Photonic meta-crystals

Shengyu Hu , Pengyu Li , Hong Chen , Zhiwei Guo

Microstructures ›› 2025, Vol. 5 ›› Issue (4) : 2025082

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (4) :2025082 DOI: 10.20517/microstructures.2024.184
Review

Photonic meta-crystals

Author information +
History +
PDF

Abstract

Photonic crystals (PCs) and metamaterials are periodic artificial structures with different scales that modulate light–matter interactions. Considering their complementary advantages, the concept of photonic meta-crystals is proposed. In these hybrid structures, such as hypercrystals (composed of hyperbolic metamaterials and PCs), the photonic band gap provided by PCs can be blue-shifted with more degrees of freedom, and the weak coupling of hyperbolic metamaterials to the environment can be enhanced. This review introduces photonic meta-crystals in sequence, based on the classification of electromagnetic parameters in metamaterials. Recent advances in photonic meta-crystals are also presented in the context of topological semimetals.

Keywords

Metamaterials / effective medium theory / photonic crystals / light-matter interactions / microstructures

Cite this article

Download citation ▾
Shengyu Hu, Pengyu Li, Hong Chen, Zhiwei Guo. Photonic meta-crystals. Microstructures, 2025, 5(4): 2025082 DOI:10.20517/microstructures.2024.184

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bloch F.Über die quantenmechanik der elektronen in kristallgittern.Z Physik1929;52:555-600. (in German)

[2]

Yablonovitch E.Inhibited spontaneous emission in solid-state physics and electronics.Phys Rev Lett1987;58:2059-62

[3]

John S.Strong localization of photons in certain disordered dielectric superlattices.Phys Rev Lett1987;58:2486-9

[4]

Dudley JM,Coen S.Supercontinuum generation in photonic crystal fiber.Rev Mod Phys2006;78:1135-84

[5]

Vaidya S,Cerjan A.Point-defect-localized bound states in the continuum in photonic crystals and structured fibers.Phys Rev Lett2021;127:023605

[6]

Tyumenev R,Joly NY,Novoa D.Tunable and state-preserving frequency conversion of single photons in hydrogen.Science2022;376:621-4

[7]

Bonsma-Fisher KAG,Parry C.Ultratunable quantum frequency conversion in photonic crystal fiber.Phys Rev Lett2022;129:203603

[8]

Martínez L, Wiedemann P, Zhu C, Geilen A, Stiller B. Optoacoustic cooling of traveling hypersound waves.Phys Rev Lett2024;132:023603

[9]

Morita R,De Zoysa M,Noda S.Photonic-crystal lasers with two-dimensionally arranged gain and loss sections for high-peak-power short-pulse operation.Nat Photonics2021;15:311-8

[10]

Yoshida M,Inoue T.High-brightness scalable continuous-wave single-mode photonic-crystal laser.Nature2023;618:727-32 PMCID:PMC10284696

[11]

Fushman I,Faraon A,Petroff P.Controlled phase shifts with a single quantum dot.Science2008;320:769-72

[12]

Gu T,Mcmillan JF.Regenerative oscillation and four-wave mixing in graphene optoelectronics.Nature Photon2012;6:554-9

[13]

Zangeneh-Nejad F.Topological analog signal processing.Nat Commun2019;10:2058 PMCID:PMC6499819

[14]

Wang H,Zhao Z.Compact incoherent image differentiation with nanophotonic structures.ACS Photonics2020;7:338-43

[15]

Guo C,Minkov M,Fan S.Photonic crystal slab Laplace operator for image differentiation.Optica2018;5:251

[16]

Zhou Y,Kravchenko II.Flat optics for image differentiation.Nat Photonics2020;14:316-23

[17]

Zhu D,Liu SJ.Polychromatic dual-mode imaging with structured chiral photonic crystals.Nano Lett2024;24:140-7

[18]

Zhao Q,Zhang F.Mie resonance-based dielectric metamaterials.Mater Today2009;12:60-9

[19]

Ginn JC,Peters DW.Realizing optical magnetism from dielectric metamaterials.Phys Rev Lett2012;108:097402

[20]

Rybin MV,Samusev KB,Kivshar YS.Phase diagram for the transition from photonic crystals to dielectric metamaterials.Nat Commun2015;6:10102 PMCID:PMC4686770

[21]

Tuz VR.Polaritons dispersion in a composite ferrite-semiconductor structure near gyrotropic-nihility state.J Magn Magn Mater2016;419:559-65

[22]

Kadic M,van Hecke M.3D metamaterials.Nat Rev Phys2019;1:198-210

[23]

Pendry JB,Smith DR.Controlling electromagnetic fields.Science2006;312:1780-2

[24]

Schurig D,Justice BJ.Metamaterial electromagnetic cloak at microwave frequencies.Science2006;314:977-80

[25]

Liu R,Mock JJ,Cui TJ.Broadband ground-plane cloak.Science2009;323:366-9

[26]

Shelby RA,Schultz S.Experimental verification of a negative index of refraction.Science2001;292:77-79

[27]

Valentine J,Zentgraf T.Three-dimensional optical metamaterial with a negative refractive index.Nature2008;455:376-9

[28]

Poddubny A,Belov P.Hyperbolic metamaterials.Nat Photonics2013;7:948-57

[29]

Liu ZW,Xiong Y,Zhang X.Far-field optical hyperlens magnifying sub-diffraction-limited objects.Science2007;315:1686

[30]

Wood B,Tsai DP.Directed subwavelength imaging using a layered metal-dielectric system.Phys Rev B2006;74:115116-48

[31]

Kim S,Yves S.Loss compensation and superresolution in metamaterials with excitations at complex frequencies.Phys Rev2023;13:041024

[32]

Liu Y,Zhang X.All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region.Opt Express2008;16:15439-48

[33]

Dai J,Guo Z.Tunable epsilon-and-mu-near-zero metacomposites.Adv Funct Mater2024;34:2308338

[34]

Kinsey N,Boltasseva A.Near-zero-index materials for photonics.Nat Rev Mater2023;8:742-60

[35]

Lu D,Fullerton EE.Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials.Nat Nanotechnol2014;9:48-53

[36]

Li Y,Mazur E.Dirac-like cone-based electromagnetic zero-index metamaterials.Light Sci Appl2021;10:203 PMCID:PMC8481486

[37]

Hu M,Jiang X.Double-bowl state in photonic Dirac nodal line semimetal.Light Sci Appl2021;10:170 PMCID:PMC8379272

[38]

Li J,Chan CT.Photonic band gap from a stack of positive and negative index materials.Phys Rev Lett2003;90:083901

[39]

Pendry JB.Negative refraction makes a perfect lens.Phys Rev Lett2000;85:3966-9

[40]

Liu W,Li T.Imaging with an ultrathin reciprocal lens.Phys Rev X2023;13:031039

[41]

Seddon N.Observation of the inverse Doppler effect.Science2003;302:1537-40

[42]

Kozyrev AB.Explanation of the inverse Doppler effect observed in nonlinear transmission lines.Phys Rev Lett2005;94:203902

[43]

Chen J,Jia B.Observation of the inverse Doppler effect in negative-index materials at optical frequencies.Nature Photon2011;5:239-42

[44]

Xi S,Jiang T.Experimental verification of reversed Cherenkov radiation in left-handed metamaterial.Phys Rev Lett2009;103:194801

[45]

Hummelt JS,Xu H,Shapiro MA.Coherent Cherenkov-cyclotron radiation excited by an electron beam in a metamaterial waveguide.Phys Rev Lett2016;117:237701

[46]

Duan Z,Wang Z.Observation of the reversed Cherenkov radiation.Nat Commun2017;8:14901 PMCID:PMC5376646

[47]

Guo X,Zhang S.Mid-infrared analogue polaritonic reversed Cherenkov radiation in natural anisotropic crystals.Nat Commun2023;14:2532 PMCID:PMC10156754

[48]

Alu A.Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency.IEEE Trans Antennas Propagat2003;51:2558-71

[49]

Ginis V,Soukoulis CM.Enhancing optical gradient forces with metamaterials.Phys Rev Lett2013;110:057401

[50]

Kaina N,Fink M.Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials.Nature2015;525:77-81

[51]

Long Y,Guo Z.Designing all-electric subwavelength metasources for near-field photonic routings.Phys Rev Lett2020;125:157401

[52]

Huang X,Hang ZH,Chan CT.Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials.Nat Mater2011;10:582-6

[53]

Ma H, Hui Shi J, Cheng Q, Jun Cui T. Experimental verification of supercoupling and cloaking using mu-near-zero materials based on a waveguide.Appl Phys Lett2013;103:021908

[54]

Yang Y,Qin J.Magnetically tunable zero-index metamaterials.Photon Res2023;11:1613

[55]

Yan W,Li H.Transmission-type photonic doping for high-efficiency epsilon-near-zero supercoupling.Nat Commun2023;14:6154 PMCID:PMC10547686

[56]

Reshef O,Alam MZ.Nonlinear optical effects in epsilon-near-zero media.Nat Rev Mater2019;4:535-51

[57]

Silveirinha M.Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials.eLight2024;4:59

[58]

Chu H,Liu B.A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials.Light Sci Appl2018;7:50 PMCID:PMC6107001

[59]

Liberal I,Li Y,Engheta N.Photonic doping of epsilon-near-zero media.Science2017;355:1058-62

[60]

Zhou ZH,Sun WY.Dispersion coding of ENZ media via multiple photonic dopants.Light-Sci Appl2022;11:207

[61]

Li H,Zhou Z.Performing calculus with epsilon-near-zero metamaterials.Sci Adv2022;8:eabq6198 PMCID:PMC9328691

[62]

Schulz KM,Schwaiger S.Controlling the spontaneous emission rate of quantum wells in rolled-up hyperbolic metamaterials.Phys Rev Lett2016;117:085503

[63]

Veselago VG.The electrodynamics of substances with simultaneously negative values of ε and μ.Sov Phys Usp1968;10:509-14

[64]

Shadrivov IV,Kivshar YS.Complete band gaps in one-dimensional left-handed periodic structures.Phys Rev Lett2005;95:193903

[65]

Căbuz AI,Cassagne D.Homogenization of negative-index composite metamaterials: a two-step approach.Phys Rev Lett2007;98:037403

[66]

Zhu X,Kan W,Cheng J.Acoustic cloaking by a superlens with single-negative materials.Phys Rev Lett2011;106:014301

[67]

Shi X,Jiang H.Topological description for gaps of one-dimensional symmetric all-dielectric photonic crystals.Opt Express2016;24:18580-91

[68]

Xiao M,Chan C.Surface impedance and bulk band geometric phases in one-dimensional systems.Phys Rev X2014;4:021017

[69]

Edwards B,Young ME,Engheta N.Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide.Phys Rev Lett2008;100:033903

[70]

Wang N,Chan CT.Effective medium theory for a photonic pseudospin-1/2 system.Phys Rev B2020;102:094312

[71]

Dong T,Camayd-Muñoz S.Ultra-low-loss on-chip zero-index materials.Light Sci Appl2021;10:10 PMCID:PMC7791033

[72]

Jiang H,Yu K.Experimental verification of loss-induced field enhancement and collimation in anisotropic μ-near-zero metamaterials.Phys Rev B2015;91:045302

[73]

Li H,He Y.Geometry-independent antenna based on epsilon-near-zero medium.Nat Commun2022;13:3568 PMCID:PMC9217913

[74]

Hwang JS,Raman AP.Simultaneous control of spectral and directional emissivity with gradient epsilon-near-zero inas photonic structures.Adv Mater2023;35:e2302956

[75]

Liu YY,Qin X.High-permittivity ceramics enabled highly homogeneous zero-index metamaterials for high-directivity antennas and beyond.eLight2024;4:59

[76]

Zhou M,Yu ZF.Extraordinarily large optical cross section for localized single nanoresonator.Phys Rev Lett2015;115:023903

[77]

Suchowski H,Wong ZJ,Yin XB.Phase mismatch–free nonlinear propagation in optical zero-index materials.Science2013;342:1223-6

[78]

Liu R,Hand T.Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies.Phys Rev Lett2008;100:023903

[79]

Chen MLN,Chan HC,Ma S.Anomalous electromagnetic tunneling in bianisotropic ϵ-μ-zero media.Phys Rev Lett2022;129:123901

[80]

Luo J,Lai Y.Electromagnetic impurity-immunity induced by parity-time symmetry.Phys Rev X2018;8:031035

[81]

Wang C,Hu H.Superscattering of light in refractive-index near-zero environments.PIER2020;168:15-23

[82]

Argyropoulos C,D’aguanno G,Alù A.Boosting optical nonlinearities in ε-near-zero plasmonic channels.Phys Rev B2012;85:045129

[83]

von Neumann J, Wigner EP. Über merkwürdige diskrete eigenwerte. In: Wightman AS, editor. The Collected Works of Eugene Paul Wigner. Berlin: Springer Berlin Heidelberg; 1993. pp. 291-3.

[84]

Tang HN,Camayd-Muñoz SA,Jia DC.Low-loss zero-index materials.Nano lett2021;21:914-20

[85]

Minkov M,Xiao M.Zero-index bound states in the continuum.Phys Rev Lett2018;121:263901

[86]

Monticone F,Den Hollander W,Alù A.Trapping light in plain sight: embedded photonic eigenstates in zero-index metamaterials.Laser Photonics Rev2018;12:1700220

[87]

Zanganeh E,Kosulnikov S.Extreme metasurfaces enable targeted and protected wireless energy transfer.Adv Mater Technol2023;8:2202133

[88]

Sakotic Z,Alú A.Topological scattering singularities and embedded eigenstates for polarization control and sensing applications.Photon Res2021;9:1310-23

[89]

Liu M,Zeng Y,Zhao C.Evolution and nonreciprocity of loss-induced topological phase singularity pairs.Phys Rev Lett2021;127:266101

[90]

Liu M,Wan WJ.Broadband mid-infrared non-reciprocal absorption using magnetized gradient epsilon-near-zero thin films.Nat Mater2023;22:1196

[91]

Lio GE,Ritacco T.Leveraging on ENZ Metamaterials to achieve 2D and 3D hyper-resolution in two-photon direct laser writing.Adv Mater2021;33:e2008644

[92]

Ferraro A,Bruno MDL.Hybrid camouflaged anticounterfeiting token in a paper substrate.Adv Mater Technol2023;8:2201010

[93]

Lio GE,Zappone B.Unlocking optical coupling tunability in epsilon-near-zero metamaterials through liquid crystal nanocavities.Adv Opt Mater2024;12:2302483

[94]

Lio GE,Kowerdziej R,Wang Z.Engineering fano-resonant hybrid metastructures with ultra-high sensing performances.Adv Opt Mater2023;11:2203123

[95]

Lee D,Hu G.Hyperbolic metamaterials: fusing artificial structures to natural 2D materials.eLight2022;2:8

[96]

Álvarez-Pérez G,Errea I.Infrared permittivity of the biaxial van der waals semiconductor α-MoO3 from near- and far-field correlative studies.Adv Mater2020;32:e1908176

[97]

Duan J,Lanza C.Multiple and spectrally robust photonic magic angles in reconfigurable α-MoO3 trilayers.Nat Mater2023;22:867-72.

[98]

Passler NC,Hu G.Hyperbolic shear polaritons in low-symmetry crystals.Nature2022;602:595-600 PMCID:PMC8866127

[99]

Matson J,Ni X.Controlling the propagation asymmetry of hyperbolic shear polaritons in beta-gallium oxide.Nat Commun2023;14:5240 PMCID:PMC10462611

[100]

Jacob Z,Naik GV,Narimanov EE.Engineering photonic density of states using metamaterials.Appl Phys B2010;100:215-8

[101]

Yang X,Rho J,Zhang X.Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws.Nature Photon2012;6:450-4

[102]

High AA,Dibos A.Visible-frequency hyperbolic metasurface.Nature2015;522:192-6

[103]

Yao J,Liu Y.Optical negative refraction in bulk metamaterials of nanowires.Science2008;321:930.

[104]

Narimanov EE.Photonic hypercrystals.Phys Rev X2014;4:041014

[105]

Guan F,Zeng K.Overcoming losses in superlenses with synthetic waves of complex frequency.Science2023;381:766-71

[106]

Galfsky T,Narimanov EE.Photonic hypercrystals for control of light-matter interactions.Proc Natl Acad Sci U S A2017;114:5125-9 PMCID:PMC5441758

[107]

Galfsky T,Considine CR.Broadband enhancement of spontaneous emission in two-dimensional semiconductors using photonic hypercrystals.Nano Lett2016;16:4940-5

[108]

Xue C,Jiang H.Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials.Phys Rev B2016;93:125310

[109]

Hu S,Guo Z.Omnidirectional nonreciprocal absorber realized by the magneto-optical hypercrystal.Opt Express2022;30:12104-19

[110]

Hasan MZ.Colloquium: Topological insulators.Rev Mod Phys2010;82:3045-67

[111]

Ozawa T,Amo A.Topological photonics.Rev Mod Phys2019;91:015006

[112]

Wang Z,Joannopoulos JD.Observation of unidirectional backscattering-immune topological electromagnetic states.Nature2009;461:772-6

[113]

Khanikaev AB,Tse WK,MacDonald AH.Photonic topological insulators.Nat Mater2013;12:233-9

[114]

Rechtsman MC,Plotnik Y.Photonic Floquet topological insulators.Nature2013;496:196-200

[115]

Gao W,Lawrence M,Béri B.Photonic Weyl degeneracies in magnetized plasma.Nat Commun2016;7:12435 PMCID:PMC4987518

[116]

Liu T,Zhang Y.Finite barrier bound state.Light Sci Appl2024;13:69 PMCID:PMC10920789

[117]

Yang B,Zhang RX.Momentum space toroidal moment in a photonic metamaterial.Nat Commun2021;12:1784 PMCID:PMC7979886

[118]

Wang D,Zhang RY.Straight photonic nodal lines with quadrupole berry curvature distribution and superimaging “Fermi Arcs”.Phys Rev Lett2022;129:043602

[119]

Wang D,Yang Q,Zhang ZQ.Intrinsic triple degeneracy point bounded by nodal surfaces in chiral photonic crystal.Phys Rev Lett2023;130:203802

[120]

Deng WM,Li MY.Ideal nodal rings of one-dimensional photonic crystals in the visible region.Light Sci Appl2022;11:134 PMCID:PMC9098453

[121]

Chen Z,Deng W,Jiang S.Dual-polarization topological interface states in ridge photonic crystals.ACS Photonics2024;11:2351-8

[122]

Hu S,Liu W,Chen H.Hyperbolic metamaterial empowered controllable photonic Weyl nodal line semimetals.Nat Commun2024;15:2773 PMCID:PMC10981722

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/