Manipulating stable four-electron zinc-iodine batteries via the introduction of diamine ligand sites

Qijiayi Guo , Chao Qiu , Yang Zhang , Jing Li , Zhixiang Chen , Fulong Li , Weifeng Liu , Xinlong Tian , Xiaodong Shi

Microstructures ›› 2025, Vol. 5 ›› Issue (4) : 2025078

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (4) :2025078 DOI: 10.20517/microstructures.2024.183
Research Article

Manipulating stable four-electron zinc-iodine batteries via the introduction of diamine ligand sites

Author information +
History +
PDF

Abstract

Zinc-iodine batteries (ZIBs) are considered a promising energy storage system, but are still plagued by low energy density and rampant side reactions originating from active H2O molecules in the liquid electrolyte. Realizing the coupled redox reactions within I-/I0/I+ species, i.e., four-electron transfer reactions, is deemed an effective strategy for boosting the energy density of ZIBs, which is mainly blocked by the rapid hydrolysis of nucleophilic I+ ions. To address these issues, urea with diamine ligand sites (-NH2) was introduced into the liquid electrolyte [urea electrolyte (UE)] to achieve durable four-electron ZIBs. As demonstrated by the spectroscopic characterization results, -NH2 groups can bundle the active H2O molecules by reconfiguring the hydrogen bonds, and provide additional electrophilic ligand sites for I+ ions. Based on these advantages, both the side reactions on the Zn anode and the I+ hydrolysis reaction on the I2@AC cathode are remarkably mitigated, and four-electron transfer is realized at low zinc salt concentrations. As a result, the optimized UE electrolyte effectively stabilizes the zinc metal anode, and endows the I2@AC cathode with a high reversible capacity of 187.2 mAh g-1 after 250 cycles at 1 A g-1. The disclosed intermolecular force modulation strategy in this work will offer a comprehensive perspective for the future design of liquid electrolytes for high-energy-density ZIBs.

Keywords

Zinc-iodine batteries / four electron transfer / urea / hydrolysis reaction of I+ ions / hydrogen bonds

Cite this article

Download citation ▾
Qijiayi Guo, Chao Qiu, Yang Zhang, Jing Li, Zhixiang Chen, Fulong Li, Weifeng Liu, Xinlong Tian, Xiaodong Shi. Manipulating stable four-electron zinc-iodine batteries via the introduction of diamine ligand sites. Microstructures, 2025, 5(4): 2025078 DOI:10.20517/microstructures.2024.183

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen M,Miao Z.Strong metal-support interaction of Pt-based electrocatalysts with transition metal oxides/nitrides/carbides for oxygen reduction reaction.Microstructures2023;3:2023025

[2]

Wan Y,Chao D,Zhao D.Recent advances in hard carbon anodes with high initial Coulombic efficiency for sodium-ion batteries.Nano Mater Sci2023;5:189-201

[3]

Geng X,He X.Challenges and strategies on interphasial regulation for aqueous rechargeable batteries.Adv Energy Mater2024;14:2304094

[4]

Zhong Y,Zhao L,Shao Z.Optimization of two-dimensional solid-state electrolyte-anode interface by integrating zinc into composite anode with dual-conductive phases.Green Carbon2024;2:94-100

[5]

Yang T,Liu Q.Cathode host engineering for non-lithium (Na, K and Mg) sulfur/selenium batteries: a state-of-the-art review.Nano Mater Sci2023;5:119-40

[6]

Khan Z,Crispin X.Does water-in-salt electrolyte subdue issues of Zn batteries?.Adv Mater2023;35:e2300369

[7]

Du D,Lan N.Understanding and mastering multiphysical fields toward dendrite-free aqueous zinc batteries.Adv Energy Mater2024;14:2403153

[8]

Li H,Hou R.Recent advances in zinc-ion dehydration strategies for optimized Zn-metal batteries.Chem Soc Rev2024;53:7742-83

[9]

Li D,Deng T,Wang C.Design of a solid electrolyte interphase for aqueous Zn batteries.Angew Chem Int Ed2021;60:13035-41

[10]

Wu M,Zhang F,Li Y.Highly reversible and stable Zn metal anodes realized using a trifluoroacetamide electrolyte additive.Energy Environ Sci2024;17:619-29

[11]

Cao L,Hu E.Solvation structure design for aqueous Zn metal batteries.J Am Chem Soc2020;142:21404-9

[12]

Zhang Q,Lu Y.Modulating electrolyte structure for ultralow temperature aqueous zinc batteries.Nat Commun2020;11:4463 PMCID:PMC7479594

[13]

Yan L,Kang Q.Iodine conversion chemistry in aqueous batteries: challenges, strategies, and perspectives.Energy Storage Mater2023;54:339-65

[14]

Li X,Huang Z.Activating the I0/I+ redox couple in an aqueous I2-Zn battery to achieve a high voltage plateau.Energy Environ Sci2021;14:407-13

[15]

Zou Y,Du Q.A four-electron Zn-I2 aqueous battery enabled by reversible I-/I2/I+ conversion.Nat Commun2021;12:170 PMCID:PMC7794333

[16]

Wang M,Sajid M.Bidentate coordination structure facilitates high-voltage and high-utilization aqueous Zn-I2 batteries.Angew Chem Int Ed2024;136:e202404784

[17]

Fialkov YA.Interhalogen compounds as complex-formers.Russ Chem Bull1955;3:847-55

[18]

Whitaker R,Hickam C.Iodine monochloride and iodine trichloride complexes with heterocyclic amines.J Inorg Nucl Chem1961;17:254-6

[19]

Zong W,Zhang C.Dynamical Janus interface design for reversible and fast-charging Zinc-iodine battery under extreme operating conditions.J Am Chem Soc2024;146:21377-88

[20]

Tian Z,Shi Z.The role of hydrogen bonding in aqueous batteries: correlating molecular-scale interactions with battery performance.ACS Energy Lett2024;9:5179-205

[21]

Sheng D,Yang Z.Hydrogen bond network regulation in electrolyte structure for Zn-based aqueous batteries.Adv Funct Mater2024;34:2402014.

[22]

Hao J,Wu H,Davey K.Advanced cathodes for aqueous Zn batteries beyond Zn2+ intercalation.Chem Soc Rev2024;53:4312-32

[23]

Philbrick FA.The hydrolysis of iodine monochloride.J Am Chem Soc1934;56:1257-9

[24]

Li D,Cheng L.A MXene modulator enabled high-loading iodine composite cathode for stable and high-energy-density Zn-I2 battery.Adv Energy Mater2025;15:2404426

[25]

Wang Z,Burrow JN.Urea-modified ternary aqueous electrolyte with tuned intermolecular interactions and confined water activity for high-stability and high-voltage Zinc-ion batteries.Adv Funct Mater2023;33:2304791

[26]

Zhang R,Vongsvivut J.Weakly solvating aqueous-based electrolyte facilitated by a soft co-solvent for extreme temperature operations of zinc-ion batteries.Energy Environ Sci2024;17:4569-81

[27]

Tao L,Qu K,Miller MB.Highly solubilized urea as effective proton donor-acceptors for durable zinc-ion storage beyond single-anion selection criteria.Small2024;20:e2311205

[28]

Tan H,Yuan G.Polydentate ligand stabilizes electrolyte and interface layer for anti-corrosion and selective-deposited Zn metal aqueous batteries.Adv Funct Materials

[29]

Hao J,Ye C.Boosting Zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents.Angew Chem Int Ed2021;60:7366-75

[30]

Tan Y,Li H.Water molecular activity management towards stable Zn anodes.Sci China Chem2024;67:4085-97

[31]

Zhang J,Li L.Nonepitaxial electrodeposition of (002)-textured Zn anode on textureless substrates for dendrite-free and hydrogen evolution-suppressed Zn batteries.Adv Mater2023;35:e2300073

[32]

Aslam MK,Hussain T.How to avoid dendrite formation in metal batteries: innovative strategies for dendrite suppression.Nano Energy2021;86:106142

[33]

Fu Q,Liu X.Dynamic imine chemistry enables paintable biogel electrolytes to shield on-body zinc-ion batteries from interfacial interference.J Am Chem Soc2024;146:34950-61

[34]

Xu X,Li M.A novel bifunctional Zinc gluconate electrolyte for a stable Zn anode.Chem Eng J2023;454:140364

[35]

Bu F,Zhou W.Reviving Zn0 dendrites to electroactive Zn2+ by mesoporous MXene with active edge sites.J Am Chem Soc2023;145:24284-93

[36]

Ma Y,Liu Y.Multiphilic-Zn group “adhesion” strategy toward highly stable and reversible zinc anodes.Energy Storage Mater2023;63:103032

[37]

Yan T,Li J.Constructing a topologically adaptable solid electrolyte interphase for a highly reversible zinc anode.ACS Nano2024;18:3752-62

[38]

Li W,Liu W.Ternary eutectic electrolytes attune the electrode/electrolyte interphase layer toward long-life zinc ion batteries.Energy Storage Mater2024;65:103103

[39]

Chen R,Guan C.Rational design of an in-situ polymer-inorganic hybrid solid electrolyte interphase for realising stable Zn metal anode under harsh conditions.Angew Chem Int Ed2024;63:e202401987 PMCID:PMC11497294

[40]

Li X,Chen Z.Two-electron redox chemistry enabled high-performance iodide-ion conversion battery.Angew Chem Int Ed2022;61:e202113576

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/