The challenge and opportunity of organic semiconductors in photocatalysis
Rui Lin , Chou-Hung Hsueh , Hongde Yu , Thomas Heine , Chen Chen , Toru Murayama
Microstructures ›› 2025, Vol. 5 ›› Issue (4) : 2025070
The challenge and opportunity of organic semiconductors in photocatalysis
Employing organic semiconductors to drive photocatalytic processes for chemical fuel production and pollutant degradation is a viable pathway for tackling the energy crisis and environmental pollution. In this review, we summarize the development of organic semiconductor photocatalysis so far and propose the future vision of organic semiconductors as state-of-the-art photocatalysts in practical applications. Compared to inorganic semiconductors, organic semiconductors display a large absorption coefficient and easily tunable topological and electronic structures, which set them apart from ordinary inorganic photocatalysts. However, the chemical instability, high exciton dissociation energy and low charge carrier mobility of organic semiconductors are the major obstacles to the improvement of their photocatalytic activity. Obviously, the opportunity and challenge coexist in the development of organic semiconductor photocatalysis. In light of this, we systematically compare the merits and shortcomings of organic semiconductors for heterogeneous photocatalysis and enumerate some feasible approaches to overcoming the bottlenecks hindering their photocatalytic performance. By carefully considering factors such as conjugated linkage types, building blocks, and electron donor-acceptor structures, highly reactive and stable organic semiconductor photocatalysts can be developed.
Organic semiconductors / heterogeneous photocatalysis / exciton dissociation and diffusion / charge carrier transport / chemical stability
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
Takanabe, K. Photocatalytic water splitting: quantitative approaches toward photocatalyst by design. ACS Catal. 2017, 7, 8006-22. |
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
Niu, M.; Huang, F.; Cui, L.; Huang, P.; Yu, Y.; Wang, Y. Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/alpha-Fe2O3 semiconductor nanoheterostructures. ACS Nano 2010, 4, 681-8. |
| [15] |
Shi, R.; Zhao, Y.; Waterhouse, G. I. N.; Zhang, S.; Zhang, T. Defect engineering in photocatalytic nitrogen fixation. ACS Catal. 2019, 9, 9739-50. |
| [16] |
|
| [17] |
Lin, R.; Chen, H.; Cui, T.; et al. Optimization of p-type Cu2O nanocube photocatalysts based on electronic effects. ACS Catal. 2023, 13, 11352-61. |
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
Lin, R.; Fan, D.; Berger, L. M.; et al. Light tuning CO/H2 composition on Ag: unraveling CO2 mass transfer and electron-phonon coupling in plasmon-enhanced electrocatalysis. Nano Res. 2025, 18, 94907042. |
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
Kippelen, B.; Brédas, J. L. Organic photovoltaics. Energy Environ. Sci. 2009, 2, 251-61. |
| [28] |
Ma, Z.; Zhao, B.; Gao, H.; Gong, Y.; Yu, R.; Tan, Z. Recent advances of crosslinkable organic semiconductors in achieving solution-processed and stable optoelectronic devices. J. Mater. Chem. A 2022, 10, 18542-76. |
| [29] |
|
| [30] |
|
| [31] |
Chen, L. X. Organic solar cells: recent progress and challenges. ACS Energy Lett. 2019, 4, 2537-9. |
| [32] |
Brütting, W. Physics of Organic Semiconductors; Wiley-VCH Verlag GmbH & Co. KGaA, 2005. |
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
Lopes, J. M. S.; Batista, A. A.; Araujo, P. T.; Neto, N. M. B. Supramolecular porphyrin as an improved photocatalyst for chloroform decomposition. RSC Adv. 2023, 13, 5473-82. PMCID:PMC9924222 |
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
Li, Y.; Zhang, X.; Liu, D. Recent developments of perylene diimide (PDI) supramolecular photocatalysts: a review. J. Photoch. Photobio. C 2021, 48, 100436. |
| [46] |
Tamaki, Y.; Ishitani, O. Supramolecular photocatalysts for the reduction of CO2. ACS Catal. 2017, 7, 3394-409. |
| [47] |
|
| [48] |
Wang, J.; Zhong, Y.; Wang, L.; et al. Morphology-controlled synthesis and metalation of porphyrin nanoparticles with enhanced photocatalytic performance. Nano Lett. 2016, 16, 6523-8. |
| [49] |
Zhang, N.; Wang, L.; Wang, H.; et al. Self-assembled one-dimensional porphyrin nanostructures with enhanced photocatalytic hydrogen generation. Nano Lett. 2018, 18, 560-6. |
| [50] |
|
| [51] |
Genc, E.; Yüzer, A. C.; Yanalak, G.; et al. The effect of central metal in phthalocyanine for photocatalytic hydrogen evolution via artificial photosynthesis. Renew. Energy 2020, 162, 1340-6. |
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
Sprick, R. S.; Aitchison, C.M.; Berardo, E.; et al. Maximising the hydrogen evolution activity in organic photocatalysts by co-polymerisation. J. Mater. Chem. A 2018, 6, 11994-2003. |
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
Lyons, R. J.; Yang, Y.; McQueen, E.; et al. Polymer photocatalysts with side chain induced planarity for increased activity for sacrificial hydrogen production from water. Adv. Energy Mater. 2024, 14, 2303680. |
| [61] |
|
| [62] |
Chu, S.; Wang, Y.; Guo, Y.; et al. Band structure engineering of carbon nitride: in search of a polymer photocatalyst with high photooxidation property. ACS Catal. 2013, 3, 912-9. |
| [63] |
|
| [64] |
|
| [65] |
Harikrishnan, L.; Rajaram, M.; Natarajan, A.; Rajaram, A. Boron-doped exfoliated g-C3N4 nanosheet-based phosphors for white light-emission and photocatalytic degradation. ACS Appl. Nano Mater. 2023, 6, 16947-59. |
| [66] |
|
| [67] |
Zhu, Y. P.; Ren, T. Z.; Yuan, Z. Y. Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl. Mater. Interfaces 2015, 7, 16850-6. |
| [68] |
Naveed, A. B.; Javaid, A.; Zia, A.; et al. TiO2/g-C3N4 binary composite as an efficient photocatalyst for biodiesel production from jatropha oil and dye degradation. ACS Omega 2023, 8, 2173-82. PMCID:PMC9850785 |
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
Yang, Q.; Luo, M.; Liu, K.; Cao, H.; Yan, H. Covalent organic frameworks for photocatalytic applications. Appl. Catal. B: Environ. 2020, 276, 119174. |
| [77] |
Yang, J.; Chen, Z.; Zhang, L.; Zhang, Q. Covalent organic frameworks for photocatalytic reduction of carbon dioxide: a review. ACS Nano 2024, 18, 21804-35. |
| [78] |
|
| [79] |
|
| [80] |
Gunawan, M.; Zhou, S.; Gunawan, D.; et al. Ferroelectric materials as photoelectrocatalysts: photoelectrode design rationale and strategies. J. Mater. Chem. A 2025, 13, 1612-40. |
| [81] |
Yao, L.; Rahmanudin, A.; Guijarro, N.; Sivula, K. Organic semiconductor based devices for solar water splitting. Adv. Energy Mater. 2018, 8, 1802585. |
| [82] |
McEvoy, A.; Markvart, T.; Castaner, L. Practical Handbook of Photovoltaics: Fundamentals and Applications, 2nd ed.; Academic Press, 2012. |
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
Wang, Y.; Silveri, F.; Bayazit, M. K.; et al. Bandgap engineering of organic semiconductors for highly efficient photocatalytic water splitting. Adv. Energy Mater. 2018, 8, 1801084. |
| [88] |
Yu, H.; Wang, D. Suppressing the excitonic effect in covalent organic frameworks for metal-free hydrogen generation. JACS Au 2022, 2, 1848-56. PMCID:PMC9400042 |
| [89] |
Van der Holst, J. J. M.; Van Oost, F. W. A.; Coehoorn, R.; Bobbert, P. A. Electron-hole recombination in disordered organic semiconductors: validity of the Langevin formula. Phys. Rev. B 2009, 80, 235202. |
| [90] |
Grinolds, D. D. W.; Brown, P. R.; Harris, D. K.; Bulovic, V.; Bawendi, M. G. Quantum-dot size and thin-film dielectric constant: precision measurement and disparity with simple models. Nano Lett. 2015, 15, 21-6. |
| [91] |
|
| [92] |
Armin, A.; Stoltzfus, D. M.; Donaghey, J. E.; et al. Engineering dielectric constants in organic semiconductors. J. Mater. Chem. C 2017, 5, 3736-47. |
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
Liu, L.; Kochman, M. A.; Xu, Y.; Zwijnenburg, M. A.; Cooper, A. I.; Sprick, R. S. Acetylene-linked conjugated polymers for sacrificial photocatalytic hydrogen evolution from water. J. Mater. Chem. A 2021, 9, 17242-8. |
| [98] |
|
| [99] |
|
| [100] |
Huang, H.; Jiang, L.; Yang, J.; et al. Synthesis and modification of ultrathin g-C3N4 for photocatalytic energy and environmental applications. Renew. Sustain. Energy Rev. 2023, 173, 113110. |
| [101] |
|
| [102] |
Rousseva, S. Organic semiconductors with increased dielectric constants. Ph.D. Dissertation, University of Groningen, Groningen, Netherlands, 2022. https://doi.org/10.33612/diss.254084459 (assessed 2025-05-20) |
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
de Clercq, D. M.; Yang, J.; Hanif, M.; et al. Exciton dissociation, charge transfer, and exciton trapping at the MoS2/organic semiconductor interface. J. Phys. Chem. C 2023, 127, 11260-7. |
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
Kosco, J.; Moruzzi, F.; Willner, B.; Mcculloch, I. Photocatalysts based on organic semiconductors with tunable energy levels for solar fuel applications. Adv. Energy Mater. 2020, 10, 2001935. |
| [117] |
Kosco, J.; Sachs, M.; Godin, R.; et al. The effect of residual palladium catalyst contamination on the photocatalytic hydrogen evolution activity of conjugated polymers. Adv. Energy Mater. 2018, 8, 1802181. |
| [118] |
|
| [119] |
Wang, Y.; Vogel, A.; Sachs, M.; et al. Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat. Energy 2019, 4, 746-60. |
| [120] |
|
| [121] |
|
| [122] |
Fu, Y.; Zhu, X.; Huang, L.; Zhang, X.; Zhang, F.; Zhu, W. Azine-based covalent organic frameworks as metal-free visible light photocatalysts for CO2 reduction with H2O. Appl. Catal. B: Environ. 2018, 239, 46-51. |
| [123] |
|
| [124] |
Yu, X.; Gong, K.; Tian, S.; Gao, G.; Xie, J.; Jin, X. H. A hydrophilic fully conjugated covalent organic framework for photocatalytic CO2 reduction to CO nearly 100% using pure water. J. Mater. Chem. A 2023, 11, 5627-35. |
| [125] |
|
| [126] |
|
| [127] |
Wang, L.; Wang, L.; Yuan, S.; et al. Covalently-bonded single-site Ru-N2 knitted into covalent triazine frameworks for boosting photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2023, 322, 122097. |
| [128] |
|
| [129] |
Ferree, M.; Kosco, J.; Alshehri, N.; et al. Organic semiconductor nanoparticles for visible-light-driven CO2 conversion. Sustain. Energy Fuels 2024, 8, 2423-30. |
| [130] |
|
| [131] |
Huang, Y.; Du, P.; Shi, W. X.; et al. Filling COFs with bimetallic nanoclusters for CO2-to-alcohols conversion with H2O oxidation. Appl. Catal. B: Environ. 2021, 288, 120001. |
| [132] |
|
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
|
| [137] |
Wu, S.; Yu, H.; Chen, S.; Quan, X. Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering. ACS Catal. 2020, 10, 14380-9. |
| [138] |
|
| [139] |
|
| [140] |
Zhang, Y.; Pan, C.; Bian, G.; et al. H2O2 generation from O2 and H2O on a near-infrared absorbing porphyrin supramolecular photocatalyst. Nat. Energy 2023, 8, 361-71. |
| [141] |
|
| [142] |
|
| [143] |
Singh, J.; Ruda, H. E.; Narayan, M. R.; Ompong, D. Concept of Excitons. In Optical Properties of Materials and Their Applications, 2nd ed; John Wiley & Sons, 2019; pp 129-55. |
| [144] |
|
| [145] |
|
| [146] |
Elward, J. M.; Chakraborty, A. Effect of dot size on exciton binding energy and electron-hole recombination probability in CdSe quantum dots. J. Chem. Theory Comput. 2013, 9, 4351-9. |
| [147] |
|
| [148] |
|
| [149] |
Zhu, Y.; Zhao, F.; Wang, W.; Li, Y.; Zhang, S.; Lin, Y. Exciton binding energy of non-fullerene electron acceptors. Adv. Energy Sustain. Res. 2022, 3, 2100184. |
| [150] |
|
| [151] |
|
| [152] |
Kraner, S.; Scholz, R.; Koerner, C.; Leo, K. Design proposals for organic materials exhibiting a low exciton binding energy. J. Phys. Chem. C 2015, 119, 22820-5. |
| [153] |
|
| [154] |
Abdalla, H.; Zuo, G.; Kemerink, M. Range and energetics of charge hopping in organic semiconductors. Phys. Rev. B 2017, 96, 241202. |
| [155] |
|
| [156] |
|
| [157] |
|
| [158] |
Griggs, S.; Marks, A.; Bristow, H.; McCulloch, I. n-Type organic semiconducting polymers: stability limitations, design considerations and applications. J. Mater. Chem. C 2021, 9, 8099-128. PMCID:PMC8264852 |
| [159] |
|
| [160] |
Chen, P.; Dong, X.; Huang, M.; et al. Rapid self-decomposition of g-C3N4 during gas-solid photocatalytic CO2 reduction and its effects on performance assessment. ACS Catal. 2022, 12, 4560-70. |
| [161] |
|
| [162] |
Ma, H.; Wei, M.; Jin, F.; Chen, T.; Ma, Y. Two-dimensional COF with rather low exciton binding energies comparable to 3D inorganic semiconductors in the visible range for water splitting. J. Phys. Chem. C 2019, 123, 24626-33. |
| [163] |
|
| [164] |
|
| [165] |
|
| [166] |
|
| [167] |
|
| [168] |
|
| [169] |
|
| [170] |
|
| [171] |
|
| [172] |
|
| [173] |
Pati, P. B.; Damas, G.; Tian, L.; et al. An experimental and theoretical study of an efficient polymer nano-photocatalyst for hydrogen evolution. Energy Environ. Sci. 2017, 10, 1372-6. |
| [174] |
Wang, G. B.; Xu, H. P.; Xie, K. H.; et al. A covalent organic framework constructed from a donor-acceptor-donor motif monomer for photocatalytic hydrogen evolution from water. J. Mater. Chem. A 2023, 11, 4007-12. |
| [175] |
|
| [176] |
|
| [177] |
Zhang, Z.; Wang, J.; Liu, D.; et al. Highly efficient organic photocatalyst with full visible light spectrum through π-π stacking of TCNQ-PTCDI. ACS Appl. Mater. Interfaces 2016, 8, 30225-31. |
| [178] |
Guo, Y.; Zhou, Q.; Zhu, B.; Tang, C. Y.; Zhu, Y. Advances in organic semiconductors for photocatalytic hydrogen evolution reaction. EES Catal. 2023, 1, 333-52. |
| [179] |
|
| [180] |
|
| [181] |
|
| [182] |
|
| [183] |
|
| [184] |
|
| [185] |
|
| [186] |
|
| [187] |
|
| [188] |
|
| [189] |
|
| [190] |
|
| [191] |
|
| [192] |
|
| [193] |
|
| [194] |
|
| [195] |
|
| [196] |
|
| [197] |
|
| [198] |
|
| [199] |
|
| [200] |
|
/
| 〈 |
|
〉 |