The challenge and opportunity of organic semiconductors in photocatalysis

Rui Lin , Chou-Hung Hsueh , Hongde Yu , Thomas Heine , Chen Chen , Toru Murayama

Microstructures ›› 2025, Vol. 5 ›› Issue (4) : 2025070

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (4) :2025070 DOI: 10.20517/microstructures.2024.175
Review

The challenge and opportunity of organic semiconductors in photocatalysis

Author information +
History +
PDF

Abstract

Employing organic semiconductors to drive photocatalytic processes for chemical fuel production and pollutant degradation is a viable pathway for tackling the energy crisis and environmental pollution. In this review, we summarize the development of organic semiconductor photocatalysis so far and propose the future vision of organic semiconductors as state-of-the-art photocatalysts in practical applications. Compared to inorganic semiconductors, organic semiconductors display a large absorption coefficient and easily tunable topological and electronic structures, which set them apart from ordinary inorganic photocatalysts. However, the chemical instability, high exciton dissociation energy and low charge carrier mobility of organic semiconductors are the major obstacles to the improvement of their photocatalytic activity. Obviously, the opportunity and challenge coexist in the development of organic semiconductor photocatalysis. In light of this, we systematically compare the merits and shortcomings of organic semiconductors for heterogeneous photocatalysis and enumerate some feasible approaches to overcoming the bottlenecks hindering their photocatalytic performance. By carefully considering factors such as conjugated linkage types, building blocks, and electron donor-acceptor structures, highly reactive and stable organic semiconductor photocatalysts can be developed.

Keywords

Organic semiconductors / heterogeneous photocatalysis / exciton dissociation and diffusion / charge carrier transport / chemical stability

Cite this article

Download citation ▾
Rui Lin, Chou-Hung Hsueh, Hongde Yu, Thomas Heine, Chen Chen, Toru Murayama. The challenge and opportunity of organic semiconductors in photocatalysis. Microstructures, 2025, 5(4): 2025070 DOI:10.20517/microstructures.2024.175

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fujishima A.Electrochemical photolysis of water at a semiconductor electrode.Nature1972;238:37-8

[2]

Lang X,Zhao J.Heterogeneous visible light photocatalysis for selective organic transformations.Chem Soc Rev2014;43:473-86

[3]

Song H,Wang S.Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water.J Am Chem Soc2019;141:20507-15

[4]

Yoshino S,Yamaguchi Y,Kudo A.CO2 reduction using water as an electron donor over heterogeneous photocatalysts aiming at artificial photosynthesis.Acc Chem Res2022;55:966-77 PMCID:PMC8988292

[5]

Guo Q,Ma Z.Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges.Adv Mater2019;31:1901997

[6]

Abe R,Domen K.Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation.J Am Chem Soc2010;132:11828-9

[7]

Zhao L,Wang S.Engineering Co single atoms in ultrathin BiOCl nanosheets for boosted CO2 photoreduction.Adv Funct Mater2025;35:2416346

[8]

Zong X,Wu G.Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as Cocatalyst under visible light irradiation.J Am Chem Soc2008;130:7176-7

[9]

Takanabe, K. Photocatalytic water splitting: quantitative approaches toward photocatalyst by design. ACS Catal. 2017, 7, 8006-22.

[10]

Zhang M,Ma W.Visible-light-induced aerobic oxidation of alcohols in a coupled photocatalytic system of dye-sensitized TiO2 and TEMPO.Angew Chem Int Ed2008;47:9730-3

[11]

Wang C,Ohodnicki P,Matranga C.Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts.J Mater Chem2011;21:13452-7

[12]

Asahi R,Ohwaki T,Taga Y.Visible-light photocatalysis in nitrogen-doped titanium oxides.Science2001;293:269-71

[13]

Jiang Y,Guo J.Vacancy engineering in 2D transition metal chalcogenide photocatalyst: structure modulation, function and synergy application.Small2024;20:2310396

[14]

Niu, M.; Huang, F.; Cui, L.; Huang, P.; Yu, Y.; Wang, Y. Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/alpha-Fe2O3 semiconductor nanoheterostructures. ACS Nano 2010, 4, 681-8.

[15]

Shi, R.; Zhao, Y.; Waterhouse, G. I. N.; Zhang, S.; Zhang, T. Defect engineering in photocatalytic nitrogen fixation. ACS Catal. 2019, 9, 9739-50.

[16]

Lin R,Xiong Y.Quantitative study of charge carrier dynamics in well-defined WO3 nanowires and nanosheets: insight into the crystal facet effect in photocatalysis.J Am Chem Soc2018;140:9078-82

[17]

Lin, R.; Chen, H.; Cui, T.; et al. Optimization of p-type Cu2O nanocube photocatalysts based on electronic effects. ACS Catal. 2023, 13, 11352-61.

[18]

Ran J,Qiao SZ.Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities.Adv Mater2018;30:1704649

[19]

Ou W,Shen J,Li YY.Plasmonic metal nanostructures: concepts, challenges and opportunities in photo-mediated chemical transformations.iScience2021;24:101982 PMCID:PMC7820137

[20]

Zhou L,Xia Y.Plasmon-induced hot electrons in nanostructured materials: generation, collection, and application to photochemistry.Chem Rev2024;124:8597-619 PMCID:PMC11273350

[21]

Lin, R.; Fan, D.; Berger, L. M.; et al. Light tuning CO/H2 composition on Ag: unraveling CO2 mass transfer and electron-phonon coupling in plasmon-enhanced electrocatalysis. Nano Res. 2025, 18, 94907042.

[22]

Fu Y,Chen Y.An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction.Angew Chem Int Ed2012;51:3364-7

[23]

Navalón S,Álvaro M,García H.Metal-organic frameworks as photocatalysts for solar-driven overall water splitting.Chem Rev2023;123:445-90 PMCID:PMC9837824

[24]

Wang Q,Al-Enizi AM,Ma S.Recent advances in MOF-based photocatalysis: environmental remediation under visible light.Inorg Chem Front2020;7:300-39

[25]

Silva CG,García H.Metal-organic frameworks as semiconductors.J Mater Chem2010;20:3141-56

[26]

Alvaro M,Ferrer B,Garcia H.Semiconductor behavior of a metal-organic framework (MOF).Chem Eur J2007;13:5106-12

[27]

Kippelen, B.; Brédas, J. L. Organic photovoltaics. Energy Environ. Sci. 2009, 2, 251-61.

[28]

Ma, Z.; Zhao, B.; Gao, H.; Gong, Y.; Yu, R.; Tan, Z. Recent advances of crosslinkable organic semiconductors in achieving solution-processed and stable optoelectronic devices. J. Mater. Chem. A 2022, 10, 18542-76.

[29]

Jagoo Z,Jurchescu OD.Efficiency enhancement of organic thin-film phototransistors due to photoassisted charge injection.Appl Phys Lett2021;119:073302

[30]

Fu J,Liu H.19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition.Nat Commun2023;14:1760 PMCID:PMC10063688

[31]

Chen, L. X. Organic solar cells: recent progress and challenges. ACS Energy Lett. 2019, 4, 2537-9.

[32]

Brütting, W. Physics of Organic Semiconductors; Wiley-VCH Verlag GmbH & Co. KGaA, 2005.

[33]

Kuramochi Y,Satake A.Photocatalytic CO2 reduction mediated by electron transfer via the excited triplet state of Zn(II) porphyrin.J Am Chem Soc2020;142:705-9

[34]

Li L,Cai Z,Yu L.Donor-acceptor porous conjugated polymers for photocatalytic hydrogen production: the importance of acceptor comonomer.Macromolecules2016;49:6903-9

[35]

Ong WJ,Ng YH,Chai SP.Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?.Chem Rev2016;116:7159-329

[36]

Ding SY.Covalent organic frameworks (COFs): from design to applications.Chem Soc Rev2013;42:548-68

[37]

Huang F.Introduction: supramolecular chemistry.Chem Rev2015;115:6999-7000

[38]

Vallavoju N.Supramolecular photocatalysis: combining confinement and non-covalent interactions to control light initiated reactions.Chem Soc Rev2014;43:4084-101

[39]

Dumele O,Passarelli JV.Supramolecular energy materials.Adv Mater2020;32:1907247

[40]

Nikoloudakis E,Charalambidis G,Ince M.Porphyrins and phthalocyanines as biomimetic tools for photocatalytic H2 production and CO2 reduction.Chem Soc Rev2022;51:6965-7045

[41]

Lopes, J. M. S.; Batista, A. A.; Araujo, P. T.; Neto, N. M. B. Supramolecular porphyrin as an improved photocatalyst for chloroform decomposition. RSC Adv. 2023, 13, 5473-82. PMCID:PMC9924222

[42]

Würthner F.Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures.Chem Commun2004;40:1564-79

[43]

Sun Y,Zhu Y.Deep degradation of pollutants by perylene diimide supramolecular photocatalyst with unique Bi-planar π-π conjugation.Chem Eng J2022;438:135667

[44]

Kong K,Chu Y.A self-assembled perylene diimide nanobelt for efficient visible-light-driven photocatalytic H2 evolution.Chem Commun2019;55:8090-3

[45]

Li, Y.; Zhang, X.; Liu, D. Recent developments of perylene diimide (PDI) supramolecular photocatalysts: a review. J. Photoch. Photobio. C 2021, 48, 100436.

[46]

Tamaki, Y.; Ishitani, O. Supramolecular photocatalysts for the reduction of CO2. ACS Catal. 2017, 7, 3394-409.

[47]

O’Neill JS,Brandon MP.Design components of porphyrin-based photocatalytic hydrogen evolution systems: a review.Coord Chem Rev2022;467:214599

[48]

Wang, J.; Zhong, Y.; Wang, L.; et al. Morphology-controlled synthesis and metalation of porphyrin nanoparticles with enhanced photocatalytic performance. Nano Lett. 2016, 16, 6523-8.

[49]

Zhang, N.; Wang, L.; Wang, H.; et al. Self-assembled one-dimensional porphyrin nanostructures with enhanced photocatalytic hydrogen generation. Nano Lett. 2018, 18, 560-6.

[50]

Moon HS.Noble-metal free photocatalytic hydrogen generation of CuPc/TiO2 nanoparticles under visible-light irradiation.Appl Surf Sci2020;530:147215

[51]

Genc, E.; Yüzer, A. C.; Yanalak, G.; et al. The effect of central metal in phthalocyanine for photocatalytic hydrogen evolution via artificial photosynthesis. Renew. Energy 2020, 162, 1340-6.

[52]

Han J,Chang R,Yan X.Photooxidase-mimicking nanovesicles with superior photocatalytic activity and stability based on amphiphilic amino acid and phthalocyanine co-assembly.Angew Chem Int Ed2019;58:2000-4

[53]

Müllen K.Conjugated polymers: where we come from, where we stand, and where we might go.Macromol Chem Phys2023;224:2200337

[54]

Banerjee T,Kröger J,Lotsch BV.Polymer photocatalysts for solar-to-chemical energy conversion.Nat Rev Mater2021;6:168-90

[55]

Yanagida S,Mizumoto K,Yoshino K.Poly(p-phenylene)-catalysed photoreduction of water to hydrogen.J Chem Soc Chem Commun1985;8:474-5

[56]

Sprick, R. S.; Aitchison, C.M.; Berardo, E.; et al. Maximising the hydrogen evolution activity in organic photocatalysts by co-polymerisation. J. Mater. Chem. A 2018, 6, 11994-2003.

[57]

Chang CL,Ting LY.Main-chain engineering of polymer photocatalysts with hydrophilic non-conjugated segments for visible-light-driven hydrogen evolution.Nat Commun2022;13:5460 PMCID:PMC9482619

[58]

Diao R,Yang Z,Kong K.Significant improvement of photocatalytic hydrogen evolution of diketopyrrolopyrrole-based donor-acceptor conjugated polymers through side-chain engineering.Polym Chem2019;10:6473-80

[59]

Hu Z,Zhang X.Conjugated polymers with oligoethylene glycol side chains for improved photocatalytic hydrogen evolution.iScience2019;13:33-42 PMCID:PMC6393733

[60]

Lyons, R. J.; Yang, Y.; McQueen, E.; et al. Polymer photocatalysts with side chain induced planarity for increased activity for sacrificial hydrogen production from water. Adv. Energy Mater. 2024, 14, 2303680.

[61]

Anus A.The synthesis and key features of 3D carbon nitrides (C3N4) used for CO2 photoreduction.Chem Eng J2024;486:150213

[62]

Chu, S.; Wang, Y.; Guo, Y.; et al. Band structure engineering of carbon nitride: in search of a polymer photocatalyst with high photooxidation property. ACS Catal. 2013, 3, 912-9.

[63]

Wang X,Thomas A.A metal-free polymeric photocatalyst for hydrogen production from water under visible light.Nat Mater2009;8:76-80

[64]

Ding Z,Antonietti M.Synthesis of transition metal-modified carbon nitride polymers for selective hydrocarbon oxidation.ChemSusChem2011;4:274-81

[65]

Harikrishnan, L.; Rajaram, M.; Natarajan, A.; Rajaram, A. Boron-doped exfoliated g-C3N4 nanosheet-based phosphors for white light-emission and photocatalytic degradation. ACS Appl. Nano Mater. 2023, 6, 16947-59.

[66]

Liu G,Sun C.Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4.J Am Chem Soc2010;132:11642-8

[67]

Zhu, Y. P.; Ren, T. Z.; Yuan, Z. Y. Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl. Mater. Interfaces 2015, 7, 16850-6.

[68]

Naveed, A. B.; Javaid, A.; Zia, A.; et al. TiO2/g-C3N4 binary composite as an efficient photocatalyst for biodiesel production from jatropha oil and dye degradation. ACS Omega 2023, 8, 2173-82. PMCID:PMC9850785

[69]

Côté AP,Ockwig NW,Matzger AJ.Porous, crystalline, covalent organic frameworks.Science2005;310:1166-70

[70]

Waller PJ,Yaghi OM.Chemistry of covalent organic frameworks.Acc Chem Res2015;48:3053-63

[71]

Prakash K,Mobin SM.A review on covalent organic frameworks: exploration of their growing potential as porous materials in photocatalytic applications.Inorg Chem Front2024;11:6711-52

[72]

Haase F.Solving the COF trilemma: towards crystalline, stable and functional covalent organic frameworks.Chem Soc Rev2020;49:8469-500

[73]

Yin Y,Zhou X.Ultrahigh-surface area covalent organic frameworks for methane adsorption.Science2024;386:693-6

[74]

Wan S,Asano A.Covalent organic frameworks with high charge carrier mobility.Chem Mater2011;23:4094-7

[75]

Chen Y.Photocatalysis with covalent organic frameworks.Acc Chem Res2024;57:3182-93

[76]

Yang, Q.; Luo, M.; Liu, K.; Cao, H.; Yan, H. Covalent organic frameworks for photocatalytic applications. Appl. Catal. B: Environ. 2020, 276, 119174.

[77]

Yang, J.; Chen, Z.; Zhang, L.; Zhang, Q. Covalent organic frameworks for photocatalytic reduction of carbon dioxide: a review. ACS Nano 2024, 18, 21804-35.

[78]

Wang H,Wang Z.Covalent organic framework photocatalysts: structures and applications.Chem Soc Rev2020;49:4135-65

[79]

Stegbauer L,Lotsch BV.A hydrazone-based covalent organic framework for photocatalytic hydrogen production.Chem Sci2014;5:2789-93

[80]

Gunawan, M.; Zhou, S.; Gunawan, D.; et al. Ferroelectric materials as photoelectrocatalysts: photoelectrode design rationale and strategies. J. Mater. Chem. A 2025, 13, 1612-40.

[81]

Yao, L.; Rahmanudin, A.; Guijarro, N.; Sivula, K. Organic semiconductor based devices for solar water splitting. Adv. Energy Mater. 2018, 8, 1802585.

[82]

McEvoy, A.; Markvart, T.; Castaner, L. Practical Handbook of Photovoltaics: Fundamentals and Applications, 2nd ed.; Academic Press, 2012.

[83]

Maeda K,Hara M.GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting.J Am Chem Soc2005;127:8286-7

[84]

Bronstein H,Schroeder BC.The role of chemical design in the performance of organic semiconductors.Nat Rev Chem2020;4:66-77

[85]

Wang SJ,Talnack F.Band structure engineering in highly crystalline organic semiconductors.Chem Mater2023;35:7867-74

[86]

Ortstein K,Hambsch M.Band gap engineering in blended organic semiconductor films based on dielectric interactions.Nat Mater2021;20:1407-13

[87]

Wang, Y.; Silveri, F.; Bayazit, M. K.; et al. Bandgap engineering of organic semiconductors for highly efficient photocatalytic water splitting. Adv. Energy Mater. 2018, 8, 1801084.

[88]

Yu, H.; Wang, D. Suppressing the excitonic effect in covalent organic frameworks for metal-free hydrogen generation. JACS Au 2022, 2, 1848-56. PMCID:PMC9400042

[89]

Van der Holst, J. J. M.; Van Oost, F. W. A.; Coehoorn, R.; Bobbert, P. A. Electron-hole recombination in disordered organic semiconductors: validity of the Langevin formula. Phys. Rev. B 2009, 80, 235202.

[90]

Grinolds, D. D. W.; Brown, P. R.; Harris, D. K.; Bulovic, V.; Bawendi, M. G. Quantum-dot size and thin-film dielectric constant: precision measurement and disparity with simple models. Nano Lett. 2015, 15, 21-6.

[91]

Wang C,Pejić S.High dielectric constant semiconducting poly(3-alkylthiophene)s from side chain modification with polar sulfinyl and sulfonyl groups.Macromolecules2018;51:9368-81

[92]

Armin, A.; Stoltzfus, D. M.; Donaghey, J. E.; et al. Engineering dielectric constants in organic semiconductors. J. Mater. Chem. C 2017, 5, 3736-47.

[93]

La DD,Le PC.Self-assembly of monomeric porphyrin molecules into nanostructures: self-assembly pathways and applications for sensing and environmental treatment.Environ Technol Innov2023;29:103019

[94]

Wang Z,Medforth CJ.Self-assembly and self-metallization of porphyrin nanosheets.J Am Chem Soc2007;129:2440-1

[95]

Wang Z,Shelnutt JA.Porphyrin nanotubes by ionic self-assembly.J Am Chem Soc2004;126:15954-5

[96]

Lee JSM.Advances in conjugated microporous polymers.Chem Rev2020;120:2171-214 PMCID:PMC7145355

[97]

Liu, L.; Kochman, M. A.; Xu, Y.; Zwijnenburg, M. A.; Cooper, A. I.; Sprick, R. S. Acetylene-linked conjugated polymers for sacrificial photocatalytic hydrogen evolution from water. J. Mater. Chem. A 2021, 9, 17242-8.

[98]

Geng K,Liu R.Covalent organic frameworks: design, synthesis, and functions.Chem Rev2020;120:8814-933

[99]

Gong YN,Jiang HL.Covalent organic frameworks for photocatalysis: synthesis, structural features, fundamentals and performance.Coord Chem Rev2023;475:214889

[100]

Huang, H.; Jiang, L.; Yang, J.; et al. Synthesis and modification of ultrathin g-C3N4 for photocatalytic energy and environmental applications. Renew. Sustain. Energy Rev. 2023, 173, 113110.

[101]

Cao S,Yu J.Polymeric photocatalysts based on graphitic carbon nitride.Adv Mater2015;27:2150-76

[102]

Rousseva, S. Organic semiconductors with increased dielectric constants. Ph.D. Dissertation, University of Groningen, Groningen, Netherlands, 2022. https://doi.org/10.33612/diss.254084459 (assessed 2025-05-20)

[103]

Bertrandie J,De Castro CSP.The energy level conundrum of organic semiconductors in solar cells.Adv Mater2022;34:2202575

[104]

Hughes MP,Ran NA,Bazan GC.Determining the dielectric constants of organic photovoltaic materials using impedance spectroscopy.Adv Funct Mater2018;28:1801542

[105]

Zhu L,Guo Y,Yi Y.Small exciton binding energies enabling direct charge photogeneration towards low-driving-force organic solar cells.Angew Chem Int Ed2021;60:15348-53

[106]

Liu X,Honarfar A,Zheng K.Unveiling excitonic dynamics in high-efficiency nonfullerene organic solar cells to direct morphological optimization for suppressing charge recombination.Adv Sci2019;6:1802103 PMCID:PMC6468965

[107]

de Clercq, D. M.; Yang, J.; Hanif, M.; et al. Exciton dissociation, charge transfer, and exciton trapping at the MoS2/organic semiconductor interface. J. Phys. Chem. C 2023, 127, 11260-7.

[108]

Sneyd AJ,Paleček D.Efficient energy transport in an organic semiconductor mediated by transient exciton delocalization.Sci Adv2021;7:eabh4232 PMCID:PMC8336960

[109]

Brédas JL,Coropceanu V.Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: a molecular picture.Chem Rev2004;104:4971-5004

[110]

Ma D,Zou Y,Shi JW.The progress of g-C3N4 in photocatalytic H2 evolution: from fabrication to modification.Coord Chem Rev2024;500:215489

[111]

Jiang J,Hu C.A comparison study of alkali metal-doped g-C3N4 for visible-light photocatalytic hydrogen evolution.Chin J Catal2017;38:1981-9

[112]

Zhang J,Sun RQ.A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions.Angew Chem Int Ed2012;51:10145-9

[113]

Hou Y,Zhang J.Layered nanojunctions for hydrogen-evolution catalysis.Angew Chem Int Ed2013;52:3621-5

[114]

He F,Zhou Y,Zheng Y.The facile synthesis of mesoporous g-C3N4 with highly enhanced photocatalytic H2 evolution performance.Chem Commun2015;51:16244-6

[115]

Wang X,Chong SY.Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water.Nat Chem2018;10:1180-9

[116]

Kosco, J.; Moruzzi, F.; Willner, B.; Mcculloch, I. Photocatalysts based on organic semiconductors with tunable energy levels for solar fuel applications. Adv. Energy Mater. 2020, 10, 2001935.

[117]

Kosco, J.; Sachs, M.; Godin, R.; et al. The effect of residual palladium catalyst contamination on the photocatalytic hydrogen evolution activity of conjugated polymers. Adv. Energy Mater. 2018, 8, 1802181.

[118]

Sachs M,Kosco J.Tracking charge transfer to residual metal clusters in conjugated polymers for photocatalytic hydrogen evolution.J Am Chem Soc2020;142:14574-87 PMCID:PMC7497637

[119]

Wang, Y.; Vogel, A.; Sachs, M.; et al. Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat. Energy 2019, 4, 746-60.

[120]

Luo T,Kaskel S.Advances of MOFs and COFs for photocatalytic CO2 reduction, H2 evolution and organic redox transformations.Coord Chem Rev2023;490:215210

[121]

Yeo CI,Awan HTA.A review on the advancements in covalent organic frameworks for photocatalytic reduction of carbon dioxide.Coord Chem Rev2024;521:216167

[122]

Fu, Y.; Zhu, X.; Huang, L.; Zhang, X.; Zhang, F.; Zhu, W. Azine-based covalent organic frameworks as metal-free visible light photocatalysts for CO2 reduction with H2O. Appl. Catal. B: Environ. 2018, 239, 46-51.

[123]

Ai L,Wang Q,Jiang G.Harnessing keto-enol tautomerism to modulate β-ketoenamine-based covalent organic frameworks for visible-light-driven CO2 reduction.ChemCatChem2022;14:e202200935

[124]

Yu, X.; Gong, K.; Tian, S.; Gao, G.; Xie, J.; Jin, X. H. A hydrophilic fully conjugated covalent organic framework for photocatalytic CO2 reduction to CO nearly 100% using pure water. J. Mater. Chem. A 2023, 11, 5627-35.

[125]

Liu W,Wang C.A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction.J Am Chem Soc2019;141:17431-40

[126]

Zhang Q,Guo Y.Designing covalent organic frameworks with Co-O4 atomic sites for efficient CO2 photoreduction.Nat Commun2023;14:1147 PMCID:PMC9975230

[127]

Wang, L.; Wang, L.; Yuan, S.; et al. Covalently-bonded single-site Ru-N2 knitted into covalent triazine frameworks for boosting photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2023, 322, 122097.

[128]

Peng L,Liu Z.Visible-light-driven photocatalytic CO2 reduction over ketoenamine-based covalent organic frameworks: role of the host functional groups.Catal Sci Technol2021;11:1717-24

[129]

Ferree, M.; Kosco, J.; Alshehri, N.; et al. Organic semiconductor nanoparticles for visible-light-driven CO2 conversion. Sustain. Energy Fuels 2024, 8, 2423-30.

[130]

Barman S,Rahimi FA.Metal-free catalysis: a redox-active donor-acceptor conjugated microporous polymer for selective visible-light-driven CO2 reduction to CH4.J Am Chem Soc2021;143:16284-92

[131]

Huang, Y.; Du, P.; Shi, W. X.; et al. Filling COFs with bimetallic nanoclusters for CO2-to-alcohols conversion with H2O oxidation. Appl. Catal. B: Environ. 2021, 288, 120001.

[132]

Tan H,Zhang R.Dual active sites with charge-asymmetry in organic semiconductors promoting C-C coupling for highly efficient CO2 photoreduction to ethanol.Angew Chem Int Ed2025;64:e202416684

[133]

Ciriminna R,Meneguzzo F.Hydrogen peroxide: a key chemical for today’s sustainable development.ChemSusChem2016;9:3374-81

[134]

Li W,Liu Y.Unsymmetric protonation driven highly efficient H2O2 photosynthesis in supramolecular photocatalysts via one-step two-electron oxygen reduction.Angew Chem Int Ed2025;64:e202421356

[135]

Liu L,Yang H,Li X.Linear conjugated polymers for solar-driven hydrogen peroxide production: the importance of catalyst stability.J Am Chem Soc2021;143:19287-93 PMCID:PMC8630703

[136]

Sun J,Krishnaraj C.Pyrene-based covalent organic frameworks for photocatalytic hydrogen peroxide production.Angew Chem Int Ed2023;62:e202216719

[137]

Wu, S.; Yu, H.; Chen, S.; Quan, X. Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering. ACS Catal. 2020, 10, 14380-9.

[138]

Liu P,Li Y.Photocatalytic H2O2 production over boron-doped g-C3N4 containing coordinatively unsaturated FeOOH sites and CoOx clusters.Nat Commun2024;15:9224 PMCID:PMC11511943

[139]

Wu W,Liu S.Pyridine-based covalent organic frameworks with pyridyl-imine structures for boosting photocatalytic H2O2 production via one-step 2e- oxygen reduction.Angew Chem Int Ed2024;63:e202404563

[140]

Zhang, Y.; Pan, C.; Bian, G.; et al. H2O2 generation from O2 and H2O on a near-infrared absorbing porphyrin supramolecular photocatalyst. Nat. Energy 2023, 8, 361-71.

[141]

Zhang Y,Li J.Recent progress in nonsacrificial H2O2 generation using organic photocatalysts and in situ applications for environmental remediation.Acc Mater Res2024;5:76-88

[142]

Wang L.Organic donor-acceptor systems for photocatalysis.Adv Sci2024;11:2307227 PMCID:PMC10933655

[143]

Singh, J.; Ruda, H. E.; Narayan, M. R.; Ompong, D. Concept of Excitons. In Optical Properties of Materials and Their Applications, 2nd ed; John Wiley & Sons, 2019; pp 129-55.

[144]

Liu E,Lu Z.Exciton-polaron Rydberg states in monolayer MoSe2 and WSe2.Nat Commun2021;12:6131 PMCID:PMC8531338

[145]

Chernikov A,Hill HM.Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2.Phys Rev Lett2014;113:076802

[146]

Elward, J. M.; Chakraborty, A. Effect of dot size on exciton binding energy and electron-hole recombination probability in CdSe quantum dots. J. Chem. Theory Comput. 2013, 9, 4351-9.

[147]

Dvorak M,Wu Z.Origin of the variation of exciton binding energy in semiconductors.Phys Rev Lett2013;110:016402

[148]

Valencia AM,Anhäuser S.Excitons in organic materials: revisiting old concepts with new insights.Electron Struct2023;5:033003

[149]

Zhu, Y.; Zhao, F.; Wang, W.; Li, Y.; Zhang, S.; Lin, Y. Exciton binding energy of non-fullerene electron acceptors. Adv. Energy Sustain. Res. 2022, 3, 2100184.

[150]

Lunt RR,Forrest SR.Relationship between crystalline order and exciton diffusion length in molecular organic semiconductors.Adv Mater2010;22:1233-6

[151]

Zhu Y,Si W.Organic photovoltaic catalyst with extended exciton diffusion for high-performance solar hydrogen evolution.J Am Chem Soc2022;144:12747-55

[152]

Kraner, S.; Scholz, R.; Koerner, C.; Leo, K. Design proposals for organic materials exhibiting a low exciton binding energy. J. Phys. Chem. C 2015, 119, 22820-5.

[153]

Shuai Z,Xu W,André JM.From charge transport parameters to charge mobility in organic semiconductors through multiscale simulation.Chem Soc Rev2014;43:2662-79

[154]

Abdalla, H.; Zuo, G.; Kemerink, M. Range and energetics of charge hopping in organic semiconductors. Phys. Rev. B 2017, 96, 241202.

[155]

Coropceanu V,da Silva Filho DA,Silbey R.Charge transport in organic semiconductors.Chem Rev2007;107:926-52

[156]

Giannini S.Charge transport in organic semiconductors: the perspective from nonadiabatic molecular dynamics.Acc Chem Res2022;55:819-30 PMCID:PMC8928466

[157]

Schön JH,Batlogg B.Fractional quantum hall effect in organic molecular semiconductors.Science2000;288:2338-40

[158]

Griggs, S.; Marks, A.; Bristow, H.; McCulloch, I. n-Type organic semiconducting polymers: stability limitations, design considerations and applications. J. Mater. Chem. C 2021, 9, 8099-128. PMCID:PMC8264852

[159]

Li H,Dai Q,Brédas JL.Hydrolytic stability of boronate ester-linked covalent organic frameworks.Adv Theory Simul2018;1:1700015

[160]

Chen, P.; Dong, X.; Huang, M.; et al. Rapid self-decomposition of g-C3N4 during gas-solid photocatalytic CO2 reduction and its effects on performance assessment. ACS Catal. 2022, 12, 4560-70.

[161]

Sugie A,Tajima K,Yoshida H.Dependence of exciton binding energy on bandgap of organic semiconductors.J Phys Chem Lett2023;14:11412-20 PMCID:PMC10749482

[162]

Ma, H.; Wei, M.; Jin, F.; Chen, T.; Ma, Y. Two-dimensional COF with rather low exciton binding energies comparable to 3D inorganic semiconductors in the visible range for water splitting. J. Phys. Chem. C 2019, 123, 24626-33.

[163]

Lan ZA,Chen X,Zhang KAI.Reducing the exciton binding energy of donor-acceptor-based conjugated polymers to promote charge-induced reactions.Angew Chem Int Ed2019;58:10236-40

[164]

Dimitriev OP.Dynamics of excitons in conjugated molecules and organic semiconductor systems.Chem Rev2022;122:8487-593

[165]

Chen Y,Dong J.Structure/property control in photocatalytic organic semiconductor nanocrystals.Adv Funct Mater2021;31:2104099

[166]

Yan Y,Shao C,Huang W.Atomistic structural engineering of conjugated microporous polymers promotes photocatalytic biomass valorization.Adv Funct Mater2023;33:2304604

[167]

Qin N,Li L.Construction of benzothiadiazole-based D-A covalent organic frameworks for photocatalytic reduction of Cr (VI) and synergistic elimination of organic pollutants.Polymer2022;262:125483

[168]

Flanders NC,Kim P.Large exciton diffusion coefficients in two-dimensional covalent organic frameworks with different domain sizes revealed by ultrafast exciton dynamics.J Am Chem Soc2020;142:14957-65

[169]

Zhang X,Jiang D.Exciton diffusion and annihilation in an sp2 carbon-conjugated covalent organic framework.J Am Chem Soc2022;144:16423-32

[170]

Blätte D,Bein T.Photons, excitons, and electrons in covalent organic frameworks.J Am Chem Soc2024;146:32161-205 PMCID:PMC11613328

[171]

Dogru M,Auras F.A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene.Angew Chem Int Ed2013;52:2920-4

[172]

Jakowetz AC,Ascherl L.Excited-state dynamics in fully conjugated 2D covalent organic frameworks.J Am Chem Soc2019;141:11565-71

[173]

Pati, P. B.; Damas, G.; Tian, L.; et al. An experimental and theoretical study of an efficient polymer nano-photocatalyst for hydrogen evolution. Energy Environ. Sci. 2017, 10, 1372-6.

[174]

Wang, G. B.; Xu, H. P.; Xie, K. H.; et al. A covalent organic framework constructed from a donor-acceptor-donor motif monomer for photocatalytic hydrogen evolution from water. J. Mater. Chem. A 2023, 11, 4007-12.

[175]

Yang J,Zhu Y.A full-spectrum porphyrin-fullerene D-A supramolecular photocatalyst with giant built-in electric field for efficient hydrogen production.Adv Mater2021;33:2101026

[176]

Liu W,Huang S.Enhancing carrier transport via σ-linkage length modulation in D-σ-A semiconductors for photocatalytic oxidation.Angew Chem Int Ed2023;62:e202304773

[177]

Zhang, Z.; Wang, J.; Liu, D.; et al. Highly efficient organic photocatalyst with full visible light spectrum through π-π stacking of TCNQ-PTCDI. ACS Appl. Mater. Interfaces 2016, 8, 30225-31.

[178]

Guo, Y.; Zhou, Q.; Zhu, B.; Tang, C. Y.; Zhu, Y. Advances in organic semiconductors for photocatalytic hydrogen evolution reaction. EES Catal. 2023, 1, 333-52.

[179]

Kosco J,Cha H.Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles.Nat Mater2020;19:559-65 PMCID:PMC7558859

[180]

Wadsworth A,Kosco J,McCulloch I.The bulk heterojunction in organic photovoltaic, photodetector, and photocatalytic applications.Adv Mater2020;32:2001763

[181]

Cheng C,Fan J,Cao S.An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism.Adv Mater2021;33:2100317

[182]

Yang Y,Cai J.Enhanced photocatalytic hydrogen evolution from organic ternary heterojunction nanoparticles featuring a compact alloy-like phase.Adv Funct Mater2023;33:2209643

[183]

Zhang Z,Chen X,Wang J.A full-spectrum metal-free porphyrin supramolecular photocatalyst for dual functions of highly efficient hydrogen and oxygen evolution.Adv Mater2019;31:1806626

[184]

Wu X,Liu Y,Cui Y.Control interlayer stacking and chemical stability of two-dimensional covalent organic frameworks via steric tuning.J Am Chem Soc2018;140:16124-33

[185]

Ma Y,Li H.Three-dimensional chemically stable covalent organic frameworks through hydrophobic engineering.Angew Chem Int Ed2020;59:19633-8

[186]

Khalil IE,Thomas A.Two-dimensional covalent organic frameworks: structural insights across different length scales and their impact on photocatalytic efficiency.Acc Chem Res2024;57:3138-50 PMCID:PMC11542146

[187]

Li X,Sun B,Zhang J.Chemically robust covalent organic frameworks: progress and perspective.Matter2020;3:1507-40

[188]

Li P,Wang Y.Synergistic effect of dielectric property and energy transfer on charge separation in non-fullerene-based solar cells.Angew Chem Int Ed2021;60:15054-62

[189]

Li Z,Gong Y.Covalent organic frameworks: pore design and interface engineering.Acc Chem Res2020;53:1672-85

[190]

He T.Covalent organic frameworks for energy conversion in photocatalysis.Angew Chem Int Ed2023;62:e202303086

[191]

Nagai A,Feng X.Pore surface engineering in covalent organic frameworks.Nat Commun2011;2:536

[192]

Liu R,Yu H.Linkage-engineered donor-acceptor covalent organic frameworks for optimal photosynthesis of hydrogen peroxide from water and air.Nat Catal2024;7:195-206

[193]

Xu H,Gao J.Catalytic covalent organic frameworks via pore surface engineering.Chem Commun2014;50:1292-4

[194]

Kang X,Spector-Watts BM.Challenges and opportunities for chiral covalent organic frameworks.Chem Sci2022;13:9811-32 PMCID:PMC9431510

[195]

Han X,Hou B.Chiral covalent organic frameworks: design, synthesis and property.Chem Soc Rev2020;49:6248-72

[196]

Fang Q,Gu S.Designed synthesis of large-pore crystalline polyimide covalent organic frameworks.Nat Commun2014;5:4503

[197]

Liu Y,Yu H.Increasing the accessibility of internal catalytic sites in covalent organic frameworks by introducing a bicontinuous mesostructure.Angew Chem Int Ed2024;63:e202400985

[198]

Spitler EL,Novotney JL.A 2D covalent organic framework with 4.7-nm pores and insight into its interlayer stacking.J Am Chem Soc2011;133:19416-21

[199]

Jin S,Feng X.Charge dynamics in a donor-acceptor covalent organic framework with periodically ordered bicontinuous heterojunctions.Angew Chem Int Ed2013;52:2017-21

[200]

Banerjee T.The wetter the better.Nat Chem2018;10:1175-7

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/