Low-dose phase retrieval of biological specimens using cryo-electron ptychography.Nat Commun2020;11:2773 PMCID:PMC7265480

[95]

Pei X,Huang C.Cryogenic electron ptychographic single particle analysis with wide bandwidth information transfer.Nat Commun2023;14:3027 PMCID:PMC10212999

[96]

Sha H,Li J.Ptychographic measurements of varying size and shape along zeolite channels.Sci Adv2023;9:eadf1151 PMCID:PMC10017048

[97]

Pennycook TJ,Nellist PD.High dose efficiency atomic resolution imaging via electron ptychography.Ultramicroscopy2019;196:131-5

[98]

Chen Z,Jiang Y.Mixed-state electron ptychography enables sub-angstrom resolution imaging with picometer precision at low dose.Nat Commun2020;11:2994 PMCID:PMC7293311

AI Summary AI Mindmap
PDF

177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/